
Research Issues in Peer-to-Peer Data Management

Özgür Ulusoy
Department of Computer Engineering
Bilkent University, Ankara, Turkey

oulusoy@cs.bilkent.edu.tr

Abstract-Data management in Peer-to-Peer (P2P) systems is a

complicated and challenging issue due to the scale of the network
and highly transient population of peers. In this paper, we
identify important research problems in P2P data management,
and describe briefly some methods that have appeared in the
literature addressing those problems. We also discuss some open
research issues and directions regarding data management in P2P
systems.

Keywords: Peer-to-peer systems, data management, overlay
network, indexing, data integration, query processing, data
replication, clustering, free riding, incentive mechanism.

I. INTRODUCTION

 Peer-to-Peer (P2P) is a distributed computing paradigm that
enables a collection of nodes (peers) to share computer
resources in a decentralized manner. Beside decentralization
and extensive resource sharing capabilities, P2P systems are
also characterized by their other desired features such as,
anonymity of peers, increased autonomy, improved scalability,
and self-organization through automatic adaptation to dynamic
nature of peers which may join, leave or fail at any time.
 P2P computing can be considered as an alternative to the
traditional centralized and client-server models of computing,
where central servers are required for the coordination of
sharing and computing activities among client computers. In a
client-server model, a server computer is dedicated to provide a
particular kind of service to client computers. In a P2P system,
the peers can act as both clients and servers. Leading examples
of P2P systems include Gnutella [1], Napster [2], Freenet [3],
BitTorrent [4], Chord [5], and the Content Addressable
Network (CAN) [6].
 P2P paradigm gained visibility with its best-known
application, which is file sharing (e.g., music files in Napster).
However, P2P can be applied to many domains beyond data
sharing, such as distributed computation, communication and
collaboration between peer computers, and Internet service
support [7]. As file-sharing P2P systems have evolved to
support advanced applications which must deal with
semantically rich data, a requirement has arisen to address
various data management issues [8, 9]. However, highly
transient population of autonomous peers and the large scale of
the network make data management a challenging problem in
P2P systems.

In this paper, we highlight a number of important research
issues in P2P data management. We start with a brief
description of different types of P2P overlay networks, and
give an overview of a few representative P2P systems. Then,
we discuss the research issues relevant to P2P data

management, together with the challenges raised by the unique
features of P2P systems. We point out open problems that can
be subject to further research. We also discuss the free riding
problem and incentive mechanisms used to encourage peer
cooperation.

II. OVERLAY NETWORK STRUCTURE

 Each peer in a P2P network maintains links with a selected
subset of other peers, forming an overlay network [10]. A
message between the peers is routed through the overlay
network. The overlay network is built on top of a physical
(typically IP) network, and the peers that are neighbors in the
overlay network do not need to be adjacent in the physical
network.
 There exist three classes of P2P overlay networks with
different degrees of centralization: purely decentralized,
partially centralized, and hybrid decentralized [7]. In purely
decentralized systems, all peers perform the same tasks, and
there is no central coordination of their activities. In partially
centralized systems, some of the peers, called superpeers, act
as local central servers maintaining indices for the files shared
by local peers. In hybrid decentralized systems, there exists a
central server which maintains the metadata describing the
shared files stored at peers. The central server processes the
search requests, and identifies the peers which store the
requested files. File exchange takes place directly between two
peers.
 Overlay networks can also be distinguished in terms of their
structure. In unstructured class of networks, the placement of
files on the peers does not follow specific rules. In other words,
the overlay network is created in an ad hoc manner as peers
and files are added to the system. In structured networks, on
the other hand, files are placed at precisely specified peers.
Mapping of files to peers is typically achieved by using
Distributed Hash Tables (DHTs). In a structured network,
queries submitted to locate files can be efficiently routed to the
peers with the desired file.
 Unstructured networks are appropriate for accommodating
highly-transient peer populations, in which peers are joining
and leaving at a high rate. However, the networks of this kind
are faced with the scalability problem. While the scalability
issue is handled smoothly in structured networks, the
maintenance cost of structured overlays is high in the presence
of transient peer population.

Typical examples of P2P systems with unstructured network
overlays (Gnutella, Napster), and structured network overlays
(CAN, Chord) are described briefly in the following sections.

1-4244-1364-8/07/$25.00 ©2007 IEEE

Fig. 1. Search mechanism of Napster. The file “abc.mp3” is searched through
the central server. The numbers next to the arrows represent the order of
message flow.

Fig. 2. Search mechanism of Gnutella. The requester peer issues a query for
the file “abc.mp3”. The numbers next to the arrows represent the order of
message flow. An arrow with symbol represents a success message.

III. REPRESENTATIVE P2P SYSTEMS

A. Napster
 Napster is the first P2P file sharing system which was
originally developed to enable the sharing of music files over
the Internet [2]. A central Napster server maintains a list of
music files shared by the peers currently connected to the
network. The shared file list is automatically updated as the
peers connect to or disconnect from the network. Napster
supports keyword searches for the music files. The underlying
network has a hybrid decentralized architecture: search
requests are handled in a centralized manner; however the
shared files are distributed, and file transfers take place directly
between the peers.
 The search mechanism of Napster is presented in Fig. 1. A
peer submits a search request for a particular file to the

centralized server. After getting the response to its query, the
requester establishes a connection with the peer which
possesses the requested file. The download of the file is done
between two peers, bypassing the Napster server.

B. Gnutella
 Gnutella is a file sharing P2P protocol with a purely
decentralized and unstructured network overlay [1]. There is
no central coordination of the sharing activities in the network
and file downloads are done directly between two peers. A
flooding mechanism is used for the distribution of query
messages: each message received by a peer is forwarded to all
of the neighboring peers.
 A peer joining the network first announces itself by sending a
special message (Ping) to neighboring peers it is connected to.
The peers send back a message (Pong) identifying themselves,
and also propagate the Ping message to their neighbors. In
order to locate a file, a peer issues a Query message to the
neighboring peers. The Query message is propagated from peer
to peer using the flooding method. When the requester peer
receives a QueryHit message, indicating that the target file has
been identified at a certain peer, it establishes a direct
connection to the destination peer, and initiates file download.
An example of the Gnutella search mechanism is illustrated in
Fig. 2.
 A Time To Live (TTL) value, which is initiated to a small
integer, is associated with each Gnutella message to prevent it
from circling the network forever. This value is decremented at
each hop, and when it reaches 0, the message is dropped from
the network.

The notion of superpeers has been used in recent versions of
the Gnutella protocol. Once a node with sufficient bandwidth
and processing capabilities joins the network, it becomes a
superpeer and establishes connections with other superpeers.
The partially centralized Gnutella network is organized into an
interconnection of superpeers and client peers. A superpeer
indexes the files shared by the client peers connected to it, and
queries are initially directed to superpeers.

C. Content Addressable Network (CAN)
 Content Addressable Network (CAN) is an Internet-scale
DHT that maps file names (keys) to their location in the P2P
overlay network [6]. It uses a virtual d-dimensional Cartesian
coordinate space to implement the distributed location and
routing table. The coordinate space is partitioned into hyper-
rectangles, called zones. Each individual peer in CAN is
responsible for a zone, and a peer is identified by the
boundaries of its zone. A key is deterministically mapped onto
a point P in the coordinate space, and then stored at the peer
that is responsible for the zone which contains P. Each peer
maintains a routing table (IP addresses) of its neighbors in the
coordinate space. A 2-dimensional CAN is presented in Fig. 3.
 A query submitted to search for a file is forwarded along a
path in the coordinate space from the requester to the peer
storing the key. Each peer along the path forwards the query to
the neighbor closest in the coordinate space to the peer storing
the key (see Fig. 4).

Fig. 3. A 2-dimensional CAN with 8 peers.

Fig. 4. Implementation of a search operation issued by peer 1 for the data file
whose key is mapped to point (0.9,0.2) in the coordinate space.

Fig.5. Before peer 9 joins the network: Neighbors of peer 1are peers 2, 3, and
5. After peer 9 joins: Neighbors of peer 1 are peers 5, 9; Neighbors of peer 9
are peers 1, 2, 3, 5.

 To join the network, a new peer randomly chooses a point P
in the coordinate space and sends the join request to the peer
whose zone covers P. The zone is then split, and half of it is
assigned to the new peer, as illustrated in the Fig. 5. When a
peer leaves the network voluntarily, it hands over its zone to
one of its neighbors. Merging the two zones of the neighbor
may result in a larger valid zone. Peer failures can be traced
through periodic messages the peers send to their neighbors.
When a peer fails, one of the neighbors of the failed peer will
take over.

Fig. 6. A Chord circle with three peers: 0, 3 and 4. Key 1 is located at peer 3
(successor(1) = 3), key 4 at peer 4, and key 5 at peer 0.

Fig. 7. The Chord ring has 7 peers. The finger table of peer 5 is shown. The
first finger of peer 5 points to peer 12, as peer 12 is the first peer that succeeds
(5+20) mod 25 = 6. Similarly, the last finger of peer 5 points to peer 23, as peer
23 is the first peer that succeeds (5+24) mod 25 = 21.

Fig.8. Search mechanism of Chord. The file with key 26 is searched by peer 5.

D. Chord
 Another example of P2P systems with a structured network
overlay is Chord [5]. Peers in Chord form a ring, called
identifier circle or Chord circle. Peers and file names (keys)
are mapped to m-bit identifiers using consistent hashing which
tends to balance load as each peer is assigned roughly the same
number of keys. Peer identifiers are ordered on the ring based
on the modulo of the key with 2m. A data file with key k is
assigned to the first peer whose identifier is equal to or follows
k, and this peer is called the successor peer of key k. An
example of a Chord circle is provided in Fig. 6.
 Chord maintains a skiplist-like data structure. Each peer in
Chord maintains a finger table to keep track of a small number
of other peers which are searched to find the desired key. The
number of peer entries in the finger table of a peer is log(N) in
an N-peer system. Each entry i in the finger table of peer p
points to the successor of peer (p + 2i) mod 2m for m-bit
identifier space. In Fig. 7, a Chord ring with m = 5 is
illustrated.
 In order to perform a file search operation, a peer uses the
information stored in its finger table. However, a peer’s finger
table would probably not contain enough information to
directly determine the successor of a key. In that case, the peer
forwards a query for key k to the peer in its finger table with
the highest ID not exceeding k. As an example, for the Chord
circle in the Fig. 8, suppose that peer 5 wants to find the
successor of key 26. The largest finger of peer 5 that precedes
26 is peer 23; therefore, peer 5 will ask for the help of peer 23
for the query. Then, peer 23 will find out the largest finger in
its finger table that precedes 26, i.e. peer 25. Peer 25 will
determine that its own successor, peer 28, stores the key 26.
The query visits every peer on the path between peer 5 and
peer 28. The response is returned along the reverse of the path.

When a new peer arrives, some of the keys previously
assigned to its successor are assigned to the new peer. Finger

tables of the peers are arranged appropriately. When a peer
leaves the network, all the keys it stores are assigned to its
successor.

IV. INDEXING

 Traditional distributed systems use centralized or distributed
indices to keep track of the location of data. Indices are
consulted for processing the queries at the appropriate nodes
where the required data reside. With P2P systems, additional
requirements arise in maintaining indices. Indexing structures
must be designed to handle frequent updates due to the
existence of highly-transient peer populations. Scalability of
the system must also be supported, since massive number of
participating peers is not unusual in P2P systems.
 There are three basic types of P2P indices: local, centralized,
and distributed [11]. In local indexing, peers index only their
own content. In P2P systems with a purely local data index,
typically flooding method is used in searching for data. The
classic example of such P2P systems is the early versions of
the Gnutella protocol (see Section III.B). A large volume of
query message traffic is generated with flooding, which leads
to scalability problems. Various attempts have been made to
reduce the query load and improve the scalability in P2P
systems with local index (e.g., expanding rings [12], random k-
walkers [13], probabilistic flooding [14]).
 In the case of a centralized index, a single server maintains
the location information about the data stored on all the peers
in the system. Napster is a well-known example of P2P
systems with centralized index (see Section III.A). A data
search request of a peer is directed to the central index server.
Such systems are also called ‘hybrid’ since the index is
centralized but the data is distributed [11]. The centralized
index approach has the reliability problem as the central server
is a single point of failure.
 In partially centralized P2P systems, each superpeer acts as a
central server maintaining indices for the data stored at a
number of regular peers connected to it. A peer sends a query
to its superpeer which then consults its index to propagate the
query to its relevant peers or to the other superpeers.
 In P2P systems with a distributed index, the distribution of
the index depends on whether the underlying overlay network
is structured or unstructured. One representative example of
distributed indexing in unstructured P2P systems is routing
indices [15]. The routing indices maintained in a peer capture
some information about the data stored at other reachable
peers. This information is used to direct the queries towards the
peers that hold the required data. The concept of horizons is
used to limit the number of peers for which each peer
maintains indexing information. The peers reachable from a
particular peer are placed at a maximum distance h, which is
called the radius of the horizon.

As mentioned in Section II, index information in structured
P2P systems is maintained in the form of Distributed Hash
Tables (DHTs). Each peer maintains a DHT for the data
assigned to it by the hash function. In evaluating a query, the
hash value of the data is computed and the query is forwarded

towards the peer that is responsible for maintaining index
information for the requested data. Greedy routing and
robustness are two important features of DHTs.

V. DATA INTEGRATION

 Data sharing is one of the primary design goals of P2P
systems. When the shared data maintained in different peers
are related, some semantic issues are introduced [9]. Schema
mappings are required if the peers use different names or
formalisms to represent the same data. Heterogeneity of data
sources should be hidden to provide uniform querying
environment to the peers. A common data sharing approach
proposed for traditional distributed systems is to provide a
global mediated schema [16]. Queries are specified in terms of
the global schema, and then reformulated into subqueries to be
executed at the local schemas. Translation between the global
schema and local schemas is provided as needed.
 Traditional data sharing approaches are not directly
applicable to P2P environments, given the peer autonomy,
volatility and scalability aspects of P2P systems. It may not be
possible to define a unique global mediated schema. The peers
may not be willing to share their schema information. Volatile
nature of peers also makes the use of a unique global schema
impractical. The global schema would need to be continuously
modified as peers join and leave the system at a high rate. The
scalability issue also makes the maintenance of a unique global
schema quite difficult, because it is possible to have a massive
number of peers each with its own local schema.

Data integration approaches in P2P systems can be
categorized into three groups: pair mappings, peer-mediated
mappings and super-peer mediated mappings [9]. Pair
mappings are defined between pairs of peers, and this kind of
schema mappings are maintained at any peer which would like
to access the data stored at other peers. A generalized form of
pair mappings is called peer-mediated mappings which can be
defined between the schemas of more than two peers.
Examples of P2P systems that implement peer-mediated
mappings include Piazza [17] and PeerDB [18]. If peer-
mediated mappings among peers are defined at the level of the
superpeer connecting regular peers, the resulting mappings are
called super-peer mediated mappings. A P2P system that
follows the super-peer mediated mappings approach for data
integration is Edutella [19].

VI. QUERY PROCESSING

 The research in P2P query processing has mainly focused on
key lookups in structured networks and keyword queries in
unstructured networks. In order to support various types of
applications the query language used for a system must be
expressive enough to be able to describe the required data in
sufficient detail. If we would like to perform search over text
documents, key lookups would not be expressive enough.
Similarly, for efficient searching of structured data (such as
relational tables) we require more sophisticated querying
approaches than simple keyword queries.

 Queries submitted in a P2P system need to be routed to the
peers which are responsible for maintaining the location
information of the requested data. Routing schemes used for
that purpose can be generalized into two main categories: blind
search and informed search [9]. With a blind search method,
no information is stored regarding data placement. Queries are
routed arbitrarily to particular peers without guaranteeing to
find the results if they exist. An example of this simple routing
strategy is flooding. As it is discussed earlier in this paper,
flooding can overload the network quickly, and various
approaches have been proposed to reduce the message traffic
of flooding.
 With informed search methods, some form of data placement
information is maintained at each peer. Queries are routed to
peers that have some information about the location of
requested data. Therefore, routing is performed more
effectively compared to blind searching, and the number of
messages is reduced in locating data. One example of informed
search method is Query Routing Protocol (QRP) which makes
use of routing tables containing keywords which describe the
file contents that a peer offers [20]. The contents of routing
tables are exchanged with the neighbors. Every peer merges its
routing table with the routing tables of its neighbors, and
propagation of routing tables is restricted to a fixed number of
hops. When a peer receives a query, it forwards it to the
neighbor whose routing table contains the keywords specified
in the query. If none of the neighbors has the keywords in its
routing table, this method degenerates to blind search. The
other examples of informed search methods include routing
indices (see Section IV) and FreeNet’s routing scheme [21].
 Query processing in traditional distributed systems is
implemented by decomposing a query into subqueries, and
executing each subquery at the appropriate site which is the
source of the data required by that subquery. This approach
requires a centralized control providing a global schema of the
data distributed over different sites. However, decentralized
query processing approach is more suitable for P2P systems, as
frequent changes in schemas or in data availability are very
common in P2P environments [9]. Therefore, a collection of
peers, probably with different data models, are involved in
formulation and execution of queries.
 The variety of application types supported by recent P2P
systems has led to the requirement for supporting advanced
query types. As an example of the systems that support
complex queries, Multi-Attribute Addressable Network
(MAAN) was built on Chord to service both multi-attribute
queries and range queries in a structured P2P system [22]. In
MAAN, a locality preserving hash function is used to map
attribute values to peers. When a range query is submitted to
search for data (or any kind of resources, in general) with an
attribute value in a range (l, u), where l and u being the lower
and upper bound respectively, the query is forwarded to peer pl
where l has been hashed to. The peer pl searches its local data
entries and adds the data that satisfy the range query to the
result. Then it checks whether the value u has also been hashed
to itself. If true, it sends back the search response to the query
originator peer. Otherwise, the query is forwarded to the

immediate successor of peer pl in the ring which also searches
its local data entries, appends matched data to the result and
forwards the query to its immediate successor, and so on, until
the query reaches peer pu where u has been hashed to.

Multi-attribute range queries are also supported by MAAN.
When a peer submits a multi-attribute query, the query is split
into single attribute subqueries. Following the execution of
subqueries at appropriate peers, the results are intersected at
the query originator to have the final answer. One serious
limitation of the MAAN system is the assumption of a fixed
schema, which is difficult to ensure in P2P environments.

VII. DATA REPLICATION

 Data replication is used for improving availability and
enhancing system performance. Classical issues of replication,
such as which data to replicate, the granularity of replicas,
where to place them, and how to manage replica updates, are
also addressed by P2P systems. In order to maintain
consistency of replicated data, there are some P2P specific
challenges to overcome which include high rates of peer joins
and failures, lack of global knowledge on shared data,
unknown peer capacities, and so on.
 Structured network overlays like DHTs are more appropriate
to overcome data consistency challenges of P2P systems [9].
Data consistency based applications commonly make use of
DHTs to provide the necessary replication. As an example, in
P2P system CFS, k replicas are placed on the k successors in a
Chord ring of the peer storing the data [23]. If the primary
replica fails, the successor immediately takes over.
 A replica update strategy based on a push/pull spreading
algorithm is presented for P2P systems in [24]. Each new
update is pushed to a number of peers which are known to
store the replicated copies. A peer enters the pull phase when it
comes back online, after being offline for a while. It contacts
the other peers storing the replicas and retrieves the most up to
date copy. The update strategy is fully decentralized and
robust, however it offers only probabilistic guarantees rather
than ensuring strict consistency.
 Different replication strategies, with regards to the number of
replicas, were evaluated for unstructured P2P systems [25].
Two very common replication approaches, called uniform and
proportional, were shown to yield worse performance than any
replication strategy which lies between them. In uniform
replication, the same number of replicas is created for all data
items, while in proportional replication more replicas are
created for more popular data. Uniform replication wastes
system resources in replicating data that rarely appear in
queries. With proportional replication, on the other hand,
although queries on popular data are processed efficiently,
unpopular data search may take a long time degrading the
overall system performance. A replication approach between
these two extremes, called square-root replication, was shown
to perform better in terms of the search size on successful
queries. With this approach, replicated copies are created in
such a way that for any two data items the ratio of replication
is the square root of the ratio of their query rates.

Two main strategies can be used with regards to where to
place replicas in unstructured P2P systems [13]. With the first
strategy, which is called owner replication, when a query on a
data item is successful, a replica of the item is created at the
requester peer. The other strategy is called path replication,
where when a query succeeds, copies of the requested data are
stored at all peers along the path from the requestor peer to the
provider peer. Path replication offers higher levels of
availability compared to owner replication; however ensuring
consistency in the presence of updates will be more difficult
with large numbers of copies.

VIII. CLUSTERING

 In a distributed system, data items with common attributes or
properties can be grouped together forming data clusters.
Clustering aims to reduce the communication cost in query
processing by placing related data in nearby locations. In
structured P2P systems it is possible to cluster data, i.e., store
similar data at the same or neighboring peers, by using an
order-preserving hash function. If the inputs of an order-
preserving hash function are similar, then the outputs produced
by the function will be close in the identifier space. Content-
based clustering of data files can be achieved if a semantic
vector describing the contents of the files is used as the input of
the hash function [26].
 In P2P systems, besides clustering data, it is also possible to
group the peers according to their interests or data into peer
clusters. Similar to data clustering, peer clustering also aims to
improve querying performance and produce better quality of
results. A query is first routed to the appropriate cluster, and
then it can reach all the peers with relevant data or interest
within that cluster. Semantic Overlay Networks (SONs) is one
approach introduced for peer clustering where peers with
semantically similar content are logically linked to form
overlay networks based on a classification hierarchy of their
data [27]. Interest-based peer communities is another approach
proposed for peer clustering in which membership depends on
the relationship between peers that share common interests
[28]. Clustering is implemented by using sets of attributes that
the peers can choose from, and communities are formed
between peers that share similar attributes.

Some characteristics of P2P systems make clustering a
challenging task. Peers in a P2P system are autonomous,
however autonomy is violated by data clustering since peers
are enforced to store some specific data. Another concern for
the application of clustering is the very dynamic nature of P2P
environments. Clusters formed in a P2P system needs to
dynamically adapt to the frequent changes in peer populations
and their data. The lack of global knowledge of data and peer
interests also causes a serious difficulty in forming clusters in
P2P systems.

IX. INCENTIVE MECHANISMS

A. Free Riding
 A free rider is a peer that exploits P2P network resources but
does not contribute to the network at an acceptable level [29].
In a free riding environment where most of the peers are free
riders, only a small number of peers serve a large population.
This means that the benefits of the P2P architecture are not
fully utilized. Therefore, if it is not dealt with appropriately,
free riding poses a serious threat to the wide-spread use and
efficient operation of P2P systems.
 In a recent study performed on the Gnutella network, it was
observed that 85% of peers do not share any files at all [30].
Moreover, the top 1% of sharing peers provides 50% of all
query hits, and the top 25% provides 98%. The experiments
on Napster showed that about 20-40% of the Napster peers
share little or no files [31]. It was also observed that many
peers misreport their bandwidth. About 30% of the peers
reported their bandwidth as 64 Kbps or less, however, it was
found that they actually have a significantly higher bandwidth.

Most of the P2P systems in use lack effective mechanisms
implemented against free riding and therefore suffer from free
riding. To address this requirement, some approaches have
been proposed to incorporate incentives in the existing
protocols to stimulate cooperation among peers. These
approaches can be categorized into three main groups:
micropayment-based, reciprocity-based, and reputation-based
incentive mechanisms [29].

B. Micropayment-Based Incentive Mechanisms
Micropayment approaches (e.g., [32], [33]) require peers to

pay for the services they get or resources they consume. It is
aimed to encourage peer cooperation within P2P systems by
providing an efficient and secure pricing mechanism. Typically
a central authority is employed to ensure honest transactions
between peers. The central authority is responsible for keeping
track of peer accounts, distributing virtual currency, and
providing security. The problem with this approach is that the
requirement for centralized authority conflicts with the nature
of P2P paradigm which is highly distributed.

C. Reciprocity-Based Incentive Mechanisms
 In reciprocity-based approaches, each peer decides how to
react to another peer’s service request based on the past
behavior of that peer to its requests. As an example, BitTorrent
is a P2P file-distribution system incorporating user incentives
in its protocol for sharing network resources [34]. It employs a
Tit-for-Tat mechanism to decide to which peer a file will be
uploaded and at what bandwidth. A peer uploads to the peers
that give it good downloading rate. The other peers are not
allowed to download.

The incentive mechanism described in [35] is based on the
local interactions of peers. Each peer assigns ratings to its
neighbors depending on the reaction of the neighbors to its
service requests, and the service quality offered to the
neighbors is determined by those rating values.

D. Reputation-Based Incentive Mechanisms
 A P2P reputation system is used to produce a reputation
rating for the peers (e.g., [36], [37]). Contribution of the peers
to the system is monitored to determine the reputation rating.
The peers with high reputation in that rating are offered better
services. Interaction between peers leads to the generation of
local reputation information which is then spread through the
network to produce global reputation for peers.

There are some important issues that are difficult to be
ensured for the implementation of these methods. For instance,
enabling the security and availability of reputation information
in a P2P environment is not an easy task. Another major
difficulty of implementing reputation-based (and also
reciprocity-based) methods is peer identity management. Since
peers can obtain network identities easily, they can change
their online identities at any time. Any incentive mechanism
depending on the strong identities of peers is in conflict with
the peer anonymity goal of the P2P paradigm.

 A recent protocol proposed in [38] adaptively modifies the
topology of an unstructured P2P network in reaction to the
contributions of peers. New connection types that can be
dynamically established among peers are introduced with the
aim to bring contributing peers closer to each other and to push
the free riders away from the contributors. The protocol
ensures that contributing peers are favored in getting service
from the P2P network.

X. CONCLUDING REMARKS

We have outlined the key research issues relevant to data
management in Peer-to-Peer (P2P) systems. We have
discussed how the distinct features of P2P systems make the
management of data a difficult problem. While describing
various data management issues we have also addressed the
associated challenges that need to be overcome for efficient
operation of P2P systems. There are numerous open research
problems and directions in this area as discussed throughout
the paper.

ACKNOWLEDGMENT

I would like to thank Ismail Sengör Altıngövde and Rıfat
Özcan for their help with drawing figures. This work is
partially supported by The Scientific and Technical Research
Council of Turkey (TUBITAK) with grant number EEEAG-
105E065.

REFERENCES
[1] Gnutella. http://www.gnutella.com/.
[2] Napster. http://www.napster.com/.
[3] Freenet. http://freenetproject.org/.
[4] BitTorrent. http://www.bittorrent.com/.
[5] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan,

“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications”, ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM), pp.149-160, 2001.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A Scalable
Content-Addressable Network”, ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), pp.161-172, 2001.

[7] S. Androutsellis-Theotokis, D. Spinellis, “A Survey of Peer-to-Peer
Content Distribution Technologies”, ACM Computing Surveys, vol.36,
no.4, pp.335-371, 2004.

[8] P. Valduriez, E. Pacitti, “Data Management in Large-Scale P2P
Systems”, High Performance Computing for Computational Science
(VECPAR), pp.104-118, 2004.

[9] R. Blanco et al., A Survey of Data Management in Peer-to-Peer Systems,
Technical Report CS-2006-18, David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, Ontario, Canada, 2006.

[10] G. Koloniari, N. Kremmidas, K. Lillis, P. Skyvalidas, E. Pitoura, Overlay
Networks and Query Processing: A Survey, Technical Report TR2006-
08, Computer Science Department, University of Ioannina, 2006.

[11] J. Risson, T. Moors, “Survey of Research towards Robust Peer-to-Peer
Networks: Search Methods”, Computer Networks, vol.50, no.17,
pp.3485-3521, 2006.

[12] B. Yang, H. Garcia-Molina, “Improving Search in Peer-to-Peer
Networks”, International Conference On Distributed Computing Systems
(ICDCS), pp.5-14, 2002.

[13] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, “Search and Replication in
Unstructured Peer-to-Peer Networks”, International Conference on
Supercomputing, pp.84-95, 2002.

[14] F. Banaei-Kashani, C. Shahabi, “Criticality-Based Analysis and Design
of Unstructured Peer-to-Peer Networks as Complex Systems”,
IEEE/ACM International Symposium on Cluster Computing and the
Grid, pp.351-358, 2003.

[15] A. Crespo, H. Garcia-Molina, “Routing Indices for Peer-to-Peer
Systems”, International Conference On Distributed Computing Systems
(ICDCS), pp.23-32, 2002.

[16] G. Wiederhold, “Mediators in the Architecture of Future Information
Systems”, IEEE Computer, vol.25, no.3, pp.38–49, 1992.

[17] I. Tatarinov et al., “The Piazza Peer Data Management Project”, ACM
SIGMOD Record, vol.32, no.3, pp.47-52, 2003.

[18] W. S. Ng, B. C. Ooi, K.-L. Tan, A. Zhou, “Peerdb: A P2P-Based System
for Distributed Data Sharing”, International Conference on Data
Engineering (ICDE), pp.633-644, 2003.

[19] W. Nejdl et al., “EDUTELLA: A P2P Networking Infrastructure Based
on RDF”, International Conference on World Wide Web (WWW),
pp.604-615, 2002.

[20] C. Rohrs, “Query Routing for the Gnutella Network”, Unpublished Work.
Available at http://rfc-gnutella.sourceforge.net/src/qrp.html, 2002.

[21] I. Clarke, S. Miller, T. W. Hong, O. Sandberg, B. Wiley, “Protecting Free
Expression Online with Freenet”, IEEE Internet Computing, vol.6, no.1,
pp.40–49, 2002.

[22] M. Cai, M. Frank, J. Chen, P. Szekely, “Maan: A Multi-Attribute
Addressable Network for Grid Information Services”, IEEE International
Workshop on Grid Computing (GRID), pp.184-191, 2003.

[23] F. Dabek et al., “Building Peer-to-Peer Systems with Chord, a Distributed
Lookup Service”, IEEE Workshop on Hot Topics in Operating Systems
(HoTOS), pp.81-86, 2001.

[24] A. Datta, M. Hauswirth, K. Aberer, “Updates in Highly Unreliable,
Replicated Peer-to-Peer Systems”, International Conference on
Distributed Computing Systems (ICDCS), pp.76-85, 2003.

[25] E. Cohen, S. Shenker, “Replication Strategies in Unstructured Peer-to-
Peer Networks”, ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM), pp.177-190, 2002.

[26] G. Koloniari, E. Pitoura, “Peer-to-Peer Management of XML Data: Issues
and Research Challenges”, ACM SIGMOD Record, vol.34, no.2, pp.6-
17, 2005.

[27] A. Crespo, H. Garcia-Molina, Semantic Overlay Networks for P2P
Systems, Technical report, Computer Science Department, Stanford
University, 2002.

[28] M. Khambatti, K. Dong Ryu, P. Dasgupta, “Structuring Peer-to-Peer
Networks Using Interest-Based Communities”. International Workshop
on Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P), pp.48-63, 2003.

[29] M. Karakaya, I. Korpeoglu, Ö. Ulusoy, “Free Riding Problem in Peer-to-
Peer Networks”, submitted manuscript, 2007.

[30] D. Hughes, G. Coulson, J. Walkerdine, “Free Riding on Gnutella
Revisited: the Bell Tolls?”, IEEE Distributed Systems Online, vol.6, no.6,
2005.

[31] S. Saroiu, P. Krishna Gummadi, S. D. Gribble, “Measuring and Analyzing
the Characteristics of Napster and Gnutella Hosts”, Multimedia Systems,
vol.9, no.2, pp.170-184, 2003.

[32] V. Vishnumurthy, S. Chandrakumar, E. Gun Sirer, “KARMA: A Secure
Economic Framework for P2P Resource Sharing”, Workshop on the
Economics of Peer-to-Peer Systems, 2003.

[33] M. Ham, G. Agha, “ARA: A Robust Audit to Prevent Free-Riding in P2P
Networks”, IEEE International Conference on Peer-to-Peer Computing,
pp.125-132, 2005.

[34] B. Cohen, “Incentives Build Robustness in Bittorrent”, Workshop on
Economics of Peer-to-Peer Systems, 2003.

[35] M. Karakaya, I. Korpeoglu, Ö. Ulusoy, “A Distributed and Measurement-
Based Framework Against Free Riding in Peer-to-Peer Networks”, IEEE
International Conference on Peer-to-Peer Computing, pp. 276-277,
2004.

[36] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, F.
Violante, “A reputation-based approach for choosing reliable resources in
peer-to-peer networks”, ACM Conference on Computer and
Communications Security, pp.207-216, 2002.

[37] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina, “The EigenTrust
Algorithm for Reputation Management in P2P Networks”, International
Conference on World Wide Web (WWW), pp.640-651, 2003.

[38] M. Karakaya, I. Korpeoglu, Ö. Ulusoy, “A Connection Management
Protocol for Promoting Cooperation in Peer-to-Peer Networks”,
Computer Communications, to appear, 2007.

