
An Evaluation of Network Access Protocols
for Distributed Real-Time Database Systems*

ijzgiir Ulusoy
Department of Computer Engineering and Information Science, Bilkent University, Bilkent, Ankara 06533, Turkey

The results of a considerable number of works ad-
dressing various features of real-time database sys-
tems (RTDBSS) have recently appeared in the litera-
ture. An issue that has not received much attention
yet is the performance of the communication network
configuration in a distributed RTDBS. In this article,
we examine the impact of underlying network archi-
tecture on the performance of a distributed RTDBS. In
particular, we evaluate the real-time performance of
distributed transactions in terms of the fraction of
satisfied deadlines under various network access
strategies. We also critically examine the common
assumption of constant network delay for each com-
munication message exchanged in a distributed RT-
DBS. 0 1997 by Elsevier Science Inc.

1. INTRODUCTION

A real-time database system (RTDBS) is designed to
provide timely response to the transactions of data-
intensive applications. Each transaction processed in
a RTDBS is associated with a timing constraint
typically in the form of a deadline. The research in
distributed RTDBSs has focused on development and
evaluation of new time-cognizant scheduling tech-
niques that can provide good performance in terms
of the fraction of satisfied timing constraints. Sha et
al. (1991) presented two new real-time concurrency
control protocol techniques, called priority inheri-
tance and prior@ ceiling, and studied their perfor-
mance through simulations. Son and Chang (1990)
investigated methods to apply the priority-ceiling as
a basis for real-time locking protocol in a distributed

-

*An earlier version of this paper was presented at the First
International Workshop on Active and Real-Time Database Sys-
tems, Sk&de, Sweden, 1995.

Address correspondence to Dr. &giir Ulusoy, Depattment of Com-
puter Engineering and Information Science, Bilkent Universi&
Bilkent, Adam 06533, Turkey.

environment. Some techniques to increase the avail-
ability in a partitioned distributed RTDBS were
introduced in Lin and Lin (1988). In Ulusoy and
Belford (19921, we described several distributed
real-time concurrency control protocols and re-
ported the relative performances of the protocols in
a nonreplicated database environment. Soparkar et
al. (1992) presented an adaptive commit protocol for
distributed RTDBS transactions.

In Ulusoy (1994), we investigated the impact of
storing multiple copies of data on satisfying the
timing constraints of transactions. Various experi-
ments were conducted to observe the performance
characteristics of different applications as a function
of level of replication. Each application was distin-
guished by the type and data access distribution of
the processed transactions. A detailed performance
model of a distributed database system was em-
ployed in evaluating the effects of various workload
parameters and design alternatives on the system
performance. The effects of site failures were also
studied to estimate how much replication is needed
to provide a reliable processing environment for
real-time transactions of different applications.

One interesting question that arises in designing a
distributed RTDBS is, “How is the system perfor-
mance dependent on various characteristics of the
communication network connecting data sites?”
None of the performance works mentioned above
examined the effects of network architectures and
protocols on distributed RTDBS performance. The
common approach in all those studies was modeling
the network as a FIFO server with a fixed service
rate independent of the current load and other
characteristics of the network.

The effects of networking parameters and com-
munication protocols on “traditional” distributed
database systems were investigated by a couple of

J. SYSTEMS SOFTWARE 1997; 37:49-60
0 1997 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

01&l-1212/97/$17.00
PI1 SO164-1212(96xKx143-X

50 J. SYSTEMS SOFIWARE
1997; 3749-60

researchers. Sheth et al. (1985) studied the effect of
various network parameters on the performance of
distributed database systems. They used an analyti-
cal model to estimate the delays in communication
channels of a long haul network supporting the
distributed database system. They showed that the
constant transmission time assumption cannot be
justified in many cases and that the response time is
sensitive to the parameters such as network traffic,
network topology, and capacity of communication
channels. Ozsu and Niu evaluated the effects of
network protocols on the performance of some dis-
tributed concurrency control algorithms (6zsu and
Niu, 1992). Two network protocols, CSMA/CD and
token ring, were involved in the evaluations.

In this article, we describe a simulation study of
several network access protocols in a distributed
RTDBS and address various performance issues. To
our knowledge, our work is the first attempt to
investigate performance characteristics of the com-
munication network configuration in a distributed
RTDBS. Among the questions studied in this work
are

How the performance results obtained with con-
stant network delay assumption are affected when
the overhead of message transmission is simulated
in detail?

Which network protocol is the most suited to be
used by distributed RTDBSs? What are the basic
factors that determine the performance of net-
work protocols in a distributed RTDBS environ-
ment?

Under what conditions is it worthwhile to use
real-time network protocols (i.e., protocols that
involve timing constraints of communication mes-
sages in scheduling their channel access requests)?

The remaining sections are structured as follows.
In Section 2, the distributed RTDBS model used in
our simulations is presented. Section 3 describes a
set of experiments together with our initial findings.
It is evaluated in those experiments how the under-
lying communication network configuration affects
the real-time performance of distributed transac-
tions. In Section 4, we conclude our results.

2. MODELING A DISTRIBUTED RTDBS

The performance model is an extension of the model
of a distributed RTDBS used in an earlier work of
ours (Ulusoy, 1994). The goal of that work was to
examine the impact of data replication on the per-

6. Ulusoy

formance of a RTDBS and to analyze the perfor-
mance trade-offs involved. In that work, we used a
data distribution model which provided a partial
replication of the distributed database. The model
enabled us to execute the system at precisely speci-
fied levels of data replication. Each data item was
assumed to have N copies in the distributed system,
where N can take a value between one and the
number of data sites.

Neglecting to model the communication network
in detail, in the performance experiments of Ulusoy
(19941, it was assumed that the network has enough
capacity to carry any number of messages at a given
time, and the delay of a communication message
between any two data sites is constant. To investi-
gate the issues related to the underlying communica-
tion network of a distributed RTDBS, we have ex-
tended the system model with a network manager
module which accurately simulates the behavior of
communication messages exchanged among data
sites. The physical structure of the RTDBS model is
shown in Figure 1. It is composed of a number of
data sites interconnected by a local communication
network. Each data site contains a transaction gen-
erator, a transaction manager, a resource manager,
a scheduler, a buffer manager, and a recovery man-
ager.

The transaction generator is responsible for gen-
erating the workload for each data site. The arrivals
at a data site are assumed to be independent of the
arrivals at the other sites. Each transaction is char-
acterized by a criticalness and a deadline. The criti-
calness of a transaction is an indication of its level of
importance (Biyabani et al., 1988). It is assumed that
each transaction is associated with one of m possi-
ble levels of criticalness. The most critical transac-
tions are assigned the highest level. Assignment of
criticalness to a new transaction follows a uniform
distribution; i.e., the criticalness of the transaction is
chosen randomly from the set {l, 2,. . . , ml. The
deadline of a transaction specifies a certain time in
the future the transaction has to be completed be-
fore. The transaction deadlines are firm; i.e., trans-
actions that miss their deadlines are aborted and
disappear from the system. Criticalness and deadline
are two independent characteristics of RTDB trans-
actions (Huang et al., 1989; Haritsa et al., 1991). A
close deadline does not necessarily imply more criti-
calness. The transaction manager at the originating
site of a transaction T assigns a real-time priority to
transaction T based on its criticalness CC,), dead-
line (Dr), and arrival time (AT). The priority
of transaction T is determined by the following

An Evaluation of Network Access Protocols J. SYSTEMS SOFl’WARE 51
1997; 37:49-60

Figure 1. Distributed RTDBS structure.

SITE #l

network manager

SITE #nT_Of _SiteS

formula

P, =
CT

D,-A;

The priority formula gives equal weight to critical-
ness and relative deadline. If any two transactions
originating from the same site carry the same prior-
ity, any scheduling decision between those transac-
tions favors the more critical one; if the transactions
are of the same criticalness as well, the transaction
with closer deadline is scheduled first. To guarantee
the global uniqueness of the priorities, the id of the
originating site is appended to the priority of each
transaction.

Each distributed transaction exists in the system
in the form of a master process that executes at the
originating site of the transaction and a number of
cohorts that execute at various sites where the copies
of required data items reside. A cohort can be
defined as a process that performs operations of its
transaction on data items stored at a remote site.
The transaction can have at most one cohort at each
data site. The transaction manager is responsible for
creating a master process for each new transaction
and specifying the appropriate sites for the execu-
tion of the cohort processes of the transaction. The
operations of a transaction are executed in a se-
quential manner, one at a time. For each operation
executed, a global data dictionary is referred to find
out the locations of the data item referenced by the
operation. Each data site is assumed to have a copy
of the global data dictionary. After determining
which data sites should be accessed for the opera-

tion, a cohort process at each of those sites is
initiated (if it does not exist already) by the master
process to perform the operation in the name of the
transaction. Previously created cohorts at those sites
are just activated to perform the operation. After
the successful completion of an operation, the next
operation in sequence is executed by the appropri-
ate cohort(s). When the last operation is completed,
the transaction can be committed. The priority of a
transaction is carried by all of the cohorts of the
transaction.

The effects of a distributed transaction on the
data must be made visible at all sites in an all or
nothing fashion. The so called atomic commitment
property can be provided by a commit protocol
which coordinates the cohorts such that either all of
them or none of them commit. It is also necessary in
a distributed database system to ensure that mutual
consistency of the replicated data is provided; in
other words, replicated copies must behave like a
single copy. This is possible by preventing conflicting
accesses on the different copies of the same data
item and by making sure that all data sites eventu-
ally receive all updates (Garcia-Molina and Abbott,
19871. In our model, the atomic commitment .of
distributed transactions is provided by the central-
ized two-phase commit protocol (Bernstein et al.,
19871, while the mutual consistency of replicated
data is achieved by using the read-one, write-all-auail-
able scheme (Bernstein and Goodman, 1984).

Access requests for data items are ordered by the
scheduler on the basis of the concurrency control
protocol executed. An access request of a cohort

52 J. SYSTEMS SOFTWARE
1997;37:49-60

may result in blocking or abort of the cohort due to
a data conflict with other cohorts executed’concur-
rently. The scheduler at each site is responsible for
effecting aborts, when necessary, of the cohorts exe-
cuting at its site. When a cohort completes its data
access and processing requirements, it waits for the
master process to initiate two-phase commit. The
master process commits a transaction only if all the
cohort processes of the transaction run to comple-
tion successfully, otherwise it aborts and later restarts
the transaction. A restarted transaction accesses the
same data items as before and is executed with its
original priority.

IO and CPU services at each site are provided by
the resource manager. IO service is required for
reading or updating data items, while CPU service is
necessary for processing data items and communica-
tion messages. Both CPU and IO queues are orga-
nized on the basis of real-time priorities, and pre-
emptive-resume priority scheduling is used by the
CPU at each site. The CPU can be released by a
cohort process either due to a preemption, when the
process commits or it is blocked/aborted due to a
data conflict, or when it needs an IO or communica-
tion service. Communication messages are given
higher priority at the CPU than data processing
requests.

Local deadlocks are detected by maintaining a
local Wait-For Graph (WFG) at each site. Local
deadlock detection is performed by the scheduler
each time an edge is added to the graph (i.e., when a
cohort is blocked). For the detection of global dead-
locks a global WFG is used which is constructed by
merging local WFGs. One of the sites is employed
for periodic detection of global deadlocks. A dead-
lock is recovered from by selecting the lowest prior-
ity cohort in the deadlock cycle as a victim to be
aborted. The master process of the victim cohort is
notified to abort and later restart the whole transac-
tion.

Table 1 provides the set of parameters used in
specifying the configuration and workload of the
distributed RTDBS. The communication network
parameters, not listed in this table, will be discussed
in the next section. Each data item has exactly N
copies in the distributed system, where 1 I N I
nr_of_sites. Each data site can have at most one
copy of a data item. The remote copies of a data
item are uniformly distributed over the remote data
sites; in other words, the remotesites for the copies
of a data item are chosen randomly.

Slackfactor is the parameter used in assigning
deadlines to new transactions. The slack time of a
transaction is chosen randomly from an exponential

6. Ulusoy

Table 1. Distributed RTDBS Model Parameters

Configuration Parameters

w-of-sites
local-db-size
N
mem_size

cpu-rate
instr-process-item

disk-access-time

pti-assign-cost

lookup-cost

number of data sites
database size originated at each site
number of copies of each data item
size of the memory buffers used to hold

data items at each site
instruction rate of CPU at each site (MIPS)
number of instructions to process each

data item
average disk seek + transfer time of a

data item (msec)
CPU cost of priority assignment

(instructions)
CPU cost of locating a data item

(instructions)
Transaction Parameters

iat mean transaction interarrival time at a site
tr-type-prob fraction of update type transactions
tr-length mean number of data items accessed by a

transaction
data-update-prob fraction of updated data items by an update

transaction
slack-factor average slack-time/processing-time for a

transaction

distribution with a mean of sluck_factor times the
estimated processing time of the transaction. While
the transaction generator uses the estimation of
transaction processing times in assigning deadlines,
we assume that the system itself lacks the knowledge
of processing time information. The deadline of a
transaction T is determined by the following for-
mula

D,=A,+PE,+S,

where

S, = e.xpon(slack-factor * PE,).

A,, PE,, and S, denote the arrival time, processing
time estimate, and slack time of transaction T, re-
spectively. The formula used to determine the pro-
cessing time estimate of a transaction in an un-
loaded system is provided in Ulusoy (1994).

2.1. The Communication System

There is no globally shared memory in the system,
and all sites communicate via message exchanges
over the communication network. The network man-
ager is responsible for the transmission of messages
among data sites. The message switching component
of a data site is called a node.

The assumptions of our communication system
model are

An Evaluation of Network Access Protocols

Table 2. Communication Network Parameters.

Communication Parameters

nw_bandwidth network bandwidth (Mbps)
mes-size message size (bytes)
instr-init-mes CPU cost to initialize sending/receiving a

message (instructions)
ins@_per-mes-byte CPU cost of sending/receiving each byte

of a message (instructions)

The size of the buffers used to hold messages at
nodes are infinite; thus, no message loss is experi-
enced due to buffer overflows.

The communication network is error-free. There-
fore, there is no loss of messages and no retrans-
mission is required. Issues such as reliability and
fault recovery in communication systems are be-
yond the scope of this article.

Table 2 lists the communication parameters of
the distributed RTDBS model. The parameter
nw_bandwidth specifies the speed of the network,
i.e., the number of bits that can be transmitted per
second. Mes_size is the length of each message
exchanged between the nodes. Each message is pro-
cessed at its source site prior to its transmission and
at its destination site after being received. The mes-
sage processing overhead, in terms of the number of
CPU instructions is simulated using the parameters
instr_init_mes and instr_per_mes_byte. The first of
these two parameters corresponds to the initializa-
tion cost of transmitting or receiving each message.
The second parameter specifies the processing cost
of each byte of a message at the source or destina-
tion site.

The average CPU delay and network delay experi-
enced by each message can be estimated by using
the communication parameters
CPU-delay

= 2* & (in&r-init-mes + mes_size

* instr_per_mes_byte) (1)

J. SYSTEMS SOFTWARE 53
1997; 37~49-60

1
networkdelay =

nw-bandwidth
* 8 * mes-size . (2)

CPU_deluy corresponds to the total processing cost
of a message (i.e., sum of the processing costs at
both its source site and destination site).

There exist different types of communication mes-
sages exchanged to control the execution of a trans-
action. The message types generated for a particular
transaction T are described in Table 3. In the table,
the source and destination of each message type are
specified using the following notation

TM(S): The transaction manager at site S.
MP(T): Master process of transaction T.
ES(C): Execution site of cohort C.

The discussion of the message types specific to
various concurrency control protocols employed in
performance experiments is deferred to Section 3.1
which provides the performance results obtained
with different concurrency control protocols.

Two different network architecture types are con-
sidered in our work: carrier-sense multiple access
networks and token ring networks. The Carrier-Sense
Multiple Access with Collision Detection
(CSMA/CD) is the first network access protocol we
explored. In a multiple access network, messages are
transmitted on a shared communication channel.
Only one message can be successfully transmitted
over the channel at any time. In carrier-sense net-
works, each node that wants to transmit a message
should first listen to the communication channel. If
any transmission is in progress, the node defers its
transmission until the end of the current transmis-
sion. Collisions can occur due to the nonzero pro-
pagation delay of the communication channel.
CSMA/CD protocol provides detection of message
collisions. Upon detection of a collision, transmis-
sion is aborted and the node schedules its message
for the retransmission. The time period over which
the node schedules retransmission is doubled each
time the message experiences a collision (Bux, 1981).

Table 3. Message Types Generated for Transaction T

Message type Source

initiate-cohort ME’(T)

activafe-opera&m MHT)
operation_complete TM(ES(C))

vote-request MP(T)

partkipantdecision TME2xCN

finaLdecision MP(T)

Destination

TI@3XCN

TM(ES(C))
MP(T)

-I’MES(CN

ME’(T)

TMES(CN

Function

To initiate the execution of
cohort C of transaction T.

To activate an operation of cohort C.
To indicate that the current operation

of cohort C has been completed.
To initiate the two-phase commit

protocol for T.
To reply the uore-request message. The message

carries the commit/abort decision of a cohort site.
To indicate the final (commit/abort) decision for

the commitment of T.

54 J. SYSTEMS SOFTWARE
1997; 37:49-60

0. uhlsoy

Table 4. Parameters Specific to the Carrier-Sense
Multiple Access Network Model

Table 5. Parameters Specific to the Token Ring
Network Model

CSMA / CD Parameters Token Ring Parameters

csma-prop-delay
csma-channel-length

end-to-end propagation delay ring-prop-delay
length of the communication node-latency

channel (bits) ring-length

The parameters specific to our CSMA/CD net-
work model are provided in Table 4. The model
assumes that time is slotted and nodes can only start
transmitting messages at the beginning of each slot.
Coma _prop_delay denotes end-to-end propagation
delay of the communication channel. The parameter
csma_channel_length specifies the length of the
channel in bits (i.e., the maximum number of bits
being transmitted on the channel at any instant).
The length of a slot is considered to be equal to
csma_prop_deluy; thus, a transmission at the begin-
ning of a slot is recognized by all nodes prior to the
next slot. A collision can occur only between the
messages that are transmitted at the same slot.

Token ring is the other network access protocol
adapted to our communication system. In a token
ring, access to the communication channel is con-
trolled by passing a special frame, called token,
around the ring. When no message is in transmis-
sion, a free token circulates around the ring. When a
node becomes ready to transmit a message, it
changes the token to busy and puts its message onto
the ring. The sending node is responsible for remov-
ing its own message from the ring. At the end of its
transmission, the node passes the access permission
to the node down stream by generating a new free
token. Because there is only one token on the ring
at any time, there is no contention among the nodes
to access the ring (Bux, 1981).

Table 5 describes the additional communication
parameters for the token ring model. Ring_prop_de-
lay specifies the propagation delay of messages from
one node to another. It is assumed that all nodes are
equally distanced on the ring. Each message is passed
from one node to another on its path from source
site to destination site. Each node passes the mes-
sage on after a short delay, which is specified by
parameter node-latency. The token circulates
around the ring in a time equal to the sum of
propagation delays between nodes plus the sum of
node latencies.

3. SIMULATION EXPERIMENTS

The simulation program, capturing the details of the
distributed RTDBS model, was written in CSIM

node-to-node propagation delay
delay at each node
total length of the ring (bits)

(Schwetman, 19861, which is a process-oriented sim-
ulation language based on the C programming lan-
guage.

Table 6 presents the default parameter values
used in each of the experiments. All sites of the
system were assumed identical and operating under
the same parameter values. It was assumed that one
CPU and one disk unit exist at each data site. The
settings used for configuration and transaction pa-
rameters were basicly taken from our earlier experi-
ments (Ulusoy, 1994). It was intended by those set-
tings to execute the transactions under high levels of
data contention. The default values used for the
communication parameters can be accepted as rea-
sonable approximations of what can be expected
from today’s local communication networks. The
value of csmu_prop_deluy is determined as follows

csma-prop-delay =
csma-channel-length

nw- bandwidth

= 5 * 10e3msec.

Table 6. Performance Model Parameter Values

Configuration Parameters

nr-of-sites
local-db-size
N
mem-size
cpu-rate
in.W_process_item
diskaccess_time
prLassign_cost
lookup_cost
Transaction Parameters

10
200 data items
5
500
2Ci MIPS
160004 instructions
18 msec
20000 instructions
20000 instructions

iat
tr-type-prob
tr-length
data-update-prob
slack-factor
Communication Parameters

400 msex (exponential)
.5
6
.5
5 (exponential)

w-bandwidth
mes-size
instr-init-mes
instr_per-me-byte
csma-channel-length
node-latency
ring-length

10 Mbps
512 bytes
20000 instructions
3 instructions
50 bits
0.5 * 10e3 msec
50 bits

An Evaluation of Network Access Protocols J. SYSTEMS SOFlWAFCE 55
1997; 3249-60

Similarly, the value of ring_prop_deZuy can also be
found using the other network parameter values.

ring-prop-delay =
ring-length

m-of-sites * nw-bandwidth

= 0.5 * 10P3msec.

The performance metric we used, i.e.,
success_rutio, combines the performance measure-
ments of all criticalness levels, in terms of the frac-
tion of satisfied deadlines, using a specific weight for
each level. This metric is defined as follows

success_ratio = X 1w, ;r-ratio, ,

I lW,

where

i: Criticalness level.
m: Total number of criticalness levels (m = 3 in our

simulations).
wi: Weight of criticalness level i.
success_rutiq: Fraction of satisfied deadlines for the

transactions of criticalness level i.

The determination of the weights of criticalness
levels is highly dependent on the particular applica-
tion environment (Biyabani et al., 1988). We used
linearly increasing weights; i.e.,

w, = i, (i= 1,2 ,..., m).

For each experiment, the final results were evalu-
ated as averages over 25 independent runs. Each run
continued until 1000 transactions were executed at
each data site. Ninety percent confidence intervals
were obtained for the performance results. The width
of the confidence interval of each data point is
within 4% of the point estimate. In displayed graphs,
only the mean values of the performance results are
plotted.

3.1. Evaluation of Concurrency Control Protocols

In Ulusoy (19941, we evaluated the performance of a
number of RTDBS concurrency control protocols
under different levels of transaction load. The proto-
cols were different in the way real-time priorities of
transactions are involved in scheduling data access
requests. Concurrency control protocols that employ
restarts in resolving conflicts (e.g., optimistic proto-
cols), exhibited better performance than the proto-
cols that use blocking (e.g., locking protocols) when
the system was lightly loaded (i.e., for large iut
values). With optimistic protocols, there is no over-
head of transaction blocking due to data conflicts
until commit time. Because the number of conflicts
is small under low load levels, only a few transac-

tions fail to be validated at commit time. On the
other hand, when the transaction load was high, the
performance of restart-based protocols was worse
compared to blocking-based ones. The overhead of
executing a concurrency control protocol that uses
restarts in resolving conflicts was observed to be
higher than that of a blocking-based protocol due to
the large number of restarts experienced under high
levels of system load.

The same experiment is repeated here to see how
the results obtained are affected when the transmis-
sion of communication messages are implemented in
full detail. We categorize the concurrency control
protocols into two classes as locking protocols that
use blocking in resolving congicts and optimistic
protocols that are based on restarting. This section
provides the results for one protocol from each class
chosen as representative. We first provide a brief
description of each protocol together with the sum-
mary of the performance results obtained with the
constant message transmission and service times as-
sumption.

Priority Inheritance protocol (PI). The priority
inheritance method, proposed in Sha et al. (19911,
ensures that when a transaction blocks higher prior-
ity transactions, it is executed at the highest priority
of the blocked transactions; in other words, it inher-
its the highest priority. The aim is to reduce the
blocking times of high priority transactions.

Optimistic Wait-50 protocol (OPT). OPT is an
optimistic concurrency control protocol incorporat-
ing real-time priorities of transactions (Haritsa et
al., 1990). The validation check for a committing
transaction is performed against the executing trans-
actions and if the write-set of the validating transac-
tion intersects with the read-set of one of the execut-
ing transactions, these two transactions are said to
be in conflict. The proposed protocol uses a 50%
rule as follows. If half or more of the transactions
conflicting with a committing transaction are of
higher priority, the transaction is made to wait for
the high priority transactions to complete; otherwise,
it is allowed to commit while the conflicting transac-
tions are aborted. While the transaction is waiting, it
is possible that it will be restarted due to the commit
of one of the conflicting transactions with higher
priority. The validation check for a transaction is
performed at each data site where a cohort of the
transaction has been executed.

The concurrency control protocols were found to
be somewhat different in their sensitivity to the
constant message overhead assumption. Table 7 pro-

0. Ulusoy 56 J. SYSTEMJ SOFTWARJZ
1997; 37~49-60

Table 7. Improvement in success-ratio by PI over OPT.

~protocol,iat+ 300 340 380 420 460

No access protocol 17% 11% 5% -1% -2%
CSMA / CD 12% 7% 3% -2% -3%
Token Ring 16% 10% 7% -1% -3%

Improvement is shown under varying average transaction interar-
rival time iar (in msec) with the constant message overhead assump-
tion, the nehvork access protocol CSMA/CD, and the token ring.

vides the improvement in success_ratio obtained
with concurrency control protocol PI over protocol
OPT under various network access strategies.’ The
line indexed by “No access protocol” provides the
evaluation results obtained without employing a spe-
cific network access protocol in transmitting mes-
sages.’ When the token ring protocol was employed,
the comparative performance results of PI and OPT
under different system loads were not much differ-
ent from those obtained without implementing the
details of a network protocol. On the other hand,
when CSMA/CD was employed, the performance
improvement provided by PI over OPT under high
transaction loads was at a lower level. This result
might be due to larger number of communication
messages involved in implementing the concurrency
control protocol PI. The protocol requires that
whenever a cohort of a transaction inherits a prior-
ity, the scheduler at the cohort’s site notifies the
transaction’s master process by sending a priority
inheritance message which contains the inherited
priority. The master process then propagates this
message to the sites of other cohorts that belong to
the same transaction, so that the priority of the
cohorts can be adjusted.3 With protocol OPT, on the
other hand, no extra messages are involved for con-
currency control because the information necessary
for the validation of a transaction is piggybacked on
the messages of the two-phase commit protocol. The
larger number of messages issued with PI affects the
comparative performance of protocols when
CSMA/CD is employed. The degradation in the
performance of protocol PI can be explained by the

‘The range (300 msec, 460 msec) of iut values used in the
experiments corresponds to an expected CPU utilization of about
90 to .59 at each data site Wlusoy, 1992).

21n those evaluations, the constant values used to simulate the
delay of a communication message between any two sites and the
CPU time to process a communication message were determined
using Equations (1) and (2).

3The other locking protocols also require exchange of various
kinds of control messages between sites during the execution of a
transaction. .

waste of time experienced due to message collisions
with CSMA/CD. The number of collisions increases
as more messages contend for channel access.

Figure 2 displays the real-time performance re-
sults of concurrency control protocols PI and OPT
with network access protocols CSMA/CD and to-
ken ring. For low levels of transaction load (i.e.,
large iat values), CSMA/CD leads to slightly better
performance for both PI and OPT. The worse per-
formance of token ring can be due to the delay
experienced by ready messages while waiting for a
free token. Comparing the concurrency control pro-
tocols under high loads, it can be seen that
OPT cannot reach the real-time performance level
achieved by PI under any network access protocol.
The reason for this result, as we explained before, is
the waste of resources experienced with OPT due to
restarting failed transactions at the end of their
executions.

3.2. Evaluation of Real-Time, Network
Access Protocols

In this section, we provide an investigation of the
performance impact of employing priority-based net-
work access protocols in a distributed RTDBS. Each
message transmitted carries the priority which is
associated with its transaction. The real-time net-
work access protocols selected for evaluation
are: the virtual time CSMA/CD protocol
(VTCSMA/CD) (Zhao and Ramamritham, 19871,
and the IEEE 802.5 Token Ring protocol (Token
Ring Access Method, IEEE 802.5 Local Area Net-
work Standard, 1985).

1.n . .

300 340 380 420 460

IAT (msec)

Figure 2. Success-ratio results for concurrency control
protocols PI and OPT with network access protocols
CSMA/CD and token ring.

An Evaluation of Network Access Protocols

Virtual Time CSMA / CD Protocol. The virtual
time CSMA/CD protocol (VTCSMA/CD) was pro-
posed by Zhao and Ramamritham (1987) for real-
time communication systems. In this protocol, each
node maintains two clocks: a real time clock and a
virtual time clock. Whenever a node finds the chan-
nel to be idle, it resets its virtual clock. The message
with the minimum virtual time to start transmission
(I?$) is transmitted first. Transmission begins when
the virtual clock equals the lJS of the message. The
virtual clock stops running when transmission begins
and starts running (after resetting its value to the
time on the real clock) when the channel is idle
following completion of transmission or a collision.
It runs faster than the real clock.4 In our experi-
ments, we set the KS of a message to the deadline of
its transaction.

IEEE 802.5 Token Ring Protocol. In this protocol,
the token contains a priority field and a reservation
field. A node that has a ready message has to wait
until it captures the free token with a priority less
than or equal to its priority. The node can try to
reserve the next token by writing its message priority
into the token’s reservation field. However, if a
higher priority has already been claimed in the
reservation field, the node is not allowed to update
it. Following a message transmission, the sender
node generates a free token with the priority that
has been reserved, if any; otherwise, the priority
field of the free token is set at the present priority
level.

The VTCSMA/CD protocol has the implementa-
tion overhead of delaying the transmission of a
ready message until the VS of the message becomes
equal to the virtual clock. Implementing the IEEE
802.5 token ring protocol, on the other hand, in-
volves an extra processing cost due to comparing the
priority of a ready message against the priority field
or the reservation field of the token, and setting
those fields whenever the conditions hold.5

The first experiment investigated the performance
of the real-time network access protocols for varying
transaction loads (and thus varying message loads).
The iat parameter was varied from 300 to 460 msec-
onds in steps of 40. PI was the concurrency control

4Zhao and Ramamritham (1987) provides experimentally the
best values for the rate at which the virtual clock runs under
different loading conditions.

51n our experiments, this extra cost is simulated explicitly by
doubling the value of node_Zatenq each time a node needs to
check or set the priority/reservation fields of the token.

protocol used in the
mance characteristics
OPT).

In Figures 3 and

J. SYSTEMS SOFIWARE 57
1997; 37:49-60

experiments (similar perfor-
were observed for protocol

4, the performance results
are compared to those obtained with protocols
CSMA/CD and token ring which do not involve
real-time priorities in scheduling the transmission of
messages. Although both real-time network access
protocols were observed to provide an improvement
over the performance of their nonreal-time counter-
parts under high levels of transaction load, the im-
provement provided by VTCSMA/CD over
CSMA/CD was not significant. The channel access
delay experienced due to the implementation of a
virtual clock prevents protocol VTCSMA/CD to
become more effective in terms of the real-time
performance. Under low levels of transaction load,
the real-time network access protocols perform
worse than their nonreal-time counterparts. This
result shows that when the number of messages
contending for channel access is small (as a result of
low transaction load), the performance advantage
gained by the real-time protocols is outweighed by
their implementation overhead. In conclusion, if the
system is characterized by low transaction load, it is
not worthwhile to use a network access protocol that
exploits the real-time priorities.

In another experiment, it was evaluated how suc-
cessful the transactions are in satisfying their dead-
lines under different levels of data replication. In
conducting data replication experiments, we consid-
ered two different application environments, each
characterized by the fraction of update transactions
processed. The majority of the transactions in the
first application are read-only (update transaction
percentage: 25%), while the second application is
dominated by update transactions (update transac-

1.0
1

0.5 I I I 1 I
300 340 360 420 460

IAT (-)

Figure 3. Success_rufio results for network access proto-
cols token ring and IEEE 802.5.

58 J.SYSTEMSSOFIWARE
1997; 37:49-60

6. Ulusoy

300 340 380 420 480

IAT

Figure 4. Success_ratio results for network access proto-
cols CSMA/CD and VTCS~/CD.

tion percentage: 75%). In evaluating the effects of
level of data replication on system performance, the
number of replicas of each data item (N) was varied
from 1 to nr_of_sites (nr_of_sites = 10). Remem-
ber that the consistency of replicated data is pro-
vided through the read-one, write-all-available
scheme. A read operation requires a remote access
if a copy of the required data item does not reside
locally. In this experiment, the mean interarrival
time value (iat) was fixed at 400 msec.

The comparative performance results of network
access protocols token ring and IEEE 802.5 are
displayed in Figures 5 and 6 for two different appli-
cation environments. With the first application envi-
ronment, where read-only transactions predominate,

O.,M
123456789.

NUMBEROF REPLICAS

Figure 5. Success_rutio vs N (number of data replicas)
for network access protmls token ring and IEEE 802.5 in
an execution environment where read-only transactions
predominate.

- Token ring
* -*IEEE 802.5

12 3 4 5 e 7 8 9 10

NUMBEROFREPLICAS

Figure 6. Success_ruzio vs N (number of data replicas)
for network access protocols token ring and IEEE 802.5 in
an execution environment where update transactions pre-
dominate.

the fraction of satisfied deadlines is at a higher level
(Figure 5) compared to the other application envi-
ronment where the majority of transactions are of
update type (Figure 6). The number of conflicts
among the transactions increases when the fraction
of update operations becomes higher, which results
in a degradation in the performance of the RTDBS.
In Figure 5, with both protocols token ring and
IEEE 802.5, an improvement in the performance is
observed up to a certain point by increasing the data
replication level. This improvement is due to the
increasing number of local read operations that leads
to a decrease in network traffic. After a certain
number of replicas, further improvement is not pos-
sible because the overhead of multiple copy updates
(although they are infrequent) outweighs the perfor-
mance benefits of the local read operations. With
the query-oriented application environment, IEEE
802.5 protocol provides better performance than the
conventional token ring protocol when the level of
data replication is low. This shows that, in an execu-
tion environment where most of the transaction
operations require remote accesses, it is advanta-
geous to make use of real-time priorities of commu-
nication messages in scheduling their accesses to the
communication channel.

Figure 6 provides the real-time performance re-
sults for the application environment where most of
the transactions are of update type. A considerable
degradation in performance is observed if the level
of data replication is increased beyond 3. The over-
head of update synchronization among the multiple
copies of updated data increases with each addi-
tional data copy. More communication messages

An Evaluation of Network Access Protocols J. SYSTEMS SOFIWARE 59
1997; 37~49-60

need to be exchanged among sites to provide update
synchronization. It is evident from the comparative
performance results displayed for protocols token
ring and IEEE 802.5 that involving real-time priori-
ties in scheduling network accesses reduces the steep
degradation in real-time performance which is expe-
rienced as the number of data copies (and thus the
number of communication messages) increases.

When the experiment was repeated with the car-
rier-sense network access protocols, the results ob-
tained for the comparative performance of protocols
CSMA/CD and VTCSMA/CD were qualitatively in
agreement with the results of token ring and IEEE
802.5. However, it was observed that, under an up-
date-dominant execution environment, data replica-
tion has more crucial effects on the real-time perfor-
mance with the carrier-sense protocols CSMA/CD
and VTCSMA/CD. The drop in success_rutio as a
result of increasing the level of replication beyond a
few is more steep (see Figure 7) compared to the
results of ring protocols and the results obtained
with the constant message overhead assumption
(Ulusoy, 1994). For high levels of replication, large
number of messages need to be exchanged for up-
date synchronization which, as we discussed before,
leads to poor performance for carrier-sense proto-
cols.

4. CONCLUSIONS

In this article, we have studied the effects of under-
lying network architecture on the performance of
distributed RTDBSs. In particular, we have exam-
ined the relative performance of various network

- CSMA/CD

(f - 4 VTCSMA/C

0.41 , 1 , , , , , ,y
12 3 4 5 6 7 8 9 10

NUMBER OF REPLICAS

Figure 7. Success_ruti vs N (number of data replicas)
for network access protocols CSMA/CD and
VTCSMA/CD in an execution environment where update
transactions predominate.

access protocols and analyzed the performance
tradeoffs involved. We have also addressed the ques-
tion of how realistic the assumption of constant
network delay is for distributed RTDBSs.

A detailed simulation model of a distributed RT-
DBS used in an earlier work (Ulusoy, 1994) has been
extended to capture the important features of a
communication network. Real-time performance of
distributed transactions has been evaluated in terms
of the fraction of satisfied deadlines under two dif-
ferent network architecture types: carrier-sense mul-
tiple access networks and token ring networks. In
addition to two conventional network access proto-
cols (i.e., CSMA/CD and token ring), two real-time
network access protocols (i.e., virtual time carrier-
sense multiple access (VTCSMA/CD) and IEEE
802.5 token ring) have also been considered in our
evaluations. The experiment results have shown that
the real-time network access protocols, that involve
timing constraints of communication messages in
scheduling their channel access requests, do not
necessarily yield better performance under all possi-
ble conditions. Performance of the protocols is highly
dependent on current load and other characteristics
of the distributed RTDBS. The real-time network
access protocols help transactions meet their dead-
lines under high levels of transaction load. When the
transaction load in the system increases, the differ-
ence between the performances obtained with real-
time protocols and their nonreal-time counterparts
becomes much more pronounced. The performance
improvement provided by IEEE 802.5 over tradi-
tional token ring protocol has been observed to be
at a higher level compared to the improvement of
VTCSMA/CD over CSMA/CD. If the underlying
execution environment is update-dominant, real-time
protocols yield better performance when multiple
copies of data items are being stored in the system.
On the other hand, for query-dominant execution
environments, the performance of the protocols is
better than their nonreal-time counterparts only if
at most a few copies of each data item is being
stored. For all other conditions, which typically cor-
respond to low loads of communication messages, it
is not worthwhile to use a real-time network access
protocol. Under such conditions, the performance
benefit gained by exploiting real-time priorities is
outweighed by the implementation overhead of those
protocols.

Another interesting observation made in our ex-
periments is that neglecting to model the underlying
network in detail can lead to different conclusions.
For various conditions tested, the carrier-sense and

60 J. SYSTEMS SOFTWARE
1997; 37:49-60

6. Ulusoy

token ring network architectures have led to differ-
ent performance results than those obtained with
the constant message overhead assumption.

REFERENCES

Bernstein, P. A., and Goodman, N., An Algorithm for
Concurrency Control and Recovery in Replicated Dis-
tributed Databases, ACM Transactions on Database Sys-
tems 9, 596-615 (1984).

Bernstein, P. A., Hadzilacos, V., and Goodman, N., Con-
currency Control and Recovery in Database Systems, Ad-
dison-Wesley, 1987.

Biyabani, S. R., Stankovic, J. A., Ramamritham, K., The
Integration of Deadline and Criticalness in Hard Real-
Time Scheduling, 9th Real-Time Systems Symposium,
1988, pp. 152-160.

Bux, W., Local-Area Subnetworks: A Performance Com-
parison, IEEE Transactions on Communications 29,
1465-1473 (1981).

Garcia-Molina, H., Abbott, R. K., Reliable Distributed
Database Management, Proceedings of the IEEE 75,
601-620 (1987).

Haritsa, J. R., Carey, M. J., Livny, M., Dynamic Real-Time
Optimistic Concurrency Control, 11th Real-Time Sys-
tems Symposium, 1990, pp. 94-103.

Haritsa, J. R., Carey, M. J., and Livny, M., Value-Based
Scheduling in Real-Time Database Systems, Technical
Report No. 1024, Dept. of Computer Science, Univer-
sity of Wisconsin-Madison, 1991.

Huang, J., Stankovic, J. A., Towsley, D., Ramamritham, K,
Experimental Evaluation of Real-Time Transaction
Processing, 10th Real-Time Systems Symposium, 1989,
pp. 144-153.

Lin, K_ J., and Lin, M. $I., Enhancing Availability in
Distributed Real-Time Databases, ACM SZGMOD
Record 17, 34-43 (1988).

hzsu, M. T., and Niu, Y., Effects of Network Protocols on
Distributed Concurrency Control Algorithm Perfor-

mance, 4th International Conference on Computing and
Information, 1992, pp. 274-279.

Schwetman, H., CSIM: A C-Based, Process-Oriented Sim-
ulation Language, winter Simulation Conference, 1986,
pp. 387-396.

Sha, L., Rajkumar, R., Son, S. H., and Chang, C. H., A
Real-Time Locking Protocol, IEEE Transactions on
Computers 40,793-800 (1991).

Sheth, A. P., Singhal, A., Liu, M. T., An Analysis of the
Effect of Network Parameters on the Performance of
Distributed Database Systems, IEEE Transactions on
Software Engineering 11, 1174-1184 (1985).

Son, S. H., Chang, C. H., Performance Evaluation of
Real-Time Locking Protocols Using a Distributed Soft-
ware Prototyping Environment, 10th International Con-
ference on Distributed Computing Systems, 1990, pp.
124-131.

Soparkar, N., Levy, E., Korth, H. F., and Silberschatz, A.,
Adaptive Commitment for Real-Time Distributed
Transactions, Technical Report TR-92-15, Department
of Computer Science, University of Texas at Austin,
1992.

Token Ring Access Method, IEEE 802.5 Local Area Network
Standard, IEEE Computer Society, Silver Spring, Mary-
land, 1985.

Ulusoy, G., and Belford, G. G., Real-Time Lock Based
Concurrency Control in a Distributed Database System,
12th International Conference on Distributed Computing
Systems, 1992, pp. 136-143.

Ulusoy, 6., Concurrency Control in Real-Time Database
Systems, Technical Report UIUCDCS-R-92-1762, De-
partment of Computer Science, University of Illinois at
Urbana-Champaign, 1992.

Ulusoy, G., Processing Real-Time Transactions in a Repli-
cated Database Systems, Journal of Distributed and Par-
allel Databases 2, 405-436 (1994).

Zhao, W., Ramamritham, K., Virtual Time CSMA Proto-
cols for Hard Real-Time Communication, IEEE Trans-
actions on Software Engineering 13,938-952 (1987).

