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The results of a considerable number of works ad- 
dressing various features of real-time database sys- 
tems (RTDBSS) have recently appeared in the litera- 
ture. An issue that has not received much attention 
yet is the performance of the communication network 
configuration in a distributed RTDBS. In this article, 
we examine the impact of underlying network archi- 
tecture on the performance of a distributed RTDBS. In 
particular, we evaluate the real-time performance of 
distributed transactions in terms of the fraction of 
satisfied deadlines under various network access 
strategies. We also critically examine the common 
assumption of constant network delay for each com- 
munication message exchanged in a distributed RT- 
DBS. 0 1997 by Elsevier Science Inc. 

1. INTRODUCTION 

A real-time database system (RTDBS) is designed to 
provide timely response to the transactions of data- 
intensive applications. Each transaction processed in 
a RTDBS is associated with a timing constraint 
typically in the form of a deadline. The research in 
distributed RTDBSs has focused on development and 
evaluation of new time-cognizant scheduling tech- 
niques that can provide good performance in terms 
of the fraction of satisfied timing constraints. Sha et 
al. (1991) presented two new real-time concurrency 
control protocol techniques, called priority inheri- 
tance and prior@ ceiling, and studied their perfor- 
mance through simulations. Son and Chang (1990) 
investigated methods to apply the priority-ceiling as 
a basis for real-time locking protocol in a distributed 
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environment. Some techniques to increase the avail- 
ability in a partitioned distributed RTDBS were 
introduced in Lin and Lin (1988). In Ulusoy and 
Belford (19921, we described several distributed 
real-time concurrency control protocols and re- 
ported the relative performances of the protocols in 
a nonreplicated database environment. Soparkar et 
al. (1992) presented an adaptive commit protocol for 
distributed RTDBS transactions. 

In Ulusoy (1994), we investigated the impact of 
storing multiple copies of data on satisfying the 
timing constraints of transactions. Various experi- 
ments were conducted to observe the performance 
characteristics of different applications as a function 
of level of replication. Each application was distin- 
guished by the type and data access distribution of 
the processed transactions. A detailed performance 
model of a distributed database system was em- 
ployed in evaluating the effects of various workload 
parameters and design alternatives on the system 
performance. The effects of site failures were also 
studied to estimate how much replication is needed 
to provide a reliable processing environment for 
real-time transactions of different applications. 

One interesting question that arises in designing a 
distributed RTDBS is, “How is the system perfor- 
mance dependent on various characteristics of the 
communication network connecting data sites?” 
None of the performance works mentioned above 
examined the effects of network architectures and 
protocols on distributed RTDBS performance. The 
common approach in all those studies was modeling 
the network as a FIFO server with a fixed service 
rate independent of the current load and other 
characteristics of the network. 

The effects of networking parameters and com- 
munication protocols on “traditional” distributed 
database systems were investigated by a couple of 
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researchers. Sheth et al. (1985) studied the effect of 
various network parameters on the performance of 
distributed database systems. They used an analyti- 
cal model to estimate the delays in communication 
channels of a long haul network supporting the 
distributed database system. They showed that the 
constant transmission time assumption cannot be 
justified in many cases and that the response time is 
sensitive to the parameters such as network traffic, 
network topology, and capacity of communication 
channels. Ozsu and Niu evaluated the effects of 
network protocols on the performance of some dis- 
tributed concurrency control algorithms (6zsu and 
Niu, 1992). Two network protocols, CSMA/CD and 
token ring, were involved in the evaluations. 

In this article, we describe a simulation study of 
several network access protocols in a distributed 
RTDBS and address various performance issues. To 
our knowledge, our work is the first attempt to 
investigate performance characteristics of the com- 
munication network configuration in a distributed 
RTDBS. Among the questions studied in this work 
are 

How the performance results obtained with con- 
stant network delay assumption are affected when 
the overhead of message transmission is simulated 
in detail? 

Which network protocol is the most suited to be 
used by distributed RTDBSs? What are the basic 
factors that determine the performance of net- 
work protocols in a distributed RTDBS environ- 
ment? 

Under what conditions is it worthwhile to use 
real-time network protocols (i.e., protocols that 
involve timing constraints of communication mes- 
sages in scheduling their channel access requests)? 

The remaining sections are structured as follows. 
In Section 2, the distributed RTDBS model used in 
our simulations is presented. Section 3 describes a 
set of experiments together with our initial findings. 
It is evaluated in those experiments how the under- 
lying communication network configuration affects 
the real-time performance of distributed transac- 
tions. In Section 4, we conclude our results. 

2. MODELING A DISTRIBUTED RTDBS 

The performance model is an extension of the model 
of a distributed RTDBS used in an earlier work of 
ours (Ulusoy, 1994). The goal of that work was to 
examine the impact of data replication on the per- 
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formance of a RTDBS and to analyze the perfor- 
mance trade-offs involved. In that work, we used a 
data distribution model which provided a partial 
replication of the distributed database. The model 
enabled us to execute the system at precisely speci- 
fied levels of data replication. Each data item was 
assumed to have N copies in the distributed system, 
where N can take a value between one and the 
number of data sites. 

Neglecting to model the communication network 
in detail, in the performance experiments of Ulusoy 
(19941, it was assumed that the network has enough 
capacity to carry any number of messages at a given 
time, and the delay of a communication message 
between any two data sites is constant. To investi- 
gate the issues related to the underlying communica- 
tion network of a distributed RTDBS, we have ex- 
tended the system model with a network manager 
module which accurately simulates the behavior of 
communication messages exchanged among data 
sites. The physical structure of the RTDBS model is 
shown in Figure 1. It is composed of a number of 
data sites interconnected by a local communication 
network. Each data site contains a transaction gen- 
erator, a transaction manager, a resource manager, 
a scheduler, a buffer manager, and a recovery man- 
ager. 

The transaction generator is responsible for gen- 
erating the workload for each data site. The arrivals 
at a data site are assumed to be independent of the 
arrivals at the other sites. Each transaction is char- 
acterized by a criticalness and a deadline. The criti- 
calness of a transaction is an indication of its level of 
importance (Biyabani et al., 1988). It is assumed that 
each transaction is associated with one of m possi- 
ble levels of criticalness. The most critical transac- 
tions are assigned the highest level. Assignment of 
criticalness to a new transaction follows a uniform 
distribution; i.e., the criticalness of the transaction is 
chosen randomly from the set {l, 2,. . . , ml. The 
deadline of a transaction specifies a certain time in 
the future the transaction has to be completed be- 
fore. The transaction deadlines are firm; i.e., trans- 
actions that miss their deadlines are aborted and 
disappear from the system. Criticalness and deadline 
are two independent characteristics of RTDB trans- 
actions (Huang et al., 1989; Haritsa et al., 1991). A 
close deadline does not necessarily imply more criti- 
calness. The transaction manager at the originating 
site of a transaction T assigns a real-time priority to 
transaction T based on its criticalness CC,), dead- 
line (Dr ), and arrival time (AT). The priority 
of transaction T is determined by the following 
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Figure 1. Distributed RTDBS structure. 
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The priority formula gives equal weight to critical- 
ness and relative deadline. If any two transactions 
originating from the same site carry the same prior- 
ity, any scheduling decision between those transac- 
tions favors the more critical one; if the transactions 
are of the same criticalness as well, the transaction 
with closer deadline is scheduled first. To guarantee 
the global uniqueness of the priorities, the id of the 
originating site is appended to the priority of each 
transaction. 

Each distributed transaction exists in the system 
in the form of a master process that executes at the 
originating site of the transaction and a number of 
cohorts that execute at various sites where the copies 
of required data items reside. A cohort can be 
defined as a process that performs operations of its 
transaction on data items stored at a remote site. 
The transaction can have at most one cohort at each 
data site. The transaction manager is responsible for 
creating a master process for each new transaction 
and specifying the appropriate sites for the execu- 
tion of the cohort processes of the transaction. The 
operations of a transaction are executed in a se- 
quential manner, one at a time. For each operation 
executed, a global data dictionary is referred to find 
out the locations of the data item referenced by the 
operation. Each data site is assumed to have a copy 
of the global data dictionary. After determining 
which data sites should be accessed for the opera- 

tion, a cohort process at each of those sites is 
initiated (if it does not exist already) by the master 
process to perform the operation in the name of the 
transaction. Previously created cohorts at those sites 
are just activated to perform the operation. After 
the successful completion of an operation, the next 
operation in sequence is executed by the appropri- 
ate cohort(s). When the last operation is completed, 
the transaction can be committed. The priority of a 
transaction is carried by all of the cohorts of the 
transaction. 

The effects of a distributed transaction on the 
data must be made visible at all sites in an all or 
nothing fashion. The so called atomic commitment 
property can be provided by a commit protocol 
which coordinates the cohorts such that either all of 
them or none of them commit. It is also necessary in 
a distributed database system to ensure that mutual 
consistency of the replicated data is provided; in 
other words, replicated copies must behave like a 
single copy. This is possible by preventing conflicting 
accesses on the different copies of the same data 
item and by making sure that all data sites eventu- 
ally receive all updates (Garcia-Molina and Abbott, 
19871. In our model, the atomic commitment .of 
distributed transactions is provided by the central- 
ized two-phase commit protocol (Bernstein et al., 
19871, while the mutual consistency of replicated 
data is achieved by using the read-one, write-all-auail- 
able scheme (Bernstein and Goodman, 1984). 

Access requests for data items are ordered by the 
scheduler on the basis of the concurrency control 
protocol executed. An access request of a cohort 
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may result in blocking or abort of the cohort due to 
a data conflict with other cohorts executed’concur- 
rently. The scheduler at each site is responsible for 
effecting aborts, when necessary, of the cohorts exe- 
cuting at its site. When a cohort completes its data 
access and processing requirements, it waits for the 
master process to initiate two-phase commit. The 
master process commits a transaction only if all the 
cohort processes of the transaction run to comple- 
tion successfully, otherwise it aborts and later restarts 
the transaction. A restarted transaction accesses the 
same data items as before and is executed with its 
original priority. 

IO and CPU services at each site are provided by 
the resource manager. IO service is required for 
reading or updating data items, while CPU service is 
necessary for processing data items and communica- 
tion messages. Both CPU and IO queues are orga- 
nized on the basis of real-time priorities, and pre- 
emptive-resume priority scheduling is used by the 
CPU at each site. The CPU can be released by a 
cohort process either due to a preemption, when the 
process commits or it is blocked/aborted due to a 
data conflict, or when it needs an IO or communica- 
tion service. Communication messages are given 
higher priority at the CPU than data processing 
requests. 

Local deadlocks are detected by maintaining a 
local Wait-For Graph (WFG) at each site. Local 
deadlock detection is performed by the scheduler 
each time an edge is added to the graph (i.e., when a 
cohort is blocked). For the detection of global dead- 
locks a global WFG is used which is constructed by 
merging local WFGs. One of the sites is employed 
for periodic detection of global deadlocks. A dead- 
lock is recovered from by selecting the lowest prior- 
ity cohort in the deadlock cycle as a victim to be 
aborted. The master process of the victim cohort is 
notified to abort and later restart the whole transac- 
tion. 

Table 1 provides the set of parameters used in 
specifying the configuration and workload of the 
distributed RTDBS. The communication network 
parameters, not listed in this table, will be discussed 
in the next section. Each data item has exactly N 
copies in the distributed system, where 1 I N I 
nr_of_sites. Each data site can have at most one 
copy of a data item. The remote copies of a data 
item are uniformly distributed over the remote data 
sites; in other words, the remotesites for the copies 
of a data item are chosen randomly. 

Slackfactor is the parameter used in assigning 
deadlines to new transactions. The slack time of a 
transaction is chosen randomly from an exponential 
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Table 1. Distributed RTDBS Model Parameters 

Configuration Parameters 

w-of-sites 
local-db-size 
N 
mem_size 

cpu-rate 
instr-process-item 

disk-access-time 

pti-assign-cost 

lookup-cost 

number of data sites 
database size originated at each site 
number of copies of each data item 
size of the memory buffers used to hold 

data items at each site 
instruction rate of CPU at each site (MIPS) 
number of instructions to process each 

data item 
average disk seek + transfer time of a 

data item (msec) 
CPU cost of priority assignment 

(instructions) 
CPU cost of locating a data item 

(instructions) 
Transaction Parameters 

iat mean transaction interarrival time at a site 
tr-type-prob fraction of update type transactions 
tr-length mean number of data items accessed by a 

transaction 
data-update-prob fraction of updated data items by an update 

transaction 
slack-factor average slack-time/processing-time for a 

transaction 

distribution with a mean of sluck_factor times the 
estimated processing time of the transaction. While 
the transaction generator uses the estimation of 
transaction processing times in assigning deadlines, 
we assume that the system itself lacks the knowledge 
of processing time information. The deadline of a 
transaction T is determined by the following for- 
mula 

D,=A,+PE,+S, 

where 

S, = e.xpon(slack-factor * PE,). 

A,, PE,, and S, denote the arrival time, processing 
time estimate, and slack time of transaction T, re- 
spectively. The formula used to determine the pro- 
cessing time estimate of a transaction in an un- 
loaded system is provided in Ulusoy (1994). 

2.1. The Communication System 

There is no globally shared memory in the system, 
and all sites communicate via message exchanges 
over the communication network. The network man- 
ager is responsible for the transmission of messages 
among data sites. The message switching component 
of a data site is called a node. 

The assumptions of our communication system 
model are 
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Table 2. Communication Network Parameters. 

Communication Parameters 

nw_bandwidth network bandwidth (Mbps) 
mes-size message size (bytes) 
instr-init-mes CPU cost to initialize sending/receiving a 

message (instructions) 
ins@_per-mes-byte CPU cost of sending/receiving each byte 

of a message (instructions) 

The size of the buffers used to hold messages at 
nodes are infinite; thus, no message loss is experi- 
enced due to buffer overflows. 

The communication network is error-free. There- 
fore, there is no loss of messages and no retrans- 
mission is required. Issues such as reliability and 
fault recovery in communication systems are be- 
yond the scope of this article. 

Table 2 lists the communication parameters of 
the distributed RTDBS model. The parameter 
nw_bandwidth specifies the speed of the network, 
i.e., the number of bits that can be transmitted per 
second. Mes_size is the length of each message 
exchanged between the nodes. Each message is pro- 
cessed at its source site prior to its transmission and 
at its destination site after being received. The mes- 
sage processing overhead, in terms of the number of 
CPU instructions is simulated using the parameters 
instr_init_mes and instr_per_mes_byte. The first of 
these two parameters corresponds to the initializa- 
tion cost of transmitting or receiving each message. 
The second parameter specifies the processing cost 
of each byte of a message at the source or destina- 
tion site. 

The average CPU delay and network delay experi- 
enced by each message can be estimated by using 
the communication parameters 
CPU-delay 

= 2* & (in&r-init-mes + mes_size 

* instr_per_mes_byte) (1) 
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1 
networkdelay = 

nw-bandwidth 
* 8 * mes-size . (2) 

CPU_deluy corresponds to the total processing cost 
of a message (i.e., sum of the processing costs at 
both its source site and destination site). 

There exist different types of communication mes- 
sages exchanged to control the execution of a trans- 
action. The message types generated for a particular 
transaction T are described in Table 3. In the table, 
the source and destination of each message type are 
specified using the following notation 

TM(S): The transaction manager at site S. 
MP(T): Master process of transaction T. 
ES(C): Execution site of cohort C. 

The discussion of the message types specific to 
various concurrency control protocols employed in 
performance experiments is deferred to Section 3.1 
which provides the performance results obtained 
with different concurrency control protocols. 

Two different network architecture types are con- 
sidered in our work: carrier-sense multiple access 
networks and token ring networks. The Carrier-Sense 
Multiple Access with Collision Detection 
(CSMA/CD) is the first network access protocol we 
explored. In a multiple access network, messages are 
transmitted on a shared communication channel. 
Only one message can be successfully transmitted 
over the channel at any time. In carrier-sense net- 
works, each node that wants to transmit a message 
should first listen to the communication channel. If 
any transmission is in progress, the node defers its 
transmission until the end of the current transmis- 
sion. Collisions can occur due to the nonzero pro- 
pagation delay of the communication channel. 
CSMA/CD protocol provides detection of message 
collisions. Upon detection of a collision, transmis- 
sion is aborted and the node schedules its message 
for the retransmission. The time period over which 
the node schedules retransmission is doubled each 
time the message experiences a collision (Bux, 1981). 

Table 3. Message Types Generated for Transaction T 

Message type Source 

initiate-cohort ME’(T) 

activafe-opera&m MHT) 
operation_complete TM(ES(C)) 

vote-request MP(T) 

partkipantdecision TME2xCN 

finaLdecision MP(T) 

Destination 

TI@3XCN 

TM(ES(C)) 
MP(T) 

-I’MES(CN 

ME’(T) 

TMES(CN 

Function 

To initiate the execution of 
cohort C of transaction T. 

To activate an operation of cohort C. 
To indicate that the current operation 

of cohort C has been completed. 
To initiate the two-phase commit 

protocol for T. 
To reply the uore-request message. The message 

carries the commit/abort decision of a cohort site. 
To indicate the final (commit/abort) decision for 

the commitment of T. 
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Table 4. Parameters Specific to the Carrier-Sense 
Multiple Access Network Model 

Table 5. Parameters Specific to the Token Ring 
Network Model 

CSMA / CD Parameters Token Ring Parameters 

csma-prop-delay 
csma-channel-length 

end-to-end propagation delay ring-prop-delay 
length of the communication node-latency 

channel (bits) ring-length 

The parameters specific to our CSMA/CD net- 
work model are provided in Table 4. The model 
assumes that time is slotted and nodes can only start 
transmitting messages at the beginning of each slot. 
Coma _prop_delay denotes end-to-end propagation 
delay of the communication channel. The parameter 
csma_channel_length specifies the length of the 
channel in bits (i.e., the maximum number of bits 
being transmitted on the channel at any instant). 
The length of a slot is considered to be equal to 
csma_prop_deluy; thus, a transmission at the begin- 
ning of a slot is recognized by all nodes prior to the 
next slot. A collision can occur only between the 
messages that are transmitted at the same slot. 

Token ring is the other network access protocol 
adapted to our communication system. In a token 
ring, access to the communication channel is con- 
trolled by passing a special frame, called token, 
around the ring. When no message is in transmis- 
sion, a free token circulates around the ring. When a 
node becomes ready to transmit a message, it 
changes the token to busy and puts its message onto 
the ring. The sending node is responsible for remov- 
ing its own message from the ring. At the end of its 
transmission, the node passes the access permission 
to the node down stream by generating a new free 
token. Because there is only one token on the ring 
at any time, there is no contention among the nodes 
to access the ring (Bux, 1981). 

Table 5 describes the additional communication 
parameters for the token ring model. Ring_prop_de- 
lay specifies the propagation delay of messages from 
one node to another. It is assumed that all nodes are 
equally distanced on the ring. Each message is passed 
from one node to another on its path from source 
site to destination site. Each node passes the mes- 
sage on after a short delay, which is specified by 
parameter node-latency. The token circulates 
around the ring in a time equal to the sum of 
propagation delays between nodes plus the sum of 
node latencies. 

3. SIMULATION EXPERIMENTS 

The simulation program, capturing the details of the 
distributed RTDBS model, was written in CSIM 

node-to-node propagation delay 
delay at each node 
total length of the ring (bits) 

(Schwetman, 19861, which is a process-oriented sim- 
ulation language based on the C programming lan- 
guage. 

Table 6 presents the default parameter values 
used in each of the experiments. All sites of the 
system were assumed identical and operating under 
the same parameter values. It was assumed that one 
CPU and one disk unit exist at each data site. The 
settings used for configuration and transaction pa- 
rameters were basicly taken from our earlier experi- 
ments (Ulusoy, 1994). It was intended by those set- 
tings to execute the transactions under high levels of 
data contention. The default values used for the 
communication parameters can be accepted as rea- 
sonable approximations of what can be expected 
from today’s local communication networks. The 
value of csmu_prop_deluy is determined as follows 

csma-prop-delay = 
csma-channel-length 

nw- bandwidth 

= 5 * 10e3msec. 

Table 6. Performance Model Parameter Values 

Configuration Parameters 

nr-of-sites 
local-db-size 
N 
mem-size 
cpu-rate 
in.W_process_item 
diskaccess_time 
prLassign_cost 
lookup_cost 
Transaction Parameters 

10 
200 data items 
5 
500 
2Ci MIPS 
160004 instructions 
18 msec 
20000 instructions 
20000 instructions 

iat 
tr-type-prob 
tr-length 
data-update-prob 
slack-factor 
Communication Parameters 

400 msex (exponential) 
.5 
6 
.5 
5 (exponential) 

w-bandwidth 
mes-size 
instr-init-mes 
instr_per-me-byte 
csma-channel-length 
node-latency 
ring-length 

10 Mbps 
512 bytes 
20000 instructions 
3 instructions 
50 bits 
0.5 * 10e3 msec 
50 bits 
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Similarly, the value of ring_prop_deZuy can also be 
found using the other network parameter values. 

ring-prop-delay = 
ring-length 

m-of-sites * nw-bandwidth 

= 0.5 * 10P3msec. 

The performance metric we used, i.e., 
success_rutio, combines the performance measure- 
ments of all criticalness levels, in terms of the frac- 
tion of satisfied deadlines, using a specific weight for 
each level. This metric is defined as follows 

success_ratio = X 1w, ;r-ratio, , 

I lW, 

where 

i: Criticalness level. 
m: Total number of criticalness levels (m = 3 in our 

simulations). 
wi: Weight of criticalness level i. 
success_rutiq: Fraction of satisfied deadlines for the 

transactions of criticalness level i. 

The determination of the weights of criticalness 
levels is highly dependent on the particular applica- 
tion environment (Biyabani et al., 1988). We used 
linearly increasing weights; i.e., 

w, = i, (i= 1,2 ,..., m). 

For each experiment, the final results were evalu- 
ated as averages over 25 independent runs. Each run 
continued until 1000 transactions were executed at 
each data site. Ninety percent confidence intervals 
were obtained for the performance results. The width 
of the confidence interval of each data point is 
within 4% of the point estimate. In displayed graphs, 
only the mean values of the performance results are 
plotted. 

3.1. Evaluation of Concurrency Control Protocols 

In Ulusoy (19941, we evaluated the performance of a 
number of RTDBS concurrency control protocols 
under different levels of transaction load. The proto- 
cols were different in the way real-time priorities of 
transactions are involved in scheduling data access 
requests. Concurrency control protocols that employ 
restarts in resolving conflicts (e.g., optimistic proto- 
cols), exhibited better performance than the proto- 
cols that use blocking (e.g., locking protocols) when 
the system was lightly loaded (i.e., for large iut 
values). With optimistic protocols, there is no over- 
head of transaction blocking due to data conflicts 
until commit time. Because the number of conflicts 
is small under low load levels, only a few transac- 

tions fail to be validated at commit time. On the 
other hand, when the transaction load was high, the 
performance of restart-based protocols was worse 
compared to blocking-based ones. The overhead of 
executing a concurrency control protocol that uses 
restarts in resolving conflicts was observed to be 
higher than that of a blocking-based protocol due to 
the large number of restarts experienced under high 
levels of system load. 

The same experiment is repeated here to see how 
the results obtained are affected when the transmis- 
sion of communication messages are implemented in 
full detail. We categorize the concurrency control 
protocols into two classes as locking protocols that 
use blocking in resolving congicts and optimistic 
protocols that are based on restarting. This section 
provides the results for one protocol from each class 
chosen as representative. We first provide a brief 
description of each protocol together with the sum- 
mary of the performance results obtained with the 
constant message transmission and service times as- 
sumption. 

Priority Inheritance protocol (PI). The priority 
inheritance method, proposed in Sha et al. (19911, 
ensures that when a transaction blocks higher prior- 
ity transactions, it is executed at the highest priority 
of the blocked transactions; in other words, it inher- 
its the highest priority. The aim is to reduce the 
blocking times of high priority transactions. 

Optimistic Wait-50 protocol (OPT). OPT is an 
optimistic concurrency control protocol incorporat- 
ing real-time priorities of transactions (Haritsa et 
al., 1990). The validation check for a committing 
transaction is performed against the executing trans- 
actions and if the write-set of the validating transac- 
tion intersects with the read-set of one of the execut- 
ing transactions, these two transactions are said to 
be in conflict. The proposed protocol uses a 50% 
rule as follows. If half or more of the transactions 
conflicting with a committing transaction are of 
higher priority, the transaction is made to wait for 
the high priority transactions to complete; otherwise, 
it is allowed to commit while the conflicting transac- 
tions are aborted. While the transaction is waiting, it 
is possible that it will be restarted due to the commit 
of one of the conflicting transactions with higher 
priority. The validation check for a transaction is 
performed at each data site where a cohort of the 
transaction has been executed. 

The concurrency control protocols were found to 
be somewhat different in their sensitivity to the 
constant message overhead assumption. Table 7 pro- 
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Table 7. Improvement in success-ratio by PI over OPT. 

~protocol,iat+ 300 340 380 420 460 

No access protocol 17% 11% 5% -1% -2% 
CSMA / CD 12% 7% 3% -2% -3% 
Token Ring 16% 10% 7% -1% -3% 

Improvement is shown under varying average transaction interar- 
rival time iar (in msec) with the constant message overhead assump- 
tion, the nehvork access protocol CSMA/CD, and the token ring. 

vides the improvement in success_ratio obtained 
with concurrency control protocol PI over protocol 
OPT under various network access strategies.’ The 
line indexed by “No access protocol” provides the 
evaluation results obtained without employing a spe- 
cific network access protocol in transmitting mes- 
sages.’ When the token ring protocol was employed, 
the comparative performance results of PI and OPT 
under different system loads were not much differ- 
ent from those obtained without implementing the 
details of a network protocol. On the other hand, 
when CSMA/CD was employed, the performance 
improvement provided by PI over OPT under high 
transaction loads was at a lower level. This result 
might be due to larger number of communication 
messages involved in implementing the concurrency 
control protocol PI. The protocol requires that 
whenever a cohort of a transaction inherits a prior- 
ity, the scheduler at the cohort’s site notifies the 
transaction’s master process by sending a priority 
inheritance message which contains the inherited 
priority. The master process then propagates this 
message to the sites of other cohorts that belong to 
the same transaction, so that the priority of the 
cohorts can be adjusted.3 With protocol OPT, on the 
other hand, no extra messages are involved for con- 
currency control because the information necessary 
for the validation of a transaction is piggybacked on 
the messages of the two-phase commit protocol. The 
larger number of messages issued with PI affects the 
comparative performance of protocols when 
CSMA/CD is employed. The degradation in the 
performance of protocol PI can be explained by the 

‘The range (300 msec, 460 msec) of iut values used in the 
experiments corresponds to an expected CPU utilization of about 
90 to .59 at each data site Wlusoy, 1992). 

21n those evaluations, the constant values used to simulate the 
delay of a communication message between any two sites and the 
CPU time to process a communication message were determined 
using Equations (1) and (2). 

3The other locking protocols also require exchange of various 
kinds of control messages between sites during the execution of a 
transaction. . 

waste of time experienced due to message collisions 
with CSMA/CD. The number of collisions increases 
as more messages contend for channel access. 

Figure 2 displays the real-time performance re- 
sults of concurrency control protocols PI and OPT 
with network access protocols CSMA/CD and to- 
ken ring. For low levels of transaction load (i.e., 
large iat values), CSMA/CD leads to slightly better 
performance for both PI and OPT. The worse per- 
formance of token ring can be due to the delay 
experienced by ready messages while waiting for a 
free token. Comparing the concurrency control pro- 
tocols under high loads, it can be seen that 
OPT cannot reach the real-time performance level 
achieved by PI under any network access protocol. 
The reason for this result, as we explained before, is 
the waste of resources experienced with OPT due to 
restarting failed transactions at the end of their 
executions. 

3.2. Evaluation of Real-Time, Network 
Access Protocols 

In this section, we provide an investigation of the 
performance impact of employing priority-based net- 
work access protocols in a distributed RTDBS. Each 
message transmitted carries the priority which is 
associated with its transaction. The real-time net- 
work access protocols selected for evaluation 
are: the virtual time CSMA/CD protocol 
(VTCSMA/CD) (Zhao and Ramamritham, 19871, 
and the IEEE 802.5 Token Ring protocol (Token 
Ring Access Method, IEEE 802.5 Local Area Net- 
work Standard, 1985). 

1.n . . 

300 340 380 420 460 

IAT (msec) 

Figure 2. Success-ratio results for concurrency control 
protocols PI and OPT with network access protocols 
CSMA/CD and token ring. 



An Evaluation of Network Access Protocols 

Virtual Time CSMA / CD Protocol. The virtual 
time CSMA/CD protocol (VTCSMA/CD) was pro- 
posed by Zhao and Ramamritham (1987) for real- 
time communication systems. In this protocol, each 
node maintains two clocks: a real time clock and a 
virtual time clock. Whenever a node finds the chan- 
nel to be idle, it resets its virtual clock. The message 
with the minimum virtual time to start transmission 
(I?$) is transmitted first. Transmission begins when 
the virtual clock equals the lJS of the message. The 
virtual clock stops running when transmission begins 
and starts running (after resetting its value to the 
time on the real clock) when the channel is idle 
following completion of transmission or a collision. 
It runs faster than the real clock.4 In our experi- 
ments, we set the KS of a message to the deadline of 
its transaction. 

IEEE 802.5 Token Ring Protocol. In this protocol, 
the token contains a priority field and a reservation 
field. A node that has a ready message has to wait 
until it captures the free token with a priority less 
than or equal to its priority. The node can try to 
reserve the next token by writing its message priority 
into the token’s reservation field. However, if a 
higher priority has already been claimed in the 
reservation field, the node is not allowed to update 
it. Following a message transmission, the sender 
node generates a free token with the priority that 
has been reserved, if any; otherwise, the priority 
field of the free token is set at the present priority 
level. 

The VTCSMA/CD protocol has the implementa- 
tion overhead of delaying the transmission of a 
ready message until the VS of the message becomes 
equal to the virtual clock. Implementing the IEEE 
802.5 token ring protocol, on the other hand, in- 
volves an extra processing cost due to comparing the 
priority of a ready message against the priority field 
or the reservation field of the token, and setting 
those fields whenever the conditions hold.5 

The first experiment investigated the performance 
of the real-time network access protocols for varying 
transaction loads (and thus varying message loads). 
The iat parameter was varied from 300 to 460 msec- 
onds in steps of 40. PI was the concurrency control 

4Zhao and Ramamritham (1987) provides experimentally the 
best values for the rate at which the virtual clock runs under 
different loading conditions. 

51n our experiments, this extra cost is simulated explicitly by 
doubling the value of node_Zatenq each time a node needs to 
check or set the priority/reservation fields of the token. 

protocol used in the 
mance characteristics 
OPT). 

In Figures 3 and 
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experiments (similar perfor- 
were observed for protocol 

4, the performance results 
are compared to those obtained with protocols 
CSMA/CD and token ring which do not involve 
real-time priorities in scheduling the transmission of 
messages. Although both real-time network access 
protocols were observed to provide an improvement 
over the performance of their nonreal-time counter- 
parts under high levels of transaction load, the im- 
provement provided by VTCSMA/CD over 
CSMA/CD was not significant. The channel access 
delay experienced due to the implementation of a 
virtual clock prevents protocol VTCSMA/CD to 
become more effective in terms of the real-time 
performance. Under low levels of transaction load, 
the real-time network access protocols perform 
worse than their nonreal-time counterparts. This 
result shows that when the number of messages 
contending for channel access is small (as a result of 
low transaction load), the performance advantage 
gained by the real-time protocols is outweighed by 
their implementation overhead. In conclusion, if the 
system is characterized by low transaction load, it is 
not worthwhile to use a network access protocol that 
exploits the real-time priorities. 

In another experiment, it was evaluated how suc- 
cessful the transactions are in satisfying their dead- 
lines under different levels of data replication. In 
conducting data replication experiments, we consid- 
ered two different application environments, each 
characterized by the fraction of update transactions 
processed. The majority of the transactions in the 
first application are read-only (update transaction 
percentage: 25%), while the second application is 
dominated by update transactions (update transac- 

1.0 
1 

0.5 I I I 1 I 
300 340 360 420 460 

IAT (-) 

Figure 3. Success_rufio results for network access proto- 
cols token ring and IEEE 802.5. 
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Figure 4. Success_ratio results for network access proto- 
cols CSMA/CD and VTCS~/CD. 

tion percentage: 75%). In evaluating the effects of 
level of data replication on system performance, the 
number of replicas of each data item (N) was varied 
from 1 to nr_of_sites (nr_of_sites = 10). Remem- 
ber that the consistency of replicated data is pro- 
vided through the read-one, write-all-available 
scheme. A read operation requires a remote access 
if a copy of the required data item does not reside 
locally. In this experiment, the mean interarrival 
time value (iat) was fixed at 400 msec. 

The comparative performance results of network 
access protocols token ring and IEEE 802.5 are 
displayed in Figures 5 and 6 for two different appli- 
cation environments. With the first application envi- 
ronment, where read-only transactions predominate, 

O.,M 
123456789. 

NUMBEROF REPLICAS 

Figure 5. Success_rutio vs N (number of data replicas) 
for network access protmls token ring and IEEE 802.5 in 
an execution environment where read-only transactions 
predominate. 

- Token ring 
* -*IEEE 802.5 

12 3 4 5 e 7 8 9 10 
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Figure 6. Success_ruzio vs N (number of data replicas) 
for network access protocols token ring and IEEE 802.5 in 
an execution environment where update transactions pre- 
dominate. 

the fraction of satisfied deadlines is at a higher level 
(Figure 5) compared to the other application envi- 
ronment where the majority of transactions are of 
update type (Figure 6). The number of conflicts 
among the transactions increases when the fraction 
of update operations becomes higher, which results 
in a degradation in the performance of the RTDBS. 
In Figure 5, with both protocols token ring and 
IEEE 802.5, an improvement in the performance is 
observed up to a certain point by increasing the data 
replication level. This improvement is due to the 
increasing number of local read operations that leads 
to a decrease in network traffic. After a certain 
number of replicas, further improvement is not pos- 
sible because the overhead of multiple copy updates 
(although they are infrequent) outweighs the perfor- 
mance benefits of the local read operations. With 
the query-oriented application environment, IEEE 
802.5 protocol provides better performance than the 
conventional token ring protocol when the level of 
data replication is low. This shows that, in an execu- 
tion environment where most of the transaction 
operations require remote accesses, it is advanta- 
geous to make use of real-time priorities of commu- 
nication messages in scheduling their accesses to the 
communication channel. 

Figure 6 provides the real-time performance re- 
sults for the application environment where most of 
the transactions are of update type. A considerable 
degradation in performance is observed if the level 
of data replication is increased beyond 3. The over- 
head of update synchronization among the multiple 
copies of updated data increases with each addi- 
tional data copy. More communication messages 
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need to be exchanged among sites to provide update 
synchronization. It is evident from the comparative 
performance results displayed for protocols token 
ring and IEEE 802.5 that involving real-time priori- 
ties in scheduling network accesses reduces the steep 
degradation in real-time performance which is expe- 
rienced as the number of data copies (and thus the 
number of communication messages) increases. 

When the experiment was repeated with the car- 
rier-sense network access protocols, the results ob- 
tained for the comparative performance of protocols 
CSMA/CD and VTCSMA/CD were qualitatively in 
agreement with the results of token ring and IEEE 
802.5. However, it was observed that, under an up- 
date-dominant execution environment, data replica- 
tion has more crucial effects on the real-time perfor- 
mance with the carrier-sense protocols CSMA/CD 
and VTCSMA/CD. The drop in success_rutio as a 
result of increasing the level of replication beyond a 
few is more steep (see Figure 7) compared to the 
results of ring protocols and the results obtained 
with the constant message overhead assumption 
(Ulusoy, 1994). For high levels of replication, large 
number of messages need to be exchanged for up- 
date synchronization which, as we discussed before, 
leads to poor performance for carrier-sense proto- 
cols. 

4. CONCLUSIONS 

In this article, we have studied the effects of under- 
lying network architecture on the performance of 
distributed RTDBSs. In particular, we have exam- 
ined the relative performance of various network 

- CSMA/CD 

(f - 4 VTCSMA/C 
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Figure 7. Success_ruti vs N (number of data replicas) 
for network access protocols CSMA/CD and 
VTCSMA/CD in an execution environment where update 
transactions predominate. 

access protocols and analyzed the performance 
tradeoffs involved. We have also addressed the ques- 
tion of how realistic the assumption of constant 
network delay is for distributed RTDBSs. 

A detailed simulation model of a distributed RT- 
DBS used in an earlier work (Ulusoy, 1994) has been 
extended to capture the important features of a 
communication network. Real-time performance of 
distributed transactions has been evaluated in terms 
of the fraction of satisfied deadlines under two dif- 
ferent network architecture types: carrier-sense mul- 
tiple access networks and token ring networks. In 
addition to two conventional network access proto- 
cols (i.e., CSMA/CD and token ring), two real-time 
network access protocols (i.e., virtual time carrier- 
sense multiple access (VTCSMA/CD) and IEEE 
802.5 token ring) have also been considered in our 
evaluations. The experiment results have shown that 
the real-time network access protocols, that involve 
timing constraints of communication messages in 
scheduling their channel access requests, do not 
necessarily yield better performance under all possi- 
ble conditions. Performance of the protocols is highly 
dependent on current load and other characteristics 
of the distributed RTDBS. The real-time network 
access protocols help transactions meet their dead- 
lines under high levels of transaction load. When the 
transaction load in the system increases, the differ- 
ence between the performances obtained with real- 
time protocols and their nonreal-time counterparts 
becomes much more pronounced. The performance 
improvement provided by IEEE 802.5 over tradi- 
tional token ring protocol has been observed to be 
at a higher level compared to the improvement of 
VTCSMA/CD over CSMA/CD. If the underlying 
execution environment is update-dominant, real-time 
protocols yield better performance when multiple 
copies of data items are being stored in the system. 
On the other hand, for query-dominant execution 
environments, the performance of the protocols is 
better than their nonreal-time counterparts only if 
at most a few copies of each data item is being 
stored. For all other conditions, which typically cor- 
respond to low loads of communication messages, it 
is not worthwhile to use a real-time network access 
protocol. Under such conditions, the performance 
benefit gained by exploiting real-time priorities is 
outweighed by the implementation overhead of those 
protocols. 

Another interesting observation made in our ex- 
periments is that neglecting to model the underlying 
network in detail can lead to different conclusions. 
For various conditions tested, the carrier-sense and 
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token ring network architectures have led to differ- 
ent performance results than those obtained with 
the constant message overhead assumption. 
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