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Abstract High user interaction capability of mobile devices can help improve the accuracy
of mobile visual search systems. At query time, it is possible to capture multiple views
of an object from different viewing angles and at different scales with the mobile device
camera to obtain richer information about the object compared to a single view and hence
return more accurate results. Motivated by this, we propose a new multi-view visual query
model on multi-view object image databases for mobile visual search. Multi-view images
of objects acquired by the mobile clients are processed and local features are sent to a
server, which combines the query image representations with early/late fusion methods and
returns the query results. We performed a comprehensive analysis of early and late fusion
approaches using various similarity functions, on an existing single view and a new multi-
view object image database. The experimental results show that multi-view search provides
significantly better retrieval accuracy compared to traditional single view search.

Keywords Mobile visual search · Multi-view search · Bag of visual words · Fusion

1 Introduction

Smart mobile devices have become ubiquitous. They are changing the way people access
information. They have some advantages and disadvantages, compared to regular PCs. The
advantages are higher accessibility, easier user interaction and the ability to provide context
information (e.g., location) using extra sensors, like GPS and compass. The disadvantages
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are limited computational power, storage, battery life and network bandwidth [31], although
these are constantly being improved and will be less of an issue in the future.

One traditional way to access information on a mobile device is via text search, by enter-
ing a few keywords as query (query-by-keyword); but this is usually cumbersome and slow,
considering the small screen size of mobile devices. As a convenience, it is also possible
to initiate text queries via speech, if automatic speech recognition is available. Sometimes,
it is very difficult to express a query using only keywords. For instance, when a user at
a shoe store wants to know more about a specific type of shoe (e.g., cheaper prices else-
where, customer reviews), she cannot easily formulate a text query to express her intent. It
is much easier to take a photo of the shoe with the mobile device camera, initiate a visual
search and retrieve visually similar results. This is now possible, owing to the recent hard-
ware/software developments in mobile device technology, which turned the smart phones
with high-resolution cameras, image processing capabilities and Internet connection into
indispensable personal assistants. This in turn triggered research interest in mobile visual
search and recognition [8, 11, 12], and motivated the industry to develop mobile visual
search applications, such as Google Goggles [13], CamFind [5], Nokia Point & Find [27],
Amazon Flow [1], Kooaba image recognition [29].

The main focus of this work is to leverage the user interaction potential of mobile devices
to achieve higher visual search performance, and hence, provide the users with easier access
to richer information. One potential application area is mobile product search. When the
user wants to search for a specific object, she can take a photo of the object to initiate a
visual search. Additionally, she can easily tap on the screen to mark the object-of-interest
and provide extra information to the search system to suppress the influence of background
in matching [39]. More importantly, the user can take multiple photos of the object-of-
interest from different viewing angles and/or at different scales, thereby providing much
more information about the query object. We refer to multi-view object image search as
providing multiple query images of an object from various viewing angles and at various
scales and combining the query images using early/late fusion strategies to achieve higher
retrieval precision on single– and/or multi-view object image databases. High precision on
mobile retrieval is especially critical because the screen is too small to display many results,
and more importantly, the user usually does not have much time and patience to check more
than 10–20 results.

Multi-view search is different from multi-image search. In multi-image search, multiple
images of an object category are used to perform a search [2, 33, 36]; the images do not
belong to the same instance of the queried object. In multi-view search, query images belong
to the same object instance. To illustrate the benefits of multi-view object image search,
consider the multi-view images of two different shoes in Fig. 1, taken from four different
viewing angles at the same scale. Such images are typical on online stores, i.e., multi-view
images of objects on clean backgrounds. Assuming the database contains such multi-view
images for each object, when a user performs a search using a photo that is close to one of
the available views, the results she will get will be better than when the query image has a
completely different view. Intuitively, if the user takes multiple photos of the object from
different viewing angles, the chance that the query images are similar to the ones in the
database will increase. This is also valid when the database contains single view images of
each object. The effect of multiple scales is similar. In summary, at query time, the user does
not know the view and scale of the object images in the database; by taking multiple photos
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Fig. 1 Multi-view images of two different shoes. Online stores typically contain multi-view images of
products

from different views and at different scales, she can increase the chance of capturing views
similar to the database images. This is enabled by the interactivity of the mobile devices;
on a non-mobile platform, like a PC, it would be difficult to obtain such multi-view images
of an object and perform a multi-view query. Therefore, such a multi-view search system is
most suitable for mobile devices with a camera.

In this paper, we address the following questions concerning multi-view object image
search:

– Is a multi-view object image database better than a single view database in terms of
retrieval precision, and if so how much?

– Do multi-view queries improve retrieval precision on single view or multi-view object
image databases, and if so how much?

– Are multi-view queries better than multi-image queries in terms of retrieval precision,
and if so how much?

– Multi-view queries need special treatment to combine multiple query/database images
using early/late fusion strategies [26, 40]. What are the best similarity functions
and early/late fusion methods for a search system employing multi-view queries or
databases?

– What is the additional computational cost of multi-view search, and is the performance
improvement worth the additional cost?

To the best of our knowledge, there is no work describing a multi-view object image
search system, addressing these issues. We show through extensive experiments that multi-
view queries and/or databases improve retrieval precision significantly, over both single
view and multi-image queries, at a cost of modest increase in computation time due to the
increase in the number of images to be processed.

To demonstrate the benefits of multi-view search, we built a mobile visual search system
based on client-server architecture (cf. Fig. 2), using the well-known bag-of-visual-words
(BoW) approach [11, 12]. We constructed a multi-view object image database and per-
formed extensive experiments on both single and multi-view object image databases with
single, multi-image and multi-view queries using various similarity functions and fusion
strategies, and presented the results in a systematic way.
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Fig. 2 Client-server architecture of our mobile multi-view visual search system

2 Related work

Due to the recent advances in mobile devices with cameras, there has been a growing inter-
est in mobile visual search. Research works investigate different aspects of mobile visual
search, such as architectures, power efficiency, speed, and user interaction. Chen and Girod
[8] describe a mobile product recognition system where the products are CDs, DVDs and
books that have printed labels. The system is local feature based, and Compressed His-
togram of Gradients (CHOG) and Scale-Invariant Feature Transform (SIFT) are used as
local features. Two client-server architectures are implemented and compared in terms of
response time: one is sending images, the other one is extracting features on the client and
sending the features. Sending features took five seconds, sending images took ten seconds
to respond. This means that over slow connections like 3G it is faster to extract and send
features. Based on this finding, we preferred the former approach in our implementation
(Fig. 6).

Storage space and retrieval speed are critical in mobile visual search. Girod et al. [12]
describe a mobile visual search system that adopts the client-server architecture in which
the database is stored on the phone. The system uses the BoW approach, and four different
compact database methods are experimented and their performances are compared. Li et al.
[22] propose an on-device mobile visual search system. The system uses the BoW approach
with a small visual dictionary due to the memory limitation. Additionally, the most useful
visual words are selected to decrease the retrieval time considering the processor limitation.
Guan et al. [15] describe an on-device mobile image search system, which is based on bag-
of-features (BoF) approach. The system uses approximate nearest neighbor search to use
high dimensional BoF descriptors on the mobile device with less memory usage. The search
system also utilizes the GPS data from the mobile device to reduce the number of images
to be compared. In our case, considering the potential application areas of our system (e.g.,
mobile product search), the database must be stored on the server side. For speeding up the
query processing, feature extraction and query processing is run in parallel as the user is
taking multiple photos of the query object (see Section 3.2).

Mobile devices have high user interaction potential; this has been utilized for better
retrieval. Joint Search with Image Speech and Words (JIGSAW) [35] is a mobile visual
search system that provides multimodal queries. This system allows the user to speak a
sentence and performs text-based image search. The user selects one or more images from



Multimed Tools Appl (2017) 76:12433–12456 12437

the result set to construct a visual query for content-based image search. In [30], a mobile
product image search system that automatically extracts the object in the query image is
proposed. From the top n images that have a clean background, object masks are found.
The object in the query image is then extracted by using a weighted mask approach and its
background is cleaned. The cleaned query image is finally used to perform image search.
Extracting the object-of-interest and performing the query with a clean background is shown
to work better. Similarly, TapTell [39] is an interactive mobile visual search system, in which
users take a photo and indicate an object-of-interest within the photo using various drawing
patterns. In our system, user interaction is used to obtain multi-view images of the query
object. Further user interaction, e.g., to select the object of interest to suppress the effects of
background, would further improve the performance as indicated by our experiments (see
Section 5.2).

Landmark and location recognition and search are among popular mobile application
areas [7, 15, 18, 24, 37, 41]. In [24], 3D models of landmarks are constructed offline; then,
low resolution query images taken by the mobile device are sent to the server and matched
with 3D landmark models. With 3D models, it is possible to match query images taken
from different viewpoints. However it is not easy to construct the 3D models of landmarks,
especially large ones, because many views may be needed for a high quality reconstruction.
In this work, we use the multi-view images directly, instead of building 3D models, since for
a typical mobile product search system, multi-view images of products are readily available
(but not as many views as would be needed to reconstruct a 3D model of the product). In [18,
37], an Active Query Sensing system is proposed to help the user take a better query image
when the first query fails, for mobile location search. The system learns the saliency of each
view of a location to determine the discriminability, which is later used for suggesting better
views based on the first query. Using multi-view queries, as in our system, might improve
the accuracy at the first query and reduce the need to refine the search. However, the idea of
selecting discriminative views is promising and can be investigated further for multi-view
queries on multi-view databases to find out whether it is better than fusion approaches used
in this work.

There are several mobile image search and recognition applications available on the
mobile market. Point&Find [27] allows the users point the camera to the scene or object and
get information about it. Kooaba is a domain-specific search system whose target domains
are books, DVD and game covers [29]. Digimarc Discover [10] is similar to Point&Find;
the user points the camera to an object and gets information about it. PlinkArt [9] is another
domain-specific mobile search system whose target domain is well-known artworks. The
user takes a photo of a well-known artwork and gets information about it. One of the lat-
est mobile search application is CamFind [5], which is a general object search system.
When the user takes a photo of a scene, products are identified and similar objects are listed
as a result. Another recent mobile search application is Amazon Flow [1]; the user points
the camera to the object and receives information about it. These examples indicate the
commercial potential of mobile visual search systems.

Multi-image queries have been used to improve image retrieval. Arandjelovic and
Zisserman [2] propose an object retrieval system using multiple image queries. The user
enters a textual query and Google image search is performed using this textual query. The
top eight images are then retrieved and used as query images. Early and late fusion methods
are applied. Tang and Acton [33] propose a system that extracts different features from dif-
ferent query images. These extracted features are then combined and used as the features of
the final query image. The system proposed in [25] allows users to select different regions
of interest in the image. Then each region is treated as separate queries and their results are
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combined. Zhang et al. [38] describe a similar system, which also uses regions; however,
these regions are extracted automatically and the user selects among them. Xue et al. [36]
propose a system that uses multiple image queries to reduce the distracting features by using
a hierarchical vocabulary tree. The system focuses on the parts that are common in all the
query images. The multi-query system described in [21] uses early fusion; each database
image is compared with each query image and each query image gets a weight according to
the similarity between the query image and the database image.

All these works use multiple query images on single view databases for performance
improvement; they do not utilize multi-view queries on multi-view databases. Moreover,
a multi-view object image dataset to evaluate multi-view search systems is not publicly
available. This paper aims to fill in these gaps.

3 Proposed mobile visual search system

The proposed mobile multi-view visual search system is based on the well-known BoW
approach: the images are represented as a histogram of quantized local features, called the
BoW histogram. First, interest points are detected on images; the points are described with
local descriptors computed around the points. Then, a vocabulary (dictionary) is constructed
with a set of descriptors from the database, typically using the k-means clustering algorithm.
Finally, images are represented as a histogram of local interest point descriptors quantized
on the vocabulary. When a query image is received by the search system, local features
are extracted and BoW histogram is computed. The query histogram is compared with the
histograms stored in the database, and the best k results are returned to the user (cf. Fig. 2).

Local features are key to the performance of the search system. In a mobile system, they
should also be efficiently computable. To this end, we employed two fast local feature detec-
tors: Harris and Hessian [4, 34]. They detect two types of complementary local structures
on images: corners and blobs. Using complementary interest points are useful for improv-
ing the expressive power of features and hence the retrieval precision. The detected points
are represented with the SIFT descriptor. The BoW histograms are computed for Harris
and Hessian separately, and then they are concatenated to obtain the BoW histogram of an
image.

For ranking, the database images need to be compared with the query image(s), based
on the BoW histograms. It is crucial to select the right similarity functions for high retrieval
precision and low computational cost. There are various similarity functions that can be used
to compare histograms [19, 20, 23]. We experimented with the similarity functions given
in Table 1 and presented a comparison in terms of retrieval precision and running time in
Section 5. In the table, hq and hd represent the histogram of the query and database images,
respectively. In the formulae, qi and di are the ith histogram bin of query and database
histograms, respectively.

3.1 Multi-view search

Image databases typically contain single view images of objects or scenes, as in Fig. 3. At
query time, if the user captures and uses a view close to the one in the database, she will
retrieve the relevant image, but the user does not have any idea about the view stored in the
database. If the query image has a slightly different view or scale, the invariancy of local
features can handle such view/scale changes; but if the view/scale change is significant,
the system will most probably fail. As a solution, the user may take multiple photos from



Multimed Tools Appl (2017) 76:12433–12456 12439

Table 1 Similarity functions for
comparing BoW histograms Similarity function Symbol Formula

Dot product [20] dot(hq , hd )
∑

i qidi

Histogram intersection [23] HI(hq , hd )

∑
i min(qi ,di )

min(|hq |,|hd |)
Normalized histogram

Intersection [20] NHI(hq , hd )
∑

i min
(

qi∑
i qi

,
di∑
i di

)

Normalized correlation [23] NC(hq , hd )

∑
i qi di√∑

i q2
i ×

√∑
i d2

i

Min-max ratio [6] MinMax(hq , hd )

∑
i min(qi ,di )∑
i max(qi ,di )

different viewing angles and at different scales to increase the chance of providing query
images similar to the database images. Moreover, if the database images are also multi-view,
we can expect to get even better results. Hence, both the query and database images can be
multi-view, each object/scene having multi-view images, as in Fig. 4. In the most general
case, the query may contain M ≥ 1 images of an object and the database may consist of
N ≥ 1 images of each object.

Single-view query and single-view database (M = 1, N = 1): Both the query and
database objects have a single image that represents a specific view of the object, as in
Fig. 3. During retrieval, the query image is compared to every database image using a
similarity function (cf. Table 1) to find best k matches.

Single-view query and multi-view database (M = 1, N ≥ 1): The query has single-view
(cf. Fig. 3) and database objects have multi-view images (cf. Fig. 4). During retrieval,
early/late fusion methods (cf. Sections 3.1.1 and 3.1.2) are employed to find and return
best k matching database objects.

Multi-view query and single-view database (M ≥ 1, N = 1): The query has multi-view
images, the database has a single image for each object. During retrieval, early/late fusion
methods are employed to find and return best k matching database images.

Multi-view query and multi-view database (M ≥ 1, N ≥ 1): Both the query and database
objects have multi-view images. This is the most general case and comprises the previous
three cases. During retrieval, early/late fusion methods are employed to find and return
best k matching database objects. We expect to get the best retrieval precision, but at an
increased computational cost.

When the query or database objects have multiple images, we must employ fusion meth-
ods to process the queries and find best k matching database objects. This is one of the

Fig. 3 Single view images: each image is a typical, single view of an object
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Fig. 4 Multi-view images: each object has multiple images from different viewing angles (and/or at different
scales)

crucial steps to achieve high retrieval performance. There are mainly two types of fusion
methods: early fusion and late fusion. We performed comprehensive experimental analysis
of several early and late fusion methods.

3.1.1 Early fusion

Early fusion, also referred to as fusion in feature space, is the approach in which the BoW
histograms of multiple images are combined into a single histogram and the similarity func-
tion is applied on the combined histograms. We used the early fusion methods given in
Table 2 [2]. In the table, the histograms for M images are combined into hc; h

j
i is the ith

bin of histogram hj of image j .

Table 2 Early fusion methods
Method Formula

Sum histogram hc
i = ∑M

j=1 h
j
i

Average histogram hc
i =

∑M
j=1 h

j
i

M

Maximum histogram hc
i = max

(
h1

i , . . . , h
M
i

)
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3.1.2 Late fusion

Late fusion, also referred to as decision level fusion, considers each query and database
image separately to obtain similarity scores between the query and database images using
their BoW histograms; the final result list is obtained by combining the individual similarity
scores. This can be done in two ways: (1) image similarity and ranking and (2) image set
similarity and ranking.

Image similarity and ranking The image histograms in the query are compared to all
the image histograms of all the objects in the database; a single result list is obtained by
ranking the database objects based on similarity scores or ranking. We used the following
methods [21, 42].

– Max Similarity (MAX SIM). Each database image is compared with the query images
and the similarity is taken as the maximum of the similarities.

– Weighted Similarity. Each database image is ranked according to a weighted similarity
to the query images.

– Count. For multiple query images, multiple result lists are obtained. Then, for each
image, a counter is incremented if it is in a list. Finally, the counter value is used to rank
the database images (higher value, higher rank).

– Highest Rank. For multiple query images, multiple result lists are obtained and the
highest rank is taken for each database image.

– Rank Sum. For multiple query images, multiple result lists are obtained and the ranking
of each image in every list is summed and the resulting values are used to rank the
database images.

Image set similarity and ranking First, the similarity scores between M images of the
query object and N database images of each object are computed, resulting in M × N

similarity scores, as shown in Fig. 5. Then, an image set similarity score between the
query object and each database object is computed, and finally, database objects are ranked
according to the image set similarity scores.

The image set similarity scores between M query images and N database object images
are computed in one of the following ways, based on the individual similarity scores
between the query and database images (cf. Fig. 5).

– Maximum Similarity (MAX). The similarity score is the maximum of all M × N

similarity scores.
Similarity = max(Sij )

Fig. 5 Similarity computation between image sets. The query has M images, the database object has N

images. A similarity score Sij is computed between every query image i and every database object image j,
resulting in M × N similarity scores
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If at least one of the query images is very similar to one of the database object images,
this measure will return good results.

– Average Similarity (AVERAGE). The similarity score is computed as the average of all
M × N similarity scores.

Similarity =

M∑

i=1

N∑

j=1
Sij

M × N

The average operator reduces the effects of outliers, but it also reduces the effects of
good matches with high similarity scores.

– Weighted Average Similarity (WEIGHTED AVERAGE). To promote the influence of
good matches with high similarity scores, a weight is assigned to each score.

Wij = Sij

M∑

i=1

N∑

j=1
Sij

Similarity =
M∑

i

N∑

j

Sij × Wij

– Average of Maximum Similarities (AVERAGE MAX). First, the maximum similarity for
each of M query images to N database object image is computed. Then, the average of
M maximum similarity values is computed as the image set similarity.

Similarity =
∑M

i max(Si1, . . . , SiN )

M

– Weighted Average of Maximum Similarities (WEIGHTED AVERAGE MAX). This is
similar to the previous method; this time, the average is weighted.

Si = max(Si1, . . . , SiN )

Wi = Si
∑M

i Si

Similarity =
M∑

i

Wi × Si

3.2 Speeding up multi-view query processing

Multi-view queries are inherently computationally more expensive than single view queries.
However, it is possible to speed up the multi-view search in a mobile multi-view search
setting. As the user is taking multiple photos of the query object, the feature extraction and
query processing can run in parallel in the background. This is possible because current
mobile devices usually have multi-code processors. While one thread handles photo-taking,
another thread can extract and send features to the server, which can start query processing
as soon as it receives the features for the first query image. Figure 6 shows the flow diagram
of the whole process as implemented in our mobile search system.
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Fig. 6 Workflow of our image search system using early and late fusion methods

4 Datasets

We used two different datasets to evaluate the performance of our mobile search system: (i)
an existing single view mobile product image search dataset, Caltech-256 Mobile Product
Search Dataset [30], and (ii) a new multi-view object image dataset we constructed for this
work.

(i) Caltech-256 mobile product search dataset This is a subset of the Caltech-256
Object Category Dataset [14], which is used to evaluate the performance of the mobile prod-
uct search system described in [30]. The dataset has 20 categories and 844 object images
with clean background; objects are positioned at the image center. There are 60 query
images from six categories; query images contain background clutter. The original Caltech-
256 dataset images were downloaded from Google Images. Figure 7 shows sample images
from the dataset. This is a single view object image dataset. Although the dataset contains
multiple images of each category, the images are not multiple views of the same object,
rather they are from different objects of the same category.

(ii) Multi-view object images dataset (MVOD) The main focus of this work is mobile
multi-view object image search; hence it is crucial to have a suitable multi-view object
image dataset to evaluate the performance of our system. To the best of our knowledge,
such a dataset is not publicly available. We constructed a new dataset, called Multi-View
Object Image Dataset (MVOD 5K), from online shopping sites. The dataset has 5000 images
from 45 different product categories (shoes, backpacks, eyeglasses, cameras, printers, gui-
tars, pianos, coffee machines, vacuum cleaners, irons, etc.). There are 1827 different object
instances (from 45 categories) and each object has at least two different images taken from
different views. On the average, there are 40 object instances and 111 images per category
and 3 views per object. The images mostly have a clean background and objects are posi-
tioned at the image centers; this is on purpose, because the goal is to provide a good image
of the product to attract the customers. The dataset is suitable for a mobile product search
system, containing images of daily life items sold on online stores, and hence, it is easy
to generate multi-view query images with a mobile device. Figure 8 shows sample images
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Fig. 7 Sample images from the Caltech-256 mobile product search dataset

from the dataset. The dataset and more detailed description are available at www.cs.bilkent.
edu.tr/∼bilmdg/mvod/.

5 Experiments

We performed extensive experiments on the Caltech-256 and MVOD datasets and evaluated
the performance of various similarity functions and fusion methods. We used the OpenCV
library [17] to extract the local features (Harris, Hessian detector with SIFT descriptor).

The evaluation is done based on average precision (AveP) [16], as shown below. In the
equation, k represents the rank in the list of retrieved images and N is the length of the list.
A retrieved object image is relevant if it belongs to the same object category.

P(k) = relevant images ∩ first k images

k

rel(k) =
{

1, if image k is relevant
0, otherwise

AveP =
∑N

k=1(P (k) × rel(k))

N

5.1 Results on the Caltech-256 dataset

As mentioned above, Caltech-256 mobile product search dataset is a single-view dataset.
On this dataset, we performed experiments with three types of queries:

– Single view queries. Each query is a single object image; the same query images, as
in [30], are used (six categories, each having ten images). Queries with clean and clut-
tered background are performed and evaluated separately. We used clean background

www.cs.bilkent.edu.tr/~bilmdg/mvod/
www.cs.bilkent.edu.tr/~bilmdg/mvod/
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Fig. 8 Sample images from the MVOD dataset. Top: database, bottom: queries (selected single view images
from multi-view queries)

queries provided by [30]. They were obtained by segmenting out the objects from the
background.

– Multi-image queries. Each query consists of multiple object images from the same cat-
egory, however, the images belong to different objects, they are not multiple views of
the same object. There are six queries for six categories, and all ten images are used in
each multi-image query.

– Multi-view queries. Each query consists of multi-view images of an object; the images
were taken with a mobile phone and hence not from the Caltech-256 dataset. There are
four multi-view queries for four categories, each having five images.

The vocabulary size is 3K and hard assignment is used for computing the BoW his-
tograms. Figure 9 shows the average precision graphs for single view queries using various
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a) b)

Fig. 9 Single view query average precision graphs on Caltech-256 dataset with various similarity functions:
a our results with background cluttered queries and b our results with clean background queries

similarity functions. The similarity functions Min-Max Ratio, Normalized Histogram Inter-
section and Normalized Correlation work much better than Dot Product and Histogram
Intersection on both clean and background cluttered queries. As expected, the average pre-
cision is higher for queries with a clean background. When we compare our results with
those presented in Fig. 6b of [30], our average precision values are 0.1 − 0.15 higher than
[30], probably due to the multiple complementary features (Harris+Hessian with SIFT) we
used. Figure 10 shows single view query examples with two different similarity functions.

Figure 11 shows the average precision graphs for multi-image queries using various
fusion methods and the Min-Max Ratio similarity function. The late fusion methods Rank
Sum and Count work better than the other early and late fusion methods. The average preci-
sion values are about 0.25 higher on background cluttered queries, and 0.1 higher on clean
background queries, compared to the single view queries. Figures 12 and 13 show sample
queries.

Figures 14 and 15 show the average precision graphs and a sample query for multi-view
queries using various fusion methods and Min-Max Ratio similarity function. As explained
above, the multi-view query images of objects were taken with a mobile phone on a clean

Fig. 10 Single view query examples on Caltech-256 dataset with two similarity functions: a Min-Max Ratio
and b Normalized Histogram Intersection
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a) b)

Fig. 11 Multi-image query average precision graphs on Caltech-256 dataset with various early and late
fusion methods and the Min-Max Ratio similarity function: a background cluttered queries, and b clean
background queries

background. The late fusion methods Rank Sum, Weighted Similarity and Count work bet-
ter than the other early and late fusion methods. Multi-view queries improve the average
precision performance further compared to multi-image queries, since the query images are
multiple views of a single object, providing better representation for the query object.

5.2 Results on the MVOD dataset

As mentioned above, MVOD is a multi-view dataset we prepared to evaluate the perfor-
mance of our mobile search system on multi-view object image databases. It is much larger
and more challenging than the Caltech-256 dataset. Since this is a new and completely

a)

b)

c)

Fig. 12 Single view and multi-image query examples on Caltech-256 dataset: a single view query, b multi-
image query with Rank Sum late fusion method, and c multi-image query with Count late fusion method. The
Min-Max Ratio similarity function is used
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a)

b)

Fig. 13 Multi-image query examples on Caltech-256 dataset with early fusion: a Average Histogram, and b
Weighted Average Histogram. The Min-Max Ratio similarity function is used

different dataset, the results are not directly comparable to those of Caltech-256. On this
dataset, we performed single view and multi-view query experiments with two types of
queries:

Fig. 14 Multi-view query average precision graph on Caltech-256 dataset with various early and late fusion
methods. The Min-Max Ratio similarity function is used. The multi-view query images were taken with a
mobile phone
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Fig. 15 Multi-view query example on Caltech-256 dataset with Rank Sum fusion and Min-Max Ratio
similarity function. The query images were taken with a mobile phone

– Internet queries. The multi-view images of 45 queries, one query per category, are
collected from online shopping sites. Similar to the MVOD dataset, these query images
mostly have clean background.

– Mobile phone queries. The multi-view query images are obtained with a mobile phone
in natural office, home or supermarket environments, in realistic conditions, having
adverse effects, like background clutter and illumination problems. The query set has
15 queries for 15 categories.

The vocabulary size is 10K and hard assignment is used for computing the BoW his-
tograms. Single view queries are performed by randomly selecting one of the query views
and matching it with one of the database images. Multi-view queries are performed and
presented for the best performing similarity function (Min-Max Ratio) and best early/late
fusion methods based on the above experiments.

Figure 16 shows the average precision graphs for single view and multi-view queries on
the MVOD dataset. As expected, the average precisions on MVOD is lower than those of
Caltech-256. Parallel with the Caltech-256 results, multi-view queries provide an improve-
ment of about +0.1 to +0.2 over single view queries. The improvement is more on
background cluttered queries (taken with a mobile phone), which is important, since, in a
real world setting, the query images will usually have background clutter. On the other hand,
the average precision for queries with clean background is always higher than queries with
cluttered background. It is possible to reduce the influence of background by segmenting
out the objects automatically, as in [30], or semi-automatically if the user can quickly tap
on the screen and select the object of interest, as in [39].

Among the fusion methods, the late fusion methods, Weighted Average of Maximum
Similarity and Maximum Similarity work better than others. Sample queries in Figs. 17, 18
and 19 demonstrate the improvement in the result lists for both clean background Internet
queries and cluttered background mobile phone queries.

5.3 Running time analysis

Multi-view queries are inherently computationally expensive. In this section, we compare
the running times of single and multi-view query methods for different similarity func-
tions. To do so, we measured the time spent for matching the images on the server side;
this includes the vector quantization, BoW histogram construction, similarity computation,
fusion and ranking. The measurement is done on the MVOD dataset, with five queries each
having five images, and the measured duration is the average of all queries in each (query)
category. Table 3 summarizes the results. According to the table, the matching times for
the similarity functions are close to each other. The increase in running time in multi-view
queries is not proportional to the number of images in the query and database, it is lower
(due to varying image content and different numbers of interest points detected in each
image). Based on the running times and the average precision performances, the late fusion
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Fig. 16 Average precision graphs on the MVOD dataset with various early and late fusion methods. Top:
query images are from the Internet. Bottom: Query images are taken with a mobile phone. The Min-Max
Ratio similarity function is used. The numbers in the legends are the number of queries in the experiment
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Fig. 17 Single view and multi-view query examples on the MVOD dataset, multi-view query with Max late
fusion method. The query images are taken with a mobile phone

Fig. 18 Single view and multi-view query examples on the MVOD dataset, multi-view query with Weighted
Average Max late fusion method. The query images are taken with a mobile phone
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Fig. 19 Single view and multi-view query examples on the MVOD dataset, multi-view query with Max late
fusion method. The query images are from online shopping sites

methods, Weighted Average of Maximum Similarities and Maximum Similarity, and the early
fusion method, Maximum Histogram, can be used for multi-view object image search.

Table 3 Running times (ms) of similarity functions and fusion methods

Similarity functions

Normalized Histogram Normalized histogram Dot product Min-max ratio

correlation intersection intersection

Fusion methods

Single view query 226 208 242 258 212

(No Fusion)

Sum histogram 235 215 322 364 249

Average histogram 247 261 336 326 258

Maximum histogram 243 294 314 357 253

Average similarity 983 997 1211 958 994

Weighted avg. sim. 996 1026 1150 973 1016

Maximum similarity 971 1015 1118 964 977

Average of max sim. 976 1006 1125 961 981

Weighted avg. max sim. 967 1014 1147 976 986
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6 Conclusions and future work

We proposed a new multi-view visual query model on multi-view object image databases
for mobile visual search. We investigated the performance of single view, multi-image and
multi-view object image queries on both single view and multi-view object image databases
using various similarity functions and early/late fusion methods. We conclude that multiple
view images, both in the queries and in the database, significantly improve the retrieval
precision. As a result, mobile devices with built-in cameras can leverage the user interaction
capability to enable multi-view queries. The performance can be further improved if the
query objects are isolated from the background. This can be done automatically as in [30]
or via user interaction, e.g., the user can tap on the screen and select the object-of-interest
in the query image [39]. We implemented a mobile search system and evaluated it on two
datasets, both suitable for mobile product search, which is one of the useful application
areas of such mobile interactive search systems. Collecting and annotating a large-scale
multi-view object image dataset remains as a future work.

Recently, deep convolutional neural networks (ConvNets) have proven to give state-
of-the-art results in many computer vision problems, including image classification and
retrieval [3, 28]. Instead of keypoint-based BoW histograms, ConvNets features can also be
used for retrieval in our multi-view object image search framework, since our framework is
independent of the features used.

ConvNets features may be extracted on the mobile device and sent to the server, as in
the current architecture, or multi-view images may be sent to the server and all the pro-
cessing can take place on the server. High-performance ConvNets are usually quite large
with millions of parameters [32] and require a high amount of processing power and mem-
ory. This is a serious limitation for a mobile search system; using large networks on current
mobile devices is not feasible due to to the stringent memory limits on the running pro-
cesses. Smaller networks, on the other hand, may not give satisfactory performance. The
second alternative, sending images to the server, may require a large amount of uplink data
traffic, which may be both costly and slow (upload data rates are much lower than down-
load data rates). In summary, an interesting research direction is to design a mobile search
system architecture that can use the state-of-the-art ConvNets efficiently.
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