
OBJECTIVE: a benchmark for object-oriented active database
systems

U~gur Cßetintemel a, J�urgen Zimmermann b, �Ozg�ur Ulusoy c,*, Alejandro Buchmann b

a Department of Computer Science, University of Maryland, College Park, Maryland, USA
b Department of Computer Science, University of Darmstadt, Darmstadt, Germany

c Department of Computer Engineering and Information Science, Bilkent University, Ankara, Turkey

Received 12 February 1997; accepted 14 June 1997

Abstract

Although much work in the area of Active Database Management Systems (ADBMSs) has been done, it is not yet clear how the

performance of an active DBMS can be evaluated systematically. In this paper, we describe the OBJECTIVE Benchmark for object-

oriented ADBMSs, and present experimental results from its implementation in an active database system prototype. OBJECTIVE

can be used to identify performance bottlenecks and active functionalities of an ADBMS, and to compare the performance of

multiple ADBMSs. Ó 1999 Published by Elsevier Science Inc. All rights reserved.

1. Introduction

An Active Database Management System (ADBMS)
detects certain situations and performs corresponding
user de®ned actions in the form of Event-Condition-
Action (ECA) rules (Dayal et al., 1988). ADBMSs have
received great attention lately, and several prototypes of
object-oriented ADBMSs are already available (e.g.,
ACOOD (Berndtsson, 1991), NAOS (Collet et al.,
1994), Ode (Agrawal and Gehani, 1989), REACH
(Buchmann et al., 1995), SAMOS (Gatziu et al., 1994),
SENTINEL (Chakravarthy et al., 1994)). We are cur-
rently in a position to evaluate the performance of
ADBMSs by concentrating on:
· the performance requirements of di�erent architec-

tural approaches; i.e., integrated vs. layered,
· di�erent techniques used for standard tasks of an

ADBMS; i.e., rule maintenance, event detection, and
· a variety of functionalities provided by an ADBMS;

e.g., garbage collection and parameter passing.
Benchmarking is a very important process in the

sense that database users base their purchasing decisions
partially relying on benchmark results, and database
designers measure the performance of their systems by
using an appropriate benchmark. There has been much

work in the area of database benchmarking; e.g., the
Wisconsin Benchmark (Boral and DeWitt, 1984), the
OO1 Benchmark (Catell and Skeen, 1992), and the OO7
Benchmark (Carey et al., 1993). However, there have
been only a few attempts to evaluate the performance of
ADBMSs, the most important of which are the BEAST
Benchmark (Geppert et al., 1995), and the ACT-1
Benchmark (Zimmermann and Buchmann, 1995).

In this paper, we describe the OBJECTIVE 1

Benchmark which is a simple but comprehensive test of
active functionalities provided by an object-oriented
ADBMS, and give performance results of its imple-
mentation in an ADBMS prototype. OBJECTIVE can
be used to identify performance bottlenecks and active
functionalities of an ADBMS, and compare the per-
formance of multiple ADBMSs. The philosophy of
OBJECTIVE is to isolate components providing active
functionalities, and concentrate only on the perfor-
mance of these components while attempting to mini-
mize the e�ects of other factors (e.g., underlying
platform). OBJECTIVE operates on a very simple da-
tabase structure consisting of completely synthetic
classes, events, and rules. Although the design is very
simple (for ease of reproducibility and portability), we
believe that this simplicity does not contribute nega-
tively to the benchmark in any manner.

The Journal of Systems and Software 45 (1999) 31±43

* Corresponding author. Fax: +90 312 266 4126; e-mail:

oulusoy@cs.bilkent.edu.tr. 1 OBJECT-oriented actIVE database systems benchmark.

0164-1212/99/$ ± see front matter Ó 1999 Published by Elsevier Science Inc. All rights reserved.

PII: S 0 1 6 4 - 1 2 1 2 (9 8) 1 0 0 6 6 - 3

The OBJECTIVE Benchmark addresses the following
issues with respect to object-oriented ADBMS perfor-
mance and functionality:
· method wrapping penalty,
· detection of primitive and composite events,
· rule ®ring,
· event-parameter passing,
· treatment of semi-composed events, and
· rule administration tasks.

The OBJECTIVE Benchmark comprises a number of
operations that evaluate the issues stated above, and
those operations were ®rst run on REACH (Buchmann
et al., 1995). REACH is a full-¯edged operational ob-
ject-oriented ADBMS which is tightly integrated in
Texas Instruments' Open OODB (Wells et al., 1992).
The results reported in this paper reveal that REACH
combines advanced features of current ADBMS pro-
posals from the functionality point of view. As for its
performance, a single bottleneck operation is identi®ed.

The remainder of the paper is organized as follows.
Section 2 discusses the main features of ADBMSs and
Section 3 discusses previous related work. The OB-
JECTIVE Benchmark is introduced along with perfor-
mance results of its implementation in REACH in
Section 4. Finally, Section 5 concludes and gives direc-
tions for future work.

2. Active database management systems

ADBMSs extend passive DBMSs with the ability to
specify and implement reactive behavior which is typi-
cally speci®ed in terms of ECA rules. The general form
of an ECA rule is: on event if condition do action. The
semantics of such a rule is that when the event occurs, the
condition is checked, and if it is satis®ed then the action is
executed. Therefore, an ADBMS has to monitor events
(of interest) and detect their occurrences. After an event
is detected, it is signaled. This signaling is a noti®cation
that an interesting event has occurred, and rule execu-
tion should take place. ECA rules require, at least, the
operations insert, delete, and ®re. These operations are
used to insert a new rule into the database, delete an
existing rule from the database, and trigger a rule, re-
spectively. For some applications it may be useful to
disable rules temporarily, which can afterwards be en-
abled when necessary (Dayal, 1988).

This section discusses main issues in ADBMSs to an
extent which is necessary for the comprehension of the
rest of the paper.

2.1. Events

ECA rules are triggered on the occurrence of partic-
ular events. An event can be either primitive or com-
posite. Primitive events are atomic events which can be

associated with a point in time. The most commonly
referred primitive event types are (Buchmann et al.,
1995; Gatziu and Dittrich, 1994a; Chakravarthy and
Mishra, 1993):

Method events: A method invocation can be de®ned
as an event of interest. In such a case, an event occurs
when its corresponding method is executed. Since a
method execution corresponds to an interval rather
than a point in time, usage of time modi®ers like BE-
FORE or AFTER is mandatory. The semantics of
BEFORE and AFTER modi®ers, respectively, is that
the method event is to be raised just before the invo-
cation of the method, and immediately after the exe-
cution of the method.

State transition events: A change in the state of the
object space can be an event; e.g., modi®cation of an
object attribute. It is then necessary to de®ne operators
to access old and new values of relevant entities.

Temporal events: Basically, two types of temporal
events exist; absolute and relative. Absolute temporal
events are de®ned by giving a particular point in time
(e.g., 01.10.1996, 11:23), whereas relative temporal
events are de®ned relative to other events (e.g., 10
minutes after commit of a particular transaction). The
latter type can also include events which occur periodi-
cally (e.g., every day at 17:30).

Transaction events: Transaction events correspond to
standard transaction operations like begin of transaction
(BOT), end of transaction (EOT), abort of transaction
(ABORT), and commit of transaction (COMMIT).

Abstract events: Abstract events are user-de®ned
events whose occurrences are directly signalled. There-
fore, the underlying system does not need to monitor
abstract events; i.e., they are explicitly raised by the user
and associated with a point in time.

Di�erent techniques are used for the detection of
method events. A straightforward approach is to modify
the body of the method for which an event is to be de-
®ned with an explicit raise of an event (Gatziu and
Dittrich, 1994a). Another technique, method wrapping, is
to replace the original method with a method wrapper
that contains an explicit event raise operation and a call
to the original method (Buchmann et al., 1995). When a
method for which an event is de®ned is called, actually
its wrapper is invoked (i.e., the wrapper gets the name of
the original method, and original method is renamed).
The wrapper then raises the event and calls the original
method (or vice versa depending on the time modi®er
used in the event).

Unlike primitive events which are atomic, composite
events are de®ned as a combination of primitive (and
possibly other composite) events. The meaningful ways
to build composite events from its constituent events are
usually speci®ed through an event algebra that de®nes
certain event constructors. Some useful event construc-
tors are (Dayal, 1988; Gatziu et al., 1994):

32 U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43

· The disjunction of two events, event1 and event2, is
raised when either of event1 or event2 occurs.

· The conjunction of two events, event1 and event2, is
raised when both event1 and event2 occur.

· The sequence of two events, event1 and event2, is
raised when event1 and event2 occur in that order.

· The closure of an event, event1, is raised exactly once
regardless of the number of times event1 occurs (pro-
vided that event1 occurs at least once).

· The negation of an event, event1, is raised if event1
does not occur in a given time interval.

· The history of an event, event1, is raised if event1 oc-
curs a given number of times.
For the last three event constructors, it is appropriate

to de®ne time intervals in which composition of events
should take place. The de®nition of a time interval is
mandatory for negation, and optional for history and
closure.

Composite events can further be grouped into aggre-
gating composite events and non-aggregating composite
events (Zimmermann and Buchmann, 1995). The former
group contains composite events that are constructed
with the operators sequence, disjunction, and conjunc-
tion, whereas the latter group comprises composite
events constructed with history, negation, and closure.

Several di�erent approaches are used for composite
event detection including syntax graphs (Deutsch, 1994;
Chakravarthy et al., 1993), Petri nets (Gatziu and Dit-
trich, 1994b), ®nite state automata (Gehani et al., 1992),
and arrays (Eriksson, 1993).

2.2. Conditions

The condition part of a rule is usually a boolean ex-
pression, a predicate, or a set of queries, and it is sat-
is®ed if the expression evaluates to true, or all the
queries return non-empty results, respectively. In addi-
tion to the current state of the database, the condition
may access the state of the database at the time of event
occurrence by the use of event parameters.

2.3. Actions

The action part of a rule is executed when the con-
dition is satis®ed. In general, an action can be database
operations, transaction commands (e.g., abort transac-
tion), or arbitrary executable routines. Therefore, during
the execution of an action some events may also occur.
This may lead to the triggering of other rules which is
called cascaded rule triggering. The action may access,
besides the current database state, the database state at
the time of event occurrence and the time of condition
evaluation which can be accomplished by parameter
passing.

2.4. Execution model

An execution model speci®es the semantics of rule
execution in a transaction framework. A transaction
which triggers rules is called a triggering transaction, and
the (sub-) transaction which executes the triggered rule is
called the triggered (sub-) transaction. An important is-
sue which is determined by an execution model is the
coupling between the triggered transaction and the
triggering transaction. Additionally, an execution model
also describes concurrency control and recovery mech-
anisms used to achieve a correct and reliable rule exe-
cution. These two issues are discussed in more detail in
the rest of this subsection.

Coupling modes determine the execution of rules with
respect to the transaction which triggers them. The
Event-Condition (EC) and Condition-Action (CA)
coupling modes, respectively, determine when the rule's
condition is evaluated with respect to the triggering
event, and when the rule's action is executed with respect
to the condition evaluation. Three basic coupling modes
are introduced (Dayal, 1988): immediate, deferred, and
decoupled.

For EC coupling, the intended meaning of each mode
is:
· In immediate EC coupling mode, the condition is

evaluated in the triggering transaction, immediately
after the detection of the triggering event.

· In deferred EC coupling mode, the condition is eval-
uated after the triggering transaction executes but be-
fore it commits.

· In detached EC coupling mode, the condition is eval-
uated in a separate transaction which is independent
from the triggering transaction.
For CA coupling, the semantics of each mode can be

given analogously.
If several triggered rules have to be executed at the

same point in time, they form a con¯ict set (Hanson and
Widom, 1992). In this case, some sort of con¯ict reso-
lution (e.g. priorities) must be employed to control their
execution order. The ability to do such a resolution is
especially desirable if we want to impose a particular
serial order of execution.

Since condition and action parts of a rule may act on
database objects, the execution of rules must be done in
a transaction framework. The nested transaction model
(Moss, 1985) is the most prevalent approach for rule
execution in ADBMSs, primarily due to the fact that it
captures the semantics of (cascaded) rule triggering well.
In this model, the triggered rules are either executed as
subtransactions of the triggering transaction, in case of
immediate and deferred coupling modes, or as an in-
dependent transaction in case of detached coupling
mode.

U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43 33

3. Related work

Although much work in the area of ADBMSs has
been done, it is not yet clear how the performance of an
ADBMS can be evaluated systematically. In fact there
have been very few attempts including (Geppert et al.,
1995; Zimmermann and Buchmann, 1995; Brant and
Miranker, 1993; Kersten, 1995). In this section, we dis-
cuss these e�orts in some detail.

3.1. The BEAST benchmark

The BEAST is the ®rst benchmark proposed for
testing the performance of object-oriented ADBMSs
(Geppert et al., 1995). It was presented as a designer's
benchmark; i.e., the designers of an ADBMS can use it
to determine performance bottlenecks of their systems.
It uses the database and schema of the OO7 Benchmark
(Carey et al., 1993). The BEAST Benchmark runs a
series of tests to determine the functionality of each
component. It consists of:

Tests for event detection: Tests for event detection
concentrate on the time to detect particular events. A set
of primitive and composite events are tested. Tests for
primitive event detection consist of the detection of
value modi®cation, the detection of method invocation,
the detection of transaction events, and the detection of
a set of primitive events. The BEAST tests for composite
event detection comprise the detection of a sequence of
primitive events, the detection of a non-occurrence of an
event within a transaction, the detection of a repeated
occurrence of a primitive event, the detection of a se-
quence of composite events, the detection of a con-
junction of method events sent to the same object, and
the detection of a conjunction of events belonging to the
same transaction.

Tests for rule management: Tests for rule management
evaluate the rule management component of an AD-
BMS by measuring the retrieval time of rules.

Tests for rule execution: The tests for rule execution
consider both the execution of single and multiple rules.
For the execution of single rules, a rule is executed with
di�erent coupling modes. In the case of multiple rule
execution, the tests concentrate on the overhead of en-
forcing an ordering on the triggered rules, optimization
of condition evaluation and raw rule execution power of
the underlying system.

In all these tests response time was accepted as the
sole performance metric. In the experiments, the number
of de®ned events (primitive and composite), and the
number of rules were used as benchmark parameters,
and a set of quantitative results were obtained for each
particular setting of these parameters. To date, BEAST
has been run on four object-oriented ADBMS proto-
types, and the performance results are presented in
(Geppert et al., 1996).

3.2. The ACT-1 benchmark

The ACT-1 Benchmark (Zimmermann and Buch-
mann, 1995) concentrates on the minimal features of
object-oriented ADBMSs. Four basic issues are ad-
dressed in this benchmark:
1. Method wrapping penalty measures the useless over-

head of method wrapping for the detection of method
events.

2. Rule ®ring cost measures the cost of raising an event
and ®ring the corresponding rule.

3. Minimal event composition cost aims to measure the
cost of a simple event composition (the sequence of
two events).

4. Sequential rule ®ring cost concentrates on the over-
head of serialization of a set of rules that have to
be executed at the same time (two rules that are trig-
gered by the same event at the same coupling mode).
ACT-1 uses a simple database with objects and rule,

modeling the operation of a power plant. Four opera-
tions, WRAPPING PENALTY, FIRING COST,
BUILD UP, and SEQ EXEC, were implemented in
REACH and some preliminary results based on re-
sponse times of these operations were presented.

3.3. Other ADBMS benchmarking related work

There are several other performance evaluation
studies on ADBMSs. Actually, these are not devoted
performance evaluation works; rather, they present a
rule (sub)system and then evaluate its performance. For
instance, Brant and Miranker (1993), mainly address the
problem of handling large rule sets. It argues that the
techniques used in current active database prototypes
are not appropriate for handling large rulebases. It
proposes a novel indexing technique for rule activation
and gives performance results of DATEX, a database
rule system, which uses this particular technique. Stor-
age size and number of disk accesses are used as the cost
metrics in this evaluation.

Kersten (1995) presents another performance study
on active functionality in DBMSs. It gives a perfor-
mance evaluation of the rule system of MONET ± a
parallel DBMS kernel aimed to be used as a database
back-end ± by using a simple benchmark. This simple
core benchmark is designed mainly for testing the im-
plementation of MONET, and it consists of three basic
experiments. The countdown experiment tries to mea-
sure the cost of handling a single event and the sub-
sequent ®ring of a single rule (i.e., an abstract event is
signalled and a rule is ®red by this event. This ®red rule
noti®es the same event which further leads to the
triggering of the same rule. This is repeated a prede-
termined number of times). The dominoes experiment is
aimed to determine the cost of isolating a ®rable rule
instance. The pyramid experiment has the purpose of

34 U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43

investigating the performance of the system under high
active workloads.

4. The OBJECTIVE benchmark

After a brief discussion of some restrictions of pre-
vious benchmarks for ADBMSs in Section 4.1, we in-
troduce the operations of the OBJECTIVE Benchmark
along with a requirements analysis in Section 4.2. We
then describe the synthetic database of OBJECTIVE in
Section 4.3. In Section 4.4, we describe the implemen-
tation of the OBJECTIVE operations in detail while
presenting experimental results of their implementation
in REACH.

4.1. Why another benchmark for object-oriented AD-
BMSs?

The ACT-1 Benchmark speci®es a small but impor-
tant set of operations. However, as discussed by its de-
signers, it needs to be extended with new operations to
evaluate ADBMSs properly.

The BEAST Benchmark is also a very good initial
step towards evaluating ADBMS performance and
functionality. However, there are some drawbacks as-
sociated with the BEAST benchmark. The primary
limitation of BEAST is that it ignores some issues that
are very important from the functionality point of view
in an ADBMS, e.g., event-parameter passing and rule
administration. Typically, a system with little function-
ality can be implemented more e�ciently than a system
with more functionality. As an example, consider the
(useless) overhead of method wrapping. At one extreme,
there are systems that hand-wrap only those methods on
which a rule is de®ned, and at the other extreme there
are systems that do automatic wrapping of all the
methods. The latter systems allow the de®nition of new
rules without requiring the recompilation of classes, but
pay for the wrapping when a method that is not an event
type for any rule is invoked. Likewise, a system that
allows event parameters to be passed to condition and
action parts of rules will be much more ¯exible than the
one which does not support such a functionality, but at
the same time it will face an overhead in event compo-
sition and rule execution in non-immediate coupling
modes. Therefore, a fair benchmark cannot ignore fea-
tures that provide ¯exibility, but potentially a�ect the
performance of the system.

BEAST uses the fairly complex database and schema
of 007. This is de®nitely an advantage if one wants to
evaluate the performance of both the passive and active
components of an ADBMS (i.e., 007 and BEAST can
be run on the same database). However, if one is in-
terested only in the active functionality of an ADBMS,
usage of a complex database like that of 007 is not

justi®ed if the operations of the benchmark does not
make use of that complexity (which is true for the
BEAST Benchmark). In addition, BEAST has a subtle
limitation with respect to its implementation; i.e.,
BEAST does not distinguish between cold and hot
execution times (see Section 4.4) for its operations. The
proper usage and interpretation of hot and cold times
might be particularly useful in isolating certain tasks
when access to database system internals is not allowed
to do that explicitly.

In the OBJECTIVE Benchmark, we aim to overcome
the limitations of the ACT-1 Benchmark and the
BEAST Benchmark by:
· providing a comprehensive set of operations that ad-

dress some critical functionality of ADBMSs besides
performance in order not to skew results in favor of
systems with less functionality,

· using simple to implement operations and a simple
database, and,

· using both hot and cold execution times for better un-
derstanding of the performance of components pro-
viding active functionalities.
As discussed in the sequel, the OBJECTIVE Bench-

mark is simpler than BEAST, and more comprehensive
than both BEAST and ACT-1.

4.2. The OBJECTIVE operations

The aim of the OBJECTIVE Benchmark is to identify
the bottlenecks and functionalities of an object-oriented
ADBMS, and to create a level-playing ®eld for com-
parison of multiple object-oriented ADBMSs. The OB-
JECTIVE Benchmark addresses the following issues
(Zimmermann and Buchmann, 1995) by the operations
which are described brie¯y in Table 1:

1. Method wrapping penalty. In an object-oriented
database system where method wrapping is used for
method event detection, there is a useless overhead
which is generated when a method which does not
generate any event or which generates an event that does
not contribute to the triggering of any rule is invoked
(i.e., such an event is neither a primitive event for a rule,
nor a part of a composite event for a rule). Ideally, the
introduction of active capabilities should not deteriorate
the performance when they are not in e�ect. In other
words, ADBMS users should not pay for active func-
tionality when they do not use it. Therefore, an ADBMS
must keep such a (useless) overhead minimal.

2. Event detection. An ADBMS should support
primitive and composite events and response times for
event detection, both primitive and composite, are cru-
cial for the performance of an ADBMS. The primitive
event types should minimally include method events and
transaction events. For composite events, at least, the
detection time for an aggregating event and a non-ag-
gregating event should be measured.

U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43 35

3. Rule ®ring. Rules typically reside in secondary
storage and have to be fetched into main memory for
execution. Therefore, e�cient retrieval of rules whose
events are signalled is indispensable for an ADBMS. As
well as for capturing the semantics of some applications,
(non-immediate) coupling modes are introduced pri-
marily for increased performance with respect to exe-
cution of rules. If di�erent coupling modes cannot be
supported e�ectively, then there will hardly be any point
in keeping them. Therefore, e�cient ®ring of rules in
di�erent coupling modes is a crucial issue. Di�erent
approaches can be taken in the storage of condition/
action parts of a rule (e.g., compiled code). Regardless
of their internal representation, e�cient access and ex-
ecution of these parts is mandatory. Another pragmatic
issue is the con¯ict resolution of a set of rules that are to
be executed at the same point in execution ¯ow. In ad-
dition, the ability to treat application/program execution
and rule execution uniformly is also signi®cant. Extra
overhead should not be introduced for detection of
events and ®ring of rules during rule execution.

4. The handling of event parameters. For some appli-
cations, e.g., consistency-constraint checking and rule-
based access control, event parameters must be passed
to the condition-action part of the rule. Otherwise, ex-

pressing conditions and actions with proper bindings is
not possible. This requires the usage of some interme-
diate storage in case the rule is executed in either def-
erred or detached coupling mode. In immediate
coupling mode it may be su�cient to pass a pointer to
the parameters instead of passing the parameters
themselves. However, this approach may not be appli-
cable in deferred and detached coupling modes, because
the parameters to be passed might be transient objects
rather than persistent ones. The way event parameters
are handled, thus, has a great impact on the perfor-
mance of the system.

5. Garbage collection of semi-composed events. The
problem of garbage collection exists for some composite
events that are not fully composed, and whose extents
have expired (Buchmann et al., 1995). If no garbage
collection is done for such semi-composed events, the
database size will increase unnecessarily which will lead
to a further increase in response time. So, an e�cient
mechanism for garbage collection of semi-composed
events must be employed from the performance point of
view.

6. Rule administration. An ADBMS should be able to
create, destroy, enable and disable rules on-line. The
ability to maintain rules dynamically is very important
because of well-known reasons of availability and ex-
tensibility. Although the execution speeds of these tasks
are not of great importance (as they are executed rather
seldomly), a comprehensive benchmark should take
them into account.

4.3. Description of the OBJECTIVE database

Generation of a synthetic database is an important
issue in all benchmarks for database systems. In a
benchmark for active database systems, the most inter-
esting part of database speci®cation is the speci®cation
of events and rules, because tests of the benchmark will
typically concentrate more on rules and events than
particular objects in the database.

The database for the OBJECTIVE Benchmark con-
sists of completely synthetic object classes with the same
methods and attributes (see Fig. 1 for a generic class
de®nition 2), and it has a very simple schema. The ra-
tionale for this decision is twofold: ®rst, a benchmark
should be easily reproducible and portable, and second
OBJECTIVE is not designed to be a domain-speci®c
benchmark; i.e., the aim of OBJECTIVE is to test im-
portant aspects of system performance and functional-
ity, not to model a particular application. Thus, we do
not want to add extra complexity which will not con-

Table 1

The OBJECTIVE operations

Test Description

MW1 Method wrapping penalty

PED1 Detection of a method invocation event

PED2 Detection of a BOT event

PED3 Detection of a COMMIT event

CED1 Detection of a sequence of primitive events

CED2 Detection of a conjunction of primitive events

CED3 Detection of a negation of a primitive event

CED4 Detection of a history of a primitive event

CED5 Detection of a closure of a primitive event

RF1 Retrieval of a rule

RF2 Rule ®ring in deferred coupling mode

RF3 Rule ®ring in decoupled coupling mode

RF4 Rule execution

RF5 Con¯ict resolution of triggered rules

RF6 Cascaded rule triggering

EPP1 The passing of event parameters in immediate coupling mode

EPP2 The passing of event parameters in deferred coupling mode

EPP3 The passing of event parameters in decoupled coupling mode

GC1 The garbage collection of semi-composed events

RA1 Creating a rule

RA2 Deleting a rule

RA3 Enabling a rule

RA4 Disabling a rule

RA5 Modifying a rule

2 We use a notation for our class de®nitions and test routines which

is the de facto standard for object-oriented languages, namely the

notation of C++ programming language.

36 U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43

tribute to the benchmark in any manner, but which will
make the implementation more di�cult.

Several events and rules are de®ned (Figs. 2 and 3), to
be used in benchmark operations. The rules are de®ned
in the rule programming language REAL 3 (REAch rule
Language) (Zimmermann et al., 1996). The events,
however, are de®ned in a hypothetical language based
on the event de®nition notation of REAL 4. These
events and rules are discussed in detail in Section 4.4,
where we describe the implementation of the benchmark
operations. The naming convention used for objects,
events, and rules are based on the name of the relevant
operation; e.g., the objects, events, and rules of name
EPP1 are the ones that will be utilized in operation
EPP1. Apparently, these events and rules can easily be
reproduced in any ADBMS employing ECA rules.

In addition to these events, rules, and classes which
are used in the benchmark tests, we also utilize dummy
event, rule, and class types. By changing the number of
instances of these dummy types, we can run our oper-
ations for di�erent database con®gurations, and see
their e�ects on system performance.

We de®ne dummy classes with the same methods and
attributes, and the instances of these dummy classes
form the (dummy) database objects. The methods of
these dummy classes are used to generate before/after
(dummy) method events. The event constructors se-
quence and history are used to generate non-aggregating
and aggregating (dummy) composite event types, re-
spectively. The number of component events to form a

composite event is selected at random 5 from range
f2; 3; . . . ; 10g. Likewise, the component event types are
selected randomly from the already generated method,
event types. The dummy rules choose their event types
at random from the existing dummy primitive and
composite event types. Both the condition and action
parts of dummy rules are de®ned as empty.

We include four parameters for the OBJECTIVE
Benchmark; NumEvents, FracCompEvents, NumRules,
and NumObjects, which de®ne the number of (dummy)
events, the fraction of composite events, the number of
(dummy) rules, and the number of (dummy) data ob-
jects, respectively. The database con®gurations based on
these parameters are summarized in Table 2.

4.4. Implementation and results

In this section, we discuss the implementation of the
benchmark operations which are described brie¯y in
Section 4.2, and present the results of their application
to REACH.

In all the operations described in this section, we
assume that access to the internals of an ADBMS is not
possible. This assumption is made due to two primary
reasons: ®rst, this is generally the case in reality, and
second we want our benchmark to be a general one so
that it can be applied to di�erent ADBMSs through
their external interfaces. Although this assumption
makes accurate time measurement impossible for certain
tests, we can circumvent it to a certain extent by keeping
all the other non-interesting phases as small as possible
by using appropriate events and rules. Actually, we as-
sume that we can run our tests by just using the appli-
cation programming interface of an ADBMS.

We make use of two time measures for the OBJEC-
TIVE operations (whenever appropriate); cold and hot
times representing the elapsed times when a measure-
ment is done beginning with empty bu�er, and begin-
ning with completely initialized bu�er, respectively.
However, we do not present both cold and hot time
results for all operations. Instead, we prefer to present
the more meaningful and informative time measure for a
given operation according to the focus of that operation.
As a case in point, it is more meaningful to concentrate
on the cold times for an operation concerned with rule

Fig. 1. A class example.

Table 2

The OBJECTIVE database con®gurations

Parameter Empty Small Medium Large

NumEvents 0 100 500 1000

FracCompEvents 0.3, 0.6, 0.9 0.3, 0.6, 0.9 0.3, 0.6, 0.9

NumRules 0 100 500 1000

NumObjects 0 5000 25 000 50 000

3 Rules in REAL consist of parts for de®ning a rule's event,

condition and action along with EC and CA coupling modes and

priorities. The default value for a coupling mode is imm(ediate) and the

default values for method event modi®ers and priorities (priority range

is f1; 2; . . . ; 10g) are after and 5, respectively. In addition, there is a

decl(laration) section in which variables are speci®ed in a C++ manner.
4 REAL does not consider the de®nition of stand-alone event types. 5 Uniform distribution is used in all random selections.

U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43 37

retrieval, while one should emphasize the hot time re-
sults for con¯ict resolution of triggered rules.

We consider the CPU time used by the process run-
ning an operation instead of wall-clock time, because we
ran the benchmark in a normal operating environment
(i.e., not in an isolated machine), and we do not want to
include the e�ects of certain operating system tasks in
our results. Another important point to note is that we
always use transient objects rather than persistent ones
in order to exclude any database overhead 6.

The following general order of execution is used for
the implementation of each operation:
1. clear the system bu�er,
2. open the database,
3. perform cold and hot time measurements, and
4. close the database.

(Cetintemel et al., 1996) presents simpli®ed codes that
illustrate the implementation of the OBJECTIVE oper-
ations.

The environment in which we benchmark REACH is
a SUN-SPARC 10/512 with 112 MB of RAM under
Solaris 2.5, Open OODB 0.2.1, and the EXODUS
Storage Manager 7 2.2. Each operation has been run
about 50 times for the same setting of database pa-
rameters. Table 3 depicts the mean values of the
REACH results. All results along with 90% con®dence
intervals and standard deviations are presented in (Ce-
tintemel et al., 1996).

4.4.1. Method wrapping
The purpose of operation MW1 is to asses the cost of

the useless overhead generated by the invocation of a
method which is wrapped to provide active functionality
whenever required. In operation MW1, a method is in-
voked which does not generate any event. Although this

Table 3

The OBJECTIVE results a for REACH (in milliseconds)

Test Con®guration

Empty Small Medium Large

0.3 0.6 0.9 0.3 0.6 0.9 0.3 0.6 0.9

MW1h 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03

PED1h 2.04 2.19 2.27 2.15 2.31 2.57 3.07 3.50 3.80 3.70

PED2c 12.72 13.79 14.67 14.19 13.37 13.22 15.03 16.97 17.70 17.37

PED3c 318 1005 1062 5447 10 069 20 921 42 758 35 436 46 321 74 865

CED1h 3.50 3.72 3.77 3.76 4.01 3.82 4.45 5.42 5.49 5.35

CED2h 4.16 4.31 4.30 4.37 4.48 4.51 5.31 6.43 6.80 6.39

CED3h 3.60 3.68 3.69 3.56 3.97 3.91 4.53 5.52 5.81 5.50

CED4h 4.69 4.86 4.84 4.84 5.17 5.21 6.15 7.47 7.50 7.49

CED5h 4.73 4.87 4.88 4.79 5.11 5.12 6.13 7.02 7.36 7.68

RF1c 10.58 12.21 12.38 12.79 13.37 13.77 14.64 16.48 16.54 16.84

RF2h 1.68 1.92 1.94 1.92 2.48 2.47 2.60 3.31 3.20 3.26

RF3h 2.38 2.61 2.65 2.66 2.54 2.75 3.08 3.95 3.71 4.26

RF4h 1.50 2.04 2.02 1.91 2.11 2.53 2.70 2.48 2.59 2.53

RF5h 1.46 2.44 2.44 2.33 2.21 2.71 3.17 3.03 3.84 3.48

RF6h 2.40 3.02 3.04 2.96 3.28 3.84 4.05 4.09 4.58 4.37

EPP1h 2.12 2.86 2.84 2.75 2.89 3.05 3.58 3.81 3.86 3.78

EPP2h 2.84 3.07 3.05 2.96 3.44 3.73 4.06 5.16 5.18 5.90

EPP3h 3.40 3.44 3.84 3.57 3.66 3.96 4.53 5.81 5.93 6.32

GC1c 19 712 19 423 19 785 26 4-

83

18 981 26 010 48 674 102 149 171 610 272 112

RA1c 4.48 4.53 4.60 4.57 4.63 4.71 5.40 7.64 7.92 8.85

RA2c 2.18 2.13 2.25 2.27 2.22 2.21 2.42 2.23 2.34 3.71

RA3c 2.07 2.06 2.17 2.08 2.17 2.16 2.40 2.52 2.39 2.55

RA4c 2.22 2.14 2.22 2.07 2.07 2.48 2.58 2.46 2.51 2.66

a The subscripts c and h represent cold and hot time results, respectively.

6 Only exceptions are the operations that require the passing of

objects as event parameters in non-immediate modes. In such a case, it

only makes sense to pass persistent objects, not transient ones. 7 Open OODB uses EXODUS as its storage manager.

38 U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43

test seems to be applicable only to those systems that use
method wrapping, the primary aim of it is to determine
whether an overhead is incurred or not when active
functionality is not used. In this sense, the name of this
test may be somewhat misleading.

REACH attempts to minimize this overhead by as-
signing a global variable to each method indicating the
presence/absence of a detector for that method in the
database; thereby reducing it to a memory look-up
rather than a database access. Nevertheless, the data-
base must be scanned for the relevant event detectors
and the corresponding variables must be set in the
memory before the start of an application program.

4.4.2. Event detection
The primitive event detection operations examine

how e�ciently an ADBMS detects primitive events of
interest. The aim of operation PED1 is to measure the
time it takes to detect a method event. We invoke a
method which generates a primitive event which is not
an event type for any rule. By this way, we try to discard
the time for rule execution, and concentrate on event
detection only. Operation PED2 tries to measure the
time it takes to detect a transaction event. Unfortu-
nately, in any transaction operation the underlying
system does certain bookkeeping operations which are
not interesting to us. We chose the BOT operation since
it seems to contain minimum uninteresting operations
when compared with the other transaction operations.
This transaction operation generates an event which
does not trigger any rule. On the other hand, operation
PED3 considers the COMMIT operation whose pri-
mary focus is, unlike that of PED2, not only on the
detection of a transaction event, but also on getting an
insight about the in¯uence of the support for some ac-
tive functionalities (e.g., event history management).

The composite event detection operations examine
the event composition of an ADBMS. In order to con-
centrate on composition costs only, we used the smallest
possible number of component primitive events for
testing di�erent composition types. It would be just as
easy to use a larger number of component events, but
then it would be very hard to justify a particular num-
ber, and more importantly there would be a relatively
high risk that the composition costs be overshadowed.
To stress the composition costs even more, abstract
events are used as component events to exclude event
detection and parameter passing time. As in the case of
primitive event detection operations, the composite

event detection operations generate composite events
which are not event types for any rules. It is important
to note here that, in all the event detection operations,
there is also an overhead for looking up rules to be ®red.
The primitive and composite event types 8 relevant to
event detection operations are de®ned in Fig. 2.

REACH optimizes useful overhead of method event
detection as well as useless overhead. This is accom-
plished by a using a prefetching mechanism. This
mechanism, by examining the relevant application pro-
grams and header ®les, prefetches the necessary primi-
tive method event detectors, composite event detectors
containing those primitive event types as constituents,
and the rules to be triggered by the occurrences of these
event types. However, this prefetching is done only for
method event types, not for transaction or abstract
events. This explains why the PED2 results are worse
than the PED1 results. The comparison of results of
operation PED2 and those of operation PED3 reveals
that the COMMIT operation itself, not its detection,
shows very poor performance. A more thorough inves-
tigation leads us to the fact that this behavior is pri-
marily a consequence of REACH's poor event history 9

maintenance; i.e., at commit time REACH updates the
event history with the events occurred in that transac-
tion. However, it is also evident (from the dependency of
the results on database con®guration) that this update is
implemented ine�ciently. In addition, it can be inferred
from the large standard deviations of PED3 results (see
(Cetintemel et al., 1996)) that, duration of the event
history maintenance task (thus duration of the commit
operation) depends on the size of the event history
which increases at each run of the benchmark opera-
tions. Another contributing factor is the underlying
platform, Open OODB, which always writes back the
whole bu�er at commit time.

Results for the composite event detection operations
show almost no dependency on database con®guration.
This is a direct consequence of the use of extended
syntactic trees for event composition. For each com-
posite event type, a specialized event detector object is
constructed; hence, the overhead of using more generic
models (e.g., Petri Nets) is eliminated; making the event
composition process very fast. The results for operations
CED1 and CED2 are slightly better, as they do not re-
quire the con®rmation of a validity interval as is done in
operations CED3, CED4, and CED5. In general, com-
posite event detection process scales very well; even the
most crucial parameters for this test, NumEvents and
FracCompEvents, do not have a notable e�ect on the
results.

8 Since REACH does not allow the creation of events without any

associated rules through its rule de®nition interface, we had to create

these events manually. REACH takes a di�erent approach in this

respect, because almost all object-oriented ADBMSs (e.g., SAMOS,

NAOS, SENTINEL, and ACOOD) encourage the stand-alone de®ni-

tion of events for reusability reasons.

9 Event history is the log of all event occurrences since system

startup.

U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43 39

4.4.3. Rule ®ring
The rule ®ring operations of the OBJECTIVE

Benchmark focus on di�erent aspects of rule ®ring in an
ADBMS. Operation RF1 measures the cost of fetching
a rule from the rulebase by triggering a rule in imme-
diate coupling mode. In order to keep the elapsed time
for rule execution minimal, which is not interesting to us
in this operation, the triggered rule has a FALSE con-
dition part, so that condition evaluation is relatively
cheap, and no action is executed. Operations RF2 and
RF3 trigger rules in deferred and decoupled coupling
modes, respectively. These operations do not measure
the time to ®re and execute rules in di�erent coupling
modes; rather, they examine the cost of storing the in-
formation that the triggered rule will be ®red just before
commit, and in a new transaction, respectively. Al-
though the task measured by RF3 is similar to that
measured by RF2 (i.e., abstract event signalling and
noti®cation of the current transaction to store a partic-
ular bit of information), the contribution of operation

RF3 is mainly with respect to functionality (i.e., is de-
coupled mode supported?). The focus of operation RF4
is on determining how e�ciently a rule's condition/ac-
tion parts are accessed and executed (or interpreted).
This operation triggers a rule with a TRUE condition
part, so that its action part (though empty) is executed.
Operation RF5 reveals the overhead when an event
occurs and two rules have to be ®red. Di�erent priorities
are assigned to these rules to force a particular serial-
ization order. Operation RF6 invokes a method event
which triggers a rule that generates the same event in its
action part. Therefore the same rule is triggered a sec-
ond time, but with a condition which evaluates to
FALSE; stopping this cascading rule ®ring. The rules
which are triggered by the rule ®ring operations are
de®ned in Fig. 3.

As REACH treats rules as ®rst-class objects, rules are
fetched just like ordinary objects by using their names.
The (cold time) results for operation RF1 suggest a
dependency of rule retrieval time on database con®gu-

Fig. 3. The OBJECTIVE benchmark rules.

Fig. 2. The events related to event detection operations.

40 U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43

ration. It is important to emphasize here that cold times
make sense for this operation as no prefetching mech-
anism is used for abstract events. Results for operations
RF2 and RF3 show that it is slower to initialize the
triggering of a rule in decoupled mode than to initialize
it in deferred mode. Such a behavior is not surprising at
all, since operation RF3 contains the initialization of a
new transaction to execute the rule. The results for op-
eration RF4 indicate mainly the time for accessing and
executing the action part of the rule. These results are
almost constant for all database con®gurations, because
the condition and action parts of a rule are stored as
compiled code in shared library allowing very fast access
and execution independent of database parameters. The
®gures for operation RF6 are slightly worse than those
for operation RF5. Although both operations contain
two rule triggerings, RF6 generates two method event
occurrences, whereas in RF5 rules are triggered by a
single abstract event.

4.4.4. Event parameter passing
The event parameter passing operations test how ef-

®ciently an ADBMS passes event parameters to the
condition and action parts of the rules in di�erent cou-
pling modes. The operation EPP1 measures the cost of
parameter passing as well as rule execution in immediate
coupling mode, whereas the operations EPP2 and EPP3
measure just the cost of using an intermediate storage
for passing event parameters. From the point of view of
the triggered rules, there is a similar overhead due to the
retrieval of the event parameters from the storage where
they reside temporarily; but this overhead is not mea-
sured by our operations. The rules triggered by the event
parameter passing operations are de®ned in Fig. 3.

As REACH supports the ability to pass all arguments
of a method invocation that triggers a rule to condition
and action parts of that rule. In immediate mode all
arguments are stored in a bag (i.e., bytestring) and ac-
cess to the arguments is accomplished by using an array
of pointers that store addresses of the arguments. The
same mechanism is used in deferred mode, but the de-
referenced value of a pointer argument is stored in the
array instead of the pointer itself. In detached mode, as
the execution of the rule will take place in a di�erent
address space, the bag and the pointer array are written
in a ®le. Di�erent requirements for the implementation
of these approaches show their e�ects in the results,
making parameter passing somewhat expensive in de-
tached mode due to the inevitable use of an intermediate
secondary storage.

4.4.5. Garbage collection of semi-composed events
The purpose of operation GC1 is to examine the

overhead of ¯ushing an event composition structure that
is used in the detection of a composite event. In this
operation, we ®rst produce garbage (i.e., create a semi-

composed event), and then try to measure the time for
collecting the garbage. Such a garbage collection can
typically be accomplished at two di�erent points (from a
black-box point of view):
· immediately after the monitoring interval is ®nished,

or
· at commit time.

In the former case, the time for the operation gener-
ating the end-of-interval event, and in the latter case, the
time for commit operation should be measured. For
generality of the test, we take COMMIT to be also the
end-of-interval event so that garbage collection can only
be accomplished during commit for this operation.
Unfortunately, isolation of garbage collection inside
commit is not possible by using the results of this op-
eration only. However, we can circumvent this problem
to a certain extent by using the di�erence of the results
of this operation and those of operation PED3 (i.e.,
detection of COMMIT) in which no time for garbage
collection is involved. In this manner, we may have an
estimation of the times indicating the duration of the
garbage collection task, which is the best we can do with
our black-box view of the system.

As in the case of operation PED3, we encounter very
poor results for operation GC1. It is argued above that
results of operation PED3 be used in the interpretation
of the results of GC1. Unfortunately, it is out of ques-
tion to get an understanding of the performance of the
system under the intended task even by using results of
PED3. The reason is that, as mentioned in Section 4.4.2,
commit time is dependent on the size of the event history
in REACH, and the size of the event history is not the
same in respective runs of operation PED3 and opera-
tion GC1; making it impossible to interpolate the time
for garbage collection by using the results of these two
operations.

4.4.6. Rule administration
The rule administration operations are somewhat

di�erent from the other OBJECTIVE operations in the
sense that they are more likely to be included in a feature
benchmark. However, we deem the functionalities ex-
amined by these operations so important from the
functionality point of view that they must be included in
a comprehensive benchmark for ADBMSs. Although
execution time results are also presented for these op-
erations, for the purposes of this benchmark it is more
important to observe whether these tasks are supported
than to concentrate on the numbers obtained.

Operation RA1 creates a new rule and stores it in the
rulebase, and operation RA2 deletes an existing rule
from the rulebase. Operation RA3 and RA4, enables and
disables a rule, respectively. Operation RA5 changes the
action part of a rule. In all these operations, the relevant
rules are kept very simple in order to focus on the e�-
ciency of the provided rule administration facility.

U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43 41

All of the rule administration operations are imple-
mented using the rule management commands of
REACH from its command line interface (Zimmermann
et al., 1996). The implementation of operation RA1 in
REACH consists of the creation of a rule and compi-
lation of the shared library containing the condition/
action parts of rules in the form of two C functions by
using the REACH command rl_cc. The other opera-
tions, RA2, RA3, and RA4, are implemented using
REACH commands r_delete, r_enable, and
r_disable, respectively. Unfortunately, we were not
able to get results for operation RA5 (although it is
possible to modify rules dynamically in REACH) be-
cause of a bug in the system. The results for the pre-
sented rule administration operations, except RA1,
show a constant behavior under all database con®gu-
rations. The exceptional results for operation RA1 are
possibly due to the compilation time of the shared li-
brary whose size is directly proportional to the number
of rules.

5. Conclusions and future work

We presented the OBJECTIVE Benchmark for ob-
ject-oriented ADBMSs, and illustrated it with the results
obtained from its implementation in REACH. Although
OBJECTIVE is designed to be very simple in nature, it is
also very comprehensive in its coverage of active func-
tionalities; it is simpler and more comprehensive than
previous competitor benchmarks.

The results obtained from the implementation of
OBJECTIVE on REACH reveal that REACH supports
a high level of active functionality and (almost) all
components of REACH scale well. The only exception
we encountered is the problematic commit operation of
REACH. This operation is a real bottleneck as it is a
must operation for all applications running inside a
transaction framework, and this bottleneck must be
surmounted to achieve acceptable overall system per-
formance. The implementation phase also helped to
disclose a number of bugs in the system. The results of
REACH alone are su�cient to identify its bottleneck
components. However, results to be taken from di�erent
systems (with possibly di�erent approaches and archi-
tectures for supporting ADBMS tasks) would be highly
welcome to make an objective judgment about the de-
gree of e�ciency with which these tasks are supported
by a particular ADBMS.

We believe that the OBJECTIVE operations cover an
important subset of issues with respect to ADBMS
performance and functionality. The remaining issues are
mainly the ones related to event consumption policies,
condition optimization, and parallel rule execution.

An open related research area is the evaluation of
ADBMS performance in multi-user environments. There

is considerable performance di�erence between single-
user and multi-user environments which results from is-
sues of optimal system resource utilization. Therefore,
the results obtained from a single-user benchmark do not
necessarily represent the real performance of the system.
It is especially interesting to investigate the e�ects of the
number of concurrently running transactions to event
detection and rule execution.

An interesting thing to note here is that all the
benchmarks that have been proposed so far for AD-
BMSs, including OBJECTIVE, are non domain-speci®c
benchmarks. This is, we think, a consequence of the lack
of adequate information about the characteristics of
ADBMS tasks (even the notion of an ADBMS task is
elusive for now). As the application areas for ADBMSs
mature, we expect to see the development of domain-
speci®c benchmarks to evaluate end-to-end performance
in order to have a better understanding of ADBMS
performance.

As a ®nal remark, we hope that the OBJECTIVE
Benchmark ®nds acceptance as a useful yardstick for
evaluating ADBMS performance and functionality.

References

Agrawal, R., Gehani, N.H., 1989. ODE (object database and

environment): The language and the data model. In: Proc. of the

1989 SIGMOD Conference, Portland, Oregon.

Berndtsson, M., 1991. ACOOD: An Approach to an Active Object

Oriented DBMS. Master's Thesis, University of Skovde, Skovde,

Sweden.

Boral, H., DeWitt, D.J., 1984. A methodology for database system

performance evaluation. In: Proc. of the 1984 SIGMOD Confer-

ence, Boston.

Brant, D.A., Miranker, D.P., 1993. Index support for rule activation.

In: 1993 SIGMOD Conference, Washington DC.

Buchmann, A.P., Zimmermann, J., Blakeley, J., Wells, D.L., 1995.

Building an integrated active OODBMS: requirements, architec-

ture and design decisions. In: Proc. of the 1995 Data Engineering

Conference, Taipei.

Carey, M.J., DeWitt, D.J., Naughton, J.F., 1993. The 007 benchmark.

In: Proc. of the 1993 SIGMOD Conference, Washington DC.

Catell, R., Skeen, J., 1992. Object Operations Benchmark. ACM

Transactions on Database Systems 17 (1), 1±31.

Cetintemel, U., Zimmermann, J., Ulusoy, O., Buchmann, A., 1996.

OBJECTIVE: A Benchmark for Object-Oriented Active Database

Systems, Technical Report BU-CEIS-9610. Bilkent University,

Ankara, Turkey.

Chakravarthy, S., Mishra, D., 1993. SNOOP: An Expressive Event

Speci®cation Language for Active Databases. Technical Report

UF-CIS-TR-93-007. University of Florida, Florida.

Chakravarthy, S., Krishnaprasad, V., Abwar, E., Kim, S.K., Anatomy

of a Composite Event Detector. Technical Report UF-CIS-TR-93-

039. University of Florida, Florida.

Chakravarthy, S., Tamizuddin, Z., Krishnaprasad, V., Badani, R.H.,

1994. ECA Rule Integration into an OODBMS: Architecture and

Implementation, Technical Report UF-CIS-94-023, University of

Florida, Florida.

Collet, C., Coupaye, T., Svensen, T., 1994. NAOS: E�cient and

modular reactive capabilities in an object-oriented database system.

In: Proc. of the 20th VLDB, Santiago, Chile.

42 U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43

Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy, S., Hsu, M.,

Ladin, R., McCarthy, D., Rosenthal, A., 1988. The HiPAC

Project: Combining Active Databases and Timing Constraints.

ACM SIGMOD Record 17 (1), 51±70.

Dayal, U., 1988. Active database management systems. In: Proc. of the

3rd International Conference on Data and Knowledge Bases,

Jerusalem.

Deutsch, A., 1994. Detection of Method and Composite Events in the

Active DBMS REACH. Master's Thesis, Technical University

Darmstadt, Darmstadt, Germany.

Eriksson, J., 1993. CEDE: Composite Event Detector in an Active

Object-Oriented Database. Master's Thesis, University of Skovde,

Skovde, Sweden.

Gatziu, S., Dittrich, K.R., 1994a. Events in an active object-oriented

database system. In: Paton, N.W., Williams, H.W. (Eds.), Proc. of

the 1st International Workshop on Rules in Database Systems,

Springer.

Gatziu, S., Dittrich, K.R., 1994b. Detecting composite events in active

database systems using Petri nets. In: Proc. of the 4th IEEE RIDE,

Houston, Texas.

Gatziu, S., Geppert, A., Dittrich, K.R., 1994. The SAMOS Active

DBMS Prototype. Technical Report CS 94.16. University of

Zurich, Zurich, Switzerland.

Gehani, N., Jagadish, H.V., Shumeli, O., 1992. Composite event

speci®cation in active databases: Model and implementation. In:

Proc. of the 18th VLDB, Vancouver, Canada.

Geppert, A., Gatziu, S., Dittrich, K.R., 1995. A Designer's Benchmark

for Active Database Management Systems: 007 Meets the BEAST.

Technical Report CS 95.18. University of Zurich, Zurich, Switzer-

land.

Geppert, A., Berndtsson, M., Lieuwen, D., Zimmermann, J., 1996.

Performance Evaluation of Active Database Management Systems

using the BEAST benchmark. Technical Report CS 96.01.

University of Zurich, Zurich, Switzerland.

Hanson, E., Widom, J., 1992. An Overview of Production Rules in

Database Systems. Technical Report 92-031, CIS Department,

University of Florida, FL, USA.

Kersten, M.L., 1995. An Active Component for a Parallel Database

Kernel. Rules in Database Systems. Workshops in Computing,

Springer-Verlag.

Moss, J., 1985. Nested Transactions: An Approach to Reliable

Distributed Computing. MIT Press, Cambridge, MA.

Wells, D.L., Blakeley, J.A., Thompson, C.W., 1992. Open Object-

Oriented Database Management System. IEEE Computer 25 (10),

74±81.

Zimmermann, J., Buchmann, A.P., 1995. Benchmarking active data-

base systems: A requirements analysis. In: OOPSLA'95 Workshop

on Object Database Behavior, Benchmarks and Performance.

Austin, Texas.

Zimmermann, J., Branding, H., Buchmann, A.P., Deutsch, A.,

Geppert, A., 1996. Design, implementation and management of

rules in an active database system. In: Proc. of the 7th DEXA,

Zurich, Switzerland.

U~gur Cßetintemel is a Ph.D. student at the University of Maryland at
College Park, USA. He received his B.Sc. and M.S. degrees in com-
puter science from Bilkent University, Turkey in 1994 and 1996, re-
spectively. His research interests include transaction management and
performance evaluation in database systems and distributed informa-
tion systems.

Juergen Zimmermann ®nished the studies of Computer Science in July
1990. In the research laboratory ``Institute for Information and Data
Processing'' in Karlsruhe, Germany he designed and developed the
object-oriented project information system PRIS unit December 1992.
Then he joined the Technical University Darmstadt, Germany, where
he was the architect and designer of the active object-oriented database
system REACH. In July 1996 he moved to Object Design as a con-
sultant for ObjectStore and is now Manager Professional Service
having the responsibility for all ObjectStore-based products and pro-
jects in Germany.

�Ozg�ur Ulusoy received his Ph.D. in Computer Science from the Uni-
versity of Illinois at Urbana-Champaign. He is currently on the faculty
of the Computer Engineering and Information Science Department at
Bilkent University. His research interests include real-time database
systems, active database systems, real-time communication, and mo-
bile database systems. Dr. Ulusoy has served on numerous program
committees for conferences and edited a Special Issue on Real-Time
Databases in Information Systems Journal. He has published over 30
articles in archived journals and conference proceedings.

Alejandro P. Buchmann is a professor in the Department of Computer
Science of the Darmstadt University of Technology. Previously he held
positions as an associated professor at the National Autonomous
University in Mexico, Senior computer scientists at Computer Cor-
poration of America/Xerox Advanced Information Technology and
principal member of technical sta� at GTE Laboratories. Buchmann is
a member of ACM SIGMOD, IEEE Computer Society and the Ger-
man Gesellschaft fuer Informatik.

U. Cßetintemel et al. / The Journal of Systems and Software 45 (1999) 31±43 43

