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a b s t r a c t

Secure coding education is quite important for students to acquire the skills to quickly adapt to the
evolving threats towards the software they are expected to create once they graduate. Educators
are also more aware of this situation and incorporate teaching security in their respective fields.
An effective application of this is only possible by cultivating the teaching and learning perspectives.
Understanding the security awareness and practice of students is useful as an initial step to create a
baseline for teaching methods and content. In this paper, we first survey to investigate how students
approach security and what could motivate them to learn and apply security practices. Then, we
analyze the source code for 6 semesters of coding assignments for 2 tasks using a source code
vulnerability analysis tool. In our analysis, we report the types of vulnerabilities and various aspects
between them while incorporating the effect of student grades. We then explore the lexical and
structural features of security in student code using data analysis and machine learning. For the lexical
analysis, we build a classifier to extract informative features and for the structural analysis, we utilize
Syntax Trees to represent code and perform clustering in terms of structural features where clusters
themselves yield different vulnerability levels.

© 2021 Published by Elsevier Inc.
1. Introduction

Teaching security aspects of programming has gained impor-
ance (Taylor et al., 2013; Chi et al., 2013) as today’s software
equires more connectivity and is more complex while it is in-
vitable for students as fresh graduates to come across vulnerabil-
ties affecting the security, reliability, and maintainability of their
ode early in their careers. Therefore, it may be wise enough for
hem to learn how to bridge the gap towards more secure code
s early as possible (Taylor et al., 2013; Cabaj et al., 2018).
With the inclusion of cybersecurity in ACM-IEEE computer

cience curricula in 2013 (Joint task force on computing curricula,
ssociation for computing machinery (ACM) and IEEE computer
ociety, 2013) and the guidelines in cybersecurity curricula by
CM-IEEE Joint Task Force in 2017 (Joint Task Force on Cy-
ersecurity Education, 2017), educators have been advised to
nclude security concepts in the classrooms and initiated such
fforts (Taylor and Kaza, 2016). However, educators need to es-
ablish an initial understanding of where students struggle first in
heir coding to teach them about secure coding. A starting point
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would be to evaluate the security level of code, which is generally
done through vulnerability analysis.

Vulnerability analysis is vastly studied in the literature and
there are many different techniques (Liu et al., 2012) from pre-
defined rules to machine learning approaches (Ghaffarian and
Shahriari, 2017) that help catch certain textual and syntactic
patterns in code that are indicative of vulnerabilities. To commu-
nicate the analysis results and their additional properties such as
the discovered vulnerabilities and their severity score, the secu-
rity community developed standardized ways such as Common
Weakness Enumeration (CWE), Common Vulnerability Exposure
(CVE), Common Vulnerability Scoring System (CVSS), and OWASP
Top 10. Open-source and commercial code analyzers also inte-
grate most of these standards and some of them use their own
classification to augment their findings.

In this work, we investigate a data set comprised of student
code from different semesters for two different web application
development tasks for the third year ‘‘Database Management
Systems’’ course, which covers theoretical foundations of the
topic and has assignments as applications of Database Systems
and is mandatory for Computer Science students. Security-related
courses are occasionally offered as electives and taken by mostly
fourth-year students. In the described development tasks of the
course, students are required to implement a web application
with a database using PHP/MySQL (and Java to create the initial
database). They were required to publish their application online.
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e analyze the submissions in terms of security using data
nalysis techniques to identify lexical and structural variations.
We believe that analyzing and learning security aspects from

he code of university students bring two immediate benefits.
irstly, students focus on implementing only the functionality,
re not slightly interested in implementing other features (Tay-
or et al., 2013). Our grading in the assignments was based on
unctionality as well. Thus it can be expected in our scenario
hat students would not implement security features on their
wn unless required explicitly, even though the nature of the
ssignment would present a good learning opportunity for such
eatures. Therefore, this may indicate an analysis of a purely
ecurity-indifferent approach, providing a worst-case analysis of
ecurity. Secondly, having different implementations of the same
ask can help differentiate and prioritize improvement points
rom the teaching perspective.

To summarize, we investigate the following research questions
RQs):

1. How do students assess the security of their own code, and
is there a gap between their own understanding and the
actual results?

2. What are the most common security vulnerabilities in uni-
versity students’ code?

3. How does increasing grade (or functionality) affect security
in the code?

4. Is it possible to encourage students towards more secure
code using external motivation such as extra points?

5. Is it possible to extract more information on security vul-
nerabilities by leveraging lexical and structural features of
the code?

6. What are the security concepts for teaching university
students to bridge the gap towards more secure coding?

As means to answer the research questions, we perform the
ollowing:

• We use a dataset that consists of completely security-
unaware code thus may provide a worst-case analysis of
security.

• We provide an analysis of security vulnerabilities in student
code on two programming tasks over 6 semesters which
generates the data size and time-span for exploration.

• We investigate the types of vulnerabilities in terms of var-
ious aspects. We show that the number of vulnerabilities
increases proportionally to the increasing grade. However,
we believe this is in fact about the increased functionality.

• We provide the results of a user study, namely a question-
naire about secure coding. Students report a total dismissal
of security in their practices.

• We encouraged students to secure their code by adding a
bonus section to the assignment. We show that extra points
can engage the students into securing their code and the
students who submit bonus parts have fewer vulnerabilities
in their code.

• We bring lexical and structural perspectives on student code
using exploratory machine learning techniques, that can
help towards more secure code.

The paper is structured as follows. In Section 2, we review
ome of the studies related to our work. Section 3 describes
he methodology and the data set. Section 4 lists the results of
ur survey. Section 5 gives the details of our analysis based on
ecurity vulnerabilities. Section 6 is about the machine learning
echniques employed with the lexical and structural features
f student code. In Section 7, we elaborate on the results and
ection 8 lists the limitations of this study.
2

2. Related work

Cyber security education. The importance of cybersecurity educa-
tion and its integration into computer science curricula attract the
attention of researchers. Cabaj et al. (2018) review the evolution
of cybersecurity education. Švábenský et al. (2020) review the
research and provide a taxonomy in cybersecurity education.
Jones et al. (2018) address what students should learn in schools
and share the results of a survey targeted at cybersecurity profes-
sionals. Parekh et al. (2018) identify the cybersecurity concepts
that should be taught using Delphi processes.

Secure coding education: Student perspective. Some studies ex-
plore student perspectives in security. Acar et al. (2016) address
the impact and the use of information sources with computer
science students and professional developers. The results show
that not experience but prior security training had a positive
effect on code security. In Jain et al. (2014), it is shown that a
set of developers selected from computer science students tend
to prefer a more privacy-preserving API. Taylor and Kaza (2011)
provides a checklist-based model to teach students security as-
pects. Hooshangi et al. (2015) try to understand the student
mindset and behavior in which they write offensive and defensive
code in a course on security. They observe that students who
wrote good defensive software also wrote good offensive soft-
ware but not vice-versa. Cappos and Weiss (2014), similarly use
a teaching method for security that has a series of assignments
to code attack and defense tasks. Williams et al. (2014) point out
some of the issues for beginner programmers.

Code analysis and machine learning techniques. There are many
aspects to source code analysis and it has been a relevant research
field since code has existed (Binkley, 2007). Although the research
can mainly be divided into two parts, dynamic and static analysis,
our research is done via means of static analysis. An aging but still
relevant and comprehensive survey on dynamic program analysis
is given by Cornelissen et al. (2009).

One primary use case of static analysis is to detect vulner-
abilities (Liu et al., 2012). We can refer to Pistoia et al. (2007)
for vulnerability detection using static code analysis techniques
for the period before machine learning methods become popular.
Many recent studies utilize machine learning and deep learning
techniques in this field to detect vulnerabilities. Allamanis et al.
(2018) give an overview of machine learning research on code.
They provide a taxonomy of papers that includes code generating
models, representational models, pattern mining models. Code
generating models deal with models that can produce code out
of training examples. Representational models are different ap-
proaches to the problem of representing source code for machine
learning models to be used in various tasks. For instance, Allama-
nis et al. (2016) use a method to represent code using tokens to
summarize code as method names. Alon et al. (2019, 2018) utilize
embeddings from Abstract Syntax Tree (AST) paths for general-
purpose use. Pattern mining models try to identify recurring
patterns and extract meaning from them. For example, Wang
et al. (2016) use AST representation to predict bugs in source
code and White et al. (2016) use deep learning to identify code
clones. Russell et al. (2018) use Convolutional Neural Networks
and Recurrent Neural Networks to extract features from code
tokens and using these to predict vulnerabilities. The base of this
work intersects with representational models and pattern mining
models.

3. Methodology

RQ.1 is about students’ security perception of their own code.
To learn about that, we ask related questions in the form of a
survey. We report the results in Section 4.
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RQ.2, 3, and 4 investigate the types of vulnerabilities cre-
ted by students’ code. We automatically analyze the code using
onarqube Community Edition,1 which is a static code analyzer
hat performs rule-based analysis for various languages. We chose
t for its accessibility and popularity, which is helpful because
ny further research using other software would have a chance
o perform comparisons as long as a community edition ex-
sts. We use the default rule-set of the scanner. We only scan
tudent-authored code. The results of the analysis are given in
ection 5.
RQ.5 asks whether it is possible to identify additional infor-

ation by leveraging lexical and structural features of code. The
exical approach is about what the code contains, statements,
ariables. For this, we utilize a classifier based on Logistic Re-
ression. We then explore the most informative lexical bits in
he code, extracted from the classifier. Structural analysis on the
ther hand requires breaking the code into smaller parts and then
tilize a representation that can then be learned from. In our
pproach, we convert code into Abstract Syntax Trees and are able
o perform clustering based on this and show that structure also
as a value in terms of security. We explain the details of both
exical and structural studies in Section 6.

The data set contains implementations of two different tasks.
ask A is a simple university internship application and Task B
s a simple banking application. Tasks are given to students in
ifferent semesters. Submissions are graded based on how well
he requirements are implemented and not in terms of security.
ur data set consists of 6 semesters of student code, containing
ore than 400 submissions.

. Student survey

In this section, we explore RQ.1: ‘‘How do students assess the
ecurity of their own code, and is there a gap between their own
nderstanding and the actual results?’’
To learn about their perception regarding the security of their

ode, we added a bonus section to the assignment in the Spring
019 semester. In the bonus part, we asked students to write
short report in which they comment on how secure their

pplication is. We notified them that they could write about the
ossible weaknesses in their code, how they could improve their
pplication code. We also asked them to answer the following
uestions: ‘‘To what extent do you consider security in your
ode?’’ and ‘‘What are the reasons for that in your opinion?’’.
The bonus part could earn the students up to 50%. (Maximum

ithout the bonus was 100 and with the bonus, it was 150 for
single semester). This way we intended to identify whether
dding additional points would encourage more student engage-
ent. Indeed, different types of encouragement have been shown

o increase cybersecurity awareness on pedagogical examples for
ifferent audiences (Amo et al., 2019; Schumacher and Welch,
002).

.1. Survey results

Out of 39 students who submitted their code, 11 of them also
id the bonus section. This means extra points could engage 28.2%
f students who submit their assignments. Here we report the
ggregated survey results.
First of all, as we list in Table 1, students list some of the

ecurity vulnerabilities that may occur in their applications. Al-
ost all students reported SQL Injection as their primary security
roblem. The least reported one was Path Traversal.

1 https://www.sonarqube.org
 o

3

Table 1
Vulnerabilities reported by students.
Security Vulnerabilities Ratio of Students

SQL Injection 0.91
Data Sanitization/Input Validation 0.64
Hardcoded passwords and credentials 0.36
Sensitive Data Exposure 0.36
Encryption 0.36
Authentication and Authorization 0.27
Insecure Logging 0.27
Cross Site Scripting 0.18
Link Misuse 0.18
Path Traversal 0.09

Table 2
Reasons security is neglected, as reported by students (a student
can report multiple reasons).
Reason Ratio of Students

Time concern 0.36
Not required in the assignment 0.27
Did not respond 0.54

Table 3
Students’ own security level assessment of their code.
Security Level Perception Ratio of Students

Low 0.81
Medium 0.18
High 0

Students also reported their thoughts on why security is often
neglected in this or generally any other Computer Science assign-
ment (see Table 2). The primary reason was the time concern. It
is understandable for students not to spend too much time on
security features. The other reason was that security features are
not typically required in computer assignments, and they do not
want to spend extra time on something that would not bring
them explicitly more points even if they were required to publish
their application online in the assignment. Nance et al. (2012)
also mention that students should be required to implement se-
curity, otherwise they are not motivated. Finally, students mostly
assess their code to be highly insecure, where there is a group
that thinks that their code provides medium-level security (see
Table 3). Whether their expectation and the actual results match
will be studied in the following sections.

5. Analysis

5.1. Overview

We first investigate the number of vulnerabilities per student.
As Fig. 1(a) shows there exist few students with a large number
of vulnerabilities whereas there is a long tail of students with
fewer vulnerabilities. In Fig. 1(b) vulnerabilities per student per
semester shows an increasing trend from the per-task perspec-
tive. However, this does not lead us to a conclusion without more
data.

5.2. Understanding the types of vulnerabilities

Here, we target RQ.2:‘‘What are the most common security
ulnerabilities in university students’ code?’’
Understanding the most common types of vulnerabilities that

xist in the student code is important to prioritize the issues that
elp to deliver better security training. For this matter, we inves-
igate this in terms of three different aspects (i.e., taxonomies)

f security problems: CWEs, OWASP Top 10, and vulnerabilities

https://www.sonarqube.org
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Table 4
Vulnerabilities per CWE Type.
Type Definition #

CWE-259 Use of Hard-coded Password 829
CWE-20 Improper Input Validation 761
CWE-564 SQL Injection: Hibernate 751
CWE-943 Improper Neutralization of Special Elements in Data Query Logic 751
CWE-489 Active Debug Code 714
CWE-315 Cleartext Storage of Sensitive Information in a Cookie 23
CWE-117 Improper Output Neutralization for Logs 17
CWE-532 Insertion of Sensitive Information into Log File 17
CWE-778 Insufficient Logging 17
CWE-521 Weak Password Requirements 15
CWE-311 Missing Encryption of Sensitive Data 14
CWE-614 Sensitive Cookie in HTTPS Session Without ’Secure’ Attribute 14
r
t
p

Fig. 1. Overview.

raised by Sonar software. This helps us understand the security
problem from different granularity levels. CWEs allow a standard-
ized way to categorize and communicate common vulnerabilities
in software and hardware systems and it is organized in a tree
hierarchy to provide a highly granular vulnerability taxonomy.
OWASP Top 10, on the other hand, provides a big picture view
with an emphasis on the most common vulnerabilities from
a web application perspective. Both are used in the industry
together for a comprehensive understanding of the security situa-
tion. There also exist mappings from some CWE codes to OWASP
Top 10 categories. In addition, using a taxonomy such as Sonar
can also help provide a non-standard view for analysts. In this
 m

4

Table 5
Vulnerabilities per OWASP Top 10 Type.
Type Description #

A2:2017 Broken Authentication 843
A3:2017 Sensitive Data Exposure 810
A1:2017 Injection 753
A10:2017 Insufficient Logging & Monitoring 10

Table 6
Vulnerability per Sonar Security Category.
Vulnerability #

auth 844
sql-injection 751
insecure-conf 737
others 63
log-injection 17
dos 4
weak-cryptography 1

work, the vulnerabilities with respect to OWASP Top 10, CWE,
and Sonar are derived by Sonarqube using various rule sets for
each. The rule sets are updated over time by the Sonarqube.

In terms of the most common CWE, we have the follow-
ing: CWE-798: Use of Hard-coded Credentials, CWE-259: Use of
Hard-coded Password, CWE-20: Improper Input Validation, CWE-
89: Improper Neutralization of Special Elements used in an SQL
Command (’SQL Injection’), CWE-943: Improper Neutralization of
Special Elements in Data Query Logic, CWE-564: SQL Injection:
Hibernate, CWE-489: Leftover Debug Code (see Table 4). Clearly,
the most common problems are the use of critical data in the code
and not being able to sanitize input and output against malicious
operations.

OWASP vulnerabilities show a similar pattern (Table 5); the
most common vulnerabilities are A2 Broken Authentication and
Session Management, A3 Sensitive Data Exposure, A1 Injection.
Sonar software also yields a similar pattern; Auth, SQL-injection,
and Insecure configuration are the most common issues (Table 6).

It is interesting to see that students list most of these issues
without needing to use any software that analyzed their code. The
students who answered the survey questions were aware of the
possible vulnerabilities in their code. It should also be noted that
most of the found issues result from hurried programming, hence
‘‘time concern’’ as reported by the students.

5.3. Effect of student grade on security

RQ.3: ‘‘How does increasing grade (or functionality) effect secu-
ity in the code?’’ and RQ.4: ‘‘Is it possible to encourage students
owards more secure code using external motivation such as extra
oints?’’ are explored in this section.
It may be expected to think that students with better grades

ay incorporate more security into their code, but the results
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Fig. 2. Grades and Vulnerabilities.
Fig. 3. Distribution of Vulnerability Types w.r.t. Grades.
how otherwise (Fig. 2(a)). We see a clear pattern of increasing
ulnerability count with increasing grades. In the evaluation of
he assignments, a grade represents how well the functionality
s implemented, and 100 means a perfect score and in these
ssignments, security functionality was not explicitly required. As
result, better grades indicate more functionality and complexity
hus more probability to create security vulnerabilities. It can be
een in the figure that some students have better grades than
00. These are the students who submitted the bonus section and
ome of them upgraded their code for better security as the figure
hows fewer vulnerabilities for these students as an exception.
We also investigate the number of vulnerabilities for students

ith perfect score. The distribution we see in Fig. 2(b) resembles
he distribution of all students we depict in Fig. 1(a). This indi-
ates that doing the same job is possible with different security
evels.

To understand the distribution of vulnerabilities not just by
ounts but rather with types, we do an analysis from the three
erspectives as we did for the overall data set; CWE, OWASP
op 10, and Sonar vulnerabilities. This time we show the occur-
ence probabilities of different vulnerability types with respect
o student grade in Fig. 3. It can be seen that the probability of
ulnerability increases with higher grades for various types of
ulnerabilities, especially after the grade of 80. In addition, vul-
erabilities become more diverse as the grade increases and some
5

of the vulnerabilities start to occur at higher grades. Finally, we
see the same effect of bonus submission with lower probabilities
for vulnerabilities.

5.4. Relation between vulnerabilities

Understanding the relationship between vulnerabilities is im-
portant in order to determine which ones to tackle together. To
achieve that we calculate correlation (using Kendall’s method)
and co-occurrence of vulnerability types for CWE categories per
submission as CWE is the most granular one. Fig. 4 shows the two
metrics for CWE types. The metrics are able to identify directly
related types (e.g., CWE-117: Improper Output Neutralization for
Logs and CWE-532: Inclusion of Sensitive Information in Log
Files) and not directly related but somehow connected types
(e.g., CWE-521: Weak Password Requirements, CWE-311: Miss-
ing Encryption of Sensitive Data) and even seemingly unrelated
ones (e.g., CWE-521: Weak Password Requirements, CWE-614:
Sensitive Cookie in HTTPS Session Without ‘Secure’ Attribute).

6. Mining patterns in code

We try to find answers to RQ.5.: ‘‘Is it possible to extract more
information on security vulnerabilities by leveraging lexical and
structural features of the code?’’ in this section.
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Fig. 4. Relation between CWE Types.
We deepen our analysis by making sense of patterns in student
ode, which can help us identify the root causes and lead us
o better security training for students. In this part, we focus
n the web application code written in PHP. We approach this
roblem from two perspectives. First, we use a lexical perspective
y looking at the sentence/statement structure of code line by line
r segment by segment and words used by the students. Second,
e utilize a bird-eye view of the structure of code by its building
locks which is represented with Abstract Syntax Trees in our
ase. Below, we explain the details of the two approaches and
he results obtained.

.1. Lexical interpretation

In order to attain a lexical interpretation of code, we build
simple classifier using logistic regression. For this, we first

ompose a data set consisting of the vulnerable code segments we
xtract from the student code accompanied by the same number
f random segments that are not found vulnerable. We use a
imple bag of words model with 10-fold stratified cross valida-
ion, repeated 10 times. We obtain 94.4% accuracy. We obtain
his otherwise not achievable accuracy by having a codebase of
ubmissions that solve the same two tasks hence expected to
ave similar vulnerabilities. Pang et al. (2015) report a similar
ccuracy score in their work which predicts vulnerabilities using
similar model to ours but with Support Vector Machines. Using
his classifier we are able to learn about the most informative
eatures pointing at vulnerabilities. The most informative vul-
erability predictors as tokens were: printstacktrace, password,
ysql_query, mysqli_query, dbpassword, setcookie, alert, driverman-
ger, ini_set, mypassword, getconnection, preparestatement, scan-
er, db_password, mysqli, display_errors. These keywords are gen-
rally used in input/output operations and a lack of validation in
hese is causing the vulnerabilities.

.2. Syntactic interpretation

In order to comment on the structural patterns of vulnerable
ode, we first need to extract its building blocks. A building block
n programming languages may correspond to many parts of the
rogram such as functions, conditional and loop blocks. Abstract
yntax Trees (ASTs) provide a standardized way of representing
he structural composition of source code in a tree format con-
aining nodes with associated data. In this part, we use a parser
6

that generates the ASTs of the submissions, and using these ASTs
we intend to learn the structural indicators of vulnerabilities and
generate advice towards more secure code.

Utilizing ASTs to learn about vulnerabilities has been studied
in the literature (Mou et al., 2014). One of the most important
aspects of this problem is how we represent the code and use the
suitable learning algorithm that learns from the respective rep-
resentation. The most recent work on representational modeling
focuses on learning deep neural networks by learning embed-
dings from ASTs and paths extracted from ASTs (Alon et al., 2019,
2018). A path is defined as a sequence of nodes from a starting
node to another node. Then these paths are transformed to be fed
to a learning algorithm. In our work, we use AST-paths for vulner-
ability analysis but without any deep representations. In addition,
most of the work focuses on functions as building blocks. In
our work, we use files as a whole as building blocks since we
need to evaluate vulnerability level per submission and the PHP
language at hand is a scripting language with which a lot of
functionality can be achieved without function blocks. Therefore,
we extract ASTs of individual files using the PHP-Parser tool,2
thus a submission is a collection of ASTs each corresponding to
a file. The AST can be extracted in JSON format where nodes
and their relationships are preserved in a tree structure. Every
possible path in the AST of a submission is treated as a feature to
be used in a learning algorithm, similar to a bag-of-words model
except it is bag-of-paths.

In this part of our work, after treating each submission as a
collection of paths between every possible node, we investigate
the possible formation of similarities between submissions and
their relation to the presence of vulnerabilities. We use Latent
Semantic Analysis (LSA) and K Means as an exploratory frame-
work to identify clusters of submissions that exhibit different
vulnerability levels. Latent Semantic Analysis is used as a dimen-
sionality reduction technique with the help of Singular Value
Decomposition (SVD). With SVD, it is possible to reduce the
data into manageable and meaningful (informative) components,
which makes it possible to analyze data with large dimensions
(e.g., AST paths). In this work, we form a bag-of-paths model
with the AST paths using TF-IDF vectorization and apply LSA and
use the first three components from LSA as these capture most
of the variation in the data. After reducing the data to three
components, we are able to apply K-Means clustering to observe

2 https://github.com/nikic/PHP-Parser

https://github.com/nikic/PHP-Parser
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Fig. 5. Clustering submissions for Task A with grades between 90 and 100 into
3 Clusters.

clusters that have different vulnerability distributions as we test
the difference using the Kolmogorov–Smirnov test with which
we calculate the corresponding p-values where p ≪ 0.05, which
denotes that the samples drawn from the clusters are statistically
different. The optimal number of clusters are determined using
the elbow technique based on the inertia of the model for various
number of clusters. We do not use deep learning models as our
data set size is not suitable for such a setting and our analysis is
exploratory.

Our empirical analysis shows that clustering with respect to
structural features could also yield different vulnerability lev-
els. We cannot deduct a causal relationship between structural
variations and vulnerability levels as vulnerabilities can be quite
complex and cannot be detected by merely looking at the text and
they may exist in well-written code. However, such a correlation
starts to appear according to our findings for submissions with
grade 80 or more. We chose to depict the results of submis-
sions with grades between 90 and more because these would
be the most functional and comparable since it would be hard
to conceptualize an analysis with a submission with grade 30
(hence limited functionality) with a submission with a grade of
100 (full functionality). Comparing these would not yield the
desired outcome since they are expected to be complexity-wise
quite different. For instance, in Fig. 5, we illustrate the 3 clusters
of submissions from Task A with grades between 90 and 100
that exhibit different vulnerability distributions with the corre-
sponding p-value. Fig. 7 depicts the structure of centroids. We
can see different structural irregularities and complexity in these
submissions that achieve the same task at similar functionality
levels. Cluster centroid 1 (Fig. 7(a)) depicts a submission that
started with relatively regular structure but could not maintain it
and cluster centroid 2 (Fig. 7(b)) has the most irregular structure
whereas cluster centroid 3 (Fig. 7(c)) has a more regular structure
but with repetitions.

The same observations are available for Task B with 2 clusters
and Grades between 90–100 as shown in Fig. 6. Centroids for this
in Fig. 8 show radical differences in structure.

In addition, in order to test the idea of a correlation between
structural features for student code and vulnerability level, we
further train a classifier using Logistic Regression with Stochas-
tic Gradient Descent training where vulnerability level is the
target. For this, we first normalize the number of vulnerabili-
ties to three categories: Low, Medium, and High. After sampling
down the majority of instances of the low category to eliminate
bias, and applying 10-fold stratified cross validation which is

repeated 10 times, we obtain an accuracy of 61.5%, which denotes

7

Fig. 6. Clustering submissions for Task B with grades between 90 and 100 into
2 Clusters.

a correlation between vulnerability level and structural features,
compared to a 33.3% accuracy if there was no correlation. We note
that we achieve this accuracy for submissions with a grade of 80
or more. We did not observe any correlation for submissions with
grades lower than this. One intuitive explanation would be that
the submissions below this grade did not reach the maturity level
or functionality level so that they could be clustered into groups.
The structural distance between these assignments is also high.
Furthermore, we list some examples of informative AST paths
as determined by the classifier along with corresponding code
segments from some of the assignments in Figs. 9 and 10.

In Figs. 11 and 12, we give examples on how following a
structured coding technique may help securing the code. Fig. 11 is
taken from a cluster with highly irregular code structure but still
functional with more number of vulnerabilities whereas Fig. 12
is taken from a cluster with less. We can go through the possible
important points for Fig. 11:

• Between lines 22–25, the author tries to mitigate the possi-
bility of SQL-Injection. However, by trying to achieve it him-
self as opposed to using known techniques or framework, he
again fails.

• Lines 22–29 contain database credentials, which should not
be stored in the file in plain-text form.

• Database credentials is repeated in lines 58–61, pointing out
that duplicating code with vulnerabilities also duplicates the
vulnerability.

• Page tries to do many things; including keeping track of
information, trying to print out rows, binding buttons to
other files.

• There is an highly risky authentication scheme seen be-
tween lines 3–8, 43, 48. Similar is also done with various
session variables in lines 50, 54

For Fig. 12, we can state the following:

• Page tries to do one thing: Login
• Still no protection from SQL-Injection at line 11.
• Defers other functionality (e.g., database config) to other

modules at line 2.

This shows a glimpse of what code looks like underneath. It
should be stated that in our examples all other modules/pages
follow the similar pattern and as the code becomes more modular
and duplication free to start with, it contains potentially less
vulnerabilities.
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Fig. 9. Example 1 of an Informative AST path and related code snippet.

Fig. 10. Example 2 of an Informative AST path and related code snippet.

7. Discussion

The notion of teaching secure coding to students can be ap-
roached from two perspectives; the students’ learning perspec-
ive and the teachers’ teaching perspective.

Students establish a good framework via the survey study
hich identifies the main problems in terms of lack of security

n their code. Firstly, one can expect the code developed by
tudents to contain many vulnerabilities, which is what we dis-
overed as well, one does not expect students to identify possible
ulnerabilities as well as they did in our survey without using
ny analysis techniques prior to their submission of their code.
econdly, with some extra encouragement, which is the ‘‘bonus’’
art in our case, students can significantly improve the security
8

levels of their code. Finally, students provide the real reason as
‘‘time concern’’ they neglect security. These three aspects create
a promising situation from the learning perspective.

The teaching perspective should take into account the learn-
ing aspects. In other words, it should encourage more student
engagement via various means by incorporating security into
regular course work or provide secure coding as a separate course
in order to solve the ‘‘time concern’’ problem of students. In ad-
dition, our analysis may help create better content for addressing
‘‘what to teach’’ aspect of teaching security. We could incorporate
teaching best practices of various paradigms which are reportedly
been neglected in computer science curricula (Taylor et al., 2013;
Lalande et al., 2019) such as logging, authentication, authoriza-
tion, input/output validation, secrets management, encryption,
communication protocols, and clean coding in general. This way,
students will have less trouble integrating into the industry and
produce more secure code from the beginning. We summarize
our suggestions for potential teaching aspects for RQ.6: ‘‘What are
he security concepts for teaching the university students to bridge
he gap towards more secure coding?’’:

• Clean coding practices (Simplicity, Elimination of code du-
plication). If students are informed and educated with clean
coding practices in mind, repetition of the mistakes and
snowballing effect will be minimized when it comes to
creating vulnerabilities.

• Web application security (SQL Injection, Cross-Site Scripting,
Path Traversal). These main topics should be taught as these
were highly occurring in our findings.

• Authentication and authorization concepts in practice
(Client and Server-side authentication and authorization
schemes). Students should be well informed on these con-
cepts and how they are achieved first and the potential
mistakes that cause vulnerabilities in such mechanisms.
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Fig. 11. Code for a login page from one of the submissions with structural problems and high number of vulnerabilities.
Fig. 12. Code for a login page from one of the submissions with less structural
problems and less number of vulnerabilities.

• Secure log management practice (Secure debugging, secure
log file management). Students should be equipped with
securing log management practices as these were present
in the results as well.

• Language/Framework related security practices (Security
features of used protocols (e.g., HTTP, TCP), prevention of
SQL injection in corresponding languages). While teaching
different frameworks and languages, students could benefit
from the security features and concepts of such frameworks
and languages.

• Practical Cryptography (Secure encryption of sensitive in-
formation). Students should be taught about cryptography
concepts and how they are implemented and how they play
a role in securing information systems.

8. Limitations

We utilize Sonarqube Community Edition to scan the student
submissions. False positive rate is one of the top selling points
of commercial vulnerability detection software, however even
the most successful ones come with a formidable false posi-
tive rate and confirming the existing vulnerability may require
the development of an actual exploitation strategy. Thus it is
9

imperative to work while false positives are still present, and
be able to derive statistically significant results. Nonetheless, to
give an idea to the reader how accurate Sonarqube is in this
dataset, we have randomly sampled a set of vulnerabilities for
each CWE category and manually gone over them. In the process,
two security experts were employed where mutual agreement is
considered for marking the vulnerability as a false-positive or not.
Table 7 shows the types of sampled vulnerabilities and the false-
positive counts as the result of the manual assessment. It should
be noted that the false positive rate would have been higher for
more complex datasets containing industrial applications.

Another limitation to address is the data set size. If it was
possible to collect more student assignments, we could train deep
learning models to get possibly more accurate results since, for
instance, recent studies of vulnerability analysis incorporate such
models. However, the time span of our data set is 6 semesters
which creates a reliable enough variation in the data. We also
analyze 2 different but similar tasks that may help tackle the task
bias problem.

This work used a dataset of student coded web-applications
from a ‘‘Database Management Course’’. In addition, the imple-
mentation language was PHP/HTML/Javascript. As future work,
research on this matter would benefit from similar or more elabo-
rate datasets where students develop more complex applications
that resemble real-world scenarios better. In addition, a study
that compares student code with the code of professionals with
respect to security would be a contribution to further closing the
gap between education and industry. Another contribution that
could highlight the way for secure coding education would be a
comparative analysis of how students transform their code when
they become professionals.

9. Conclusion

Teaching students to write more secure code and preparing
them for the industry as much as possible is useful for their
careers and the promotion of security practices in general. In this
work, we analyzed a data set of student code and investigated
the nature of vulnerabilities present in their code. We utilized a
survey to understand the students’ point-of-view. Then, we used
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Table 7
False Positive (FP) Counts for Sampled (S) CWE types.
Type Definition # # S # FP

CWE-259 Use of Hard-coded Password 829 20 0
CWE-20 Improper Input Validation 761 20 0
CWE-564 SQL Injection: Hibernate 751 20 0
CWE-943 Improper Neutralization of Special Elements in Data Query Logic 751 20 0
CWE-489 Active Debug Code 714 20 0
CWE-315 Cleartext Storage of Sensitive Information in a Cookie 23 23 0
CWE-117 Improper Output Neutralization for Logs 17 17 0
CWE-532 Insertion of Sensitive Information into Log File 17 17 0
CWE-778 Insufficient Logging 17 17 0
CWE-521 Weak Password Requirements 15 15 0
CWE-311 Missing Encryption of Sensitive Data 14 14 1
CWE-614 Sensitive Cookie in HTTPS Session Without ’Secure’ Attribute 14 14 1
data analysis and machine learning techniques to learn about the
lexical and structural variations in student code with respect to
vulnerability levels.

In order to create an effective learning environment for stu-
ents, we need to incorporate security into our classes and teach
tudents, not just about theoretical knowledge on computer sci-
nce but also practical experience on various programming and
ystems aspects such as logging, authorization, exception han-
ling, encryption, communication protocols. Teaching students
bout writing clean code is also important as there are indications
f a correlation between the structure of code and vulnerabilities.
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