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Abstract. The huge amount of video data generated by surveillance
systems necessitates the use of automatic tools for their efficient anal-
ysis, indexing, and retrieval. Automated access to the semantic content
of surveillance videos to detect anomalous events is among the basic
tasks; however, due to the high variability of the audio-visual features and
large size of the video input, it still remains a challenging task, though a
considerable amount of research dealing with automated access to video
surveillance has appeared in the literature. We propose a keyframe label-
ing technique, especially for indoor environments, which assigns labels to
keyframes extracted by a keyframe detection algorithm, and hence trans-
forms the input video to an event-sequence representation. This represen-
tation is used to detect unusual behaviors, such as crossover, deposit, and
pickup, with the help of three separate mechanisms based on finite state
automata. The keyframes are detected based on a grid-based motion rep-
resentation of the moving regions, called the motion appearance mask. It
has been shown through performance experiments that the keyframe la-
beling algorithm significantly reduces the storage requirements and yields
reasonable event detection and classification performance. C© 2010 Society
of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3509270]
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1 Introduction
Video surveillance has become an interesting and challenging
application domain in video processing. Automated access
to the semantic content of surveillance videos of interest,
basically to detect anomalous situations in the scene. An au-
tomated video surveillance system should support both real-
time alarm generation and offline inspection components to
satisfy the requirements of the operators.1 On either side,
the input video stream should be processed adequately so
that the actions are correctly analyzed. The primary chal-
lenges are the large input size and the high variability of the
audio-visual features2; hence it remains a challenging issue
to access the semantic content of the videos automatically.

Automated video surveillance processing generally starts
with the detection of moving regions/objects as the first step
in most of the existing surveillance systems (e.g., Refs. 3 and
4). Background foreground segmentation is widely studied,
and techniques based on the running average with learning
constant,3 the running Gaussian average,5 the mixture of
Gaussians,6 the average median of a set of previous frames,7

the kernel density estimators,8 and the codebook model9 exist
in the literature. Temporal template-based methods are also
used to detect moving objects.10, 11 This first step is followed
by tracking, classification,12 and modeling activities to detect
unusual object behaviors,13 especially human activities.

One of the basic aims in understanding the behaviors
of the objects is detecting the anomalies in the activities
of the objects, having observed their patterns.14, 15 Anomaly
detection refers to the problem of finding patterns in data that
do not conform to expected behavior.16 Abnormal situations
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and anomalies are reported to the operator and/or stored in
a database for later inspection,17 which requires efficient
processing, indexing, and retrieval.

We propose a keyframe labeling technique for event clas-
sification in indoor surveillance with a fixed camera, based
on a simple yet effective keyframe detection scheme. The
underlying data model is constructed with respect to the
moving regions in each frame, which are represented by a
grid-based foreground mask, called the motion appearance
mask (MAM). A keyframe is detected if a change occurs in
the MAM of a frame compared to the previous frame. The
keyframes are categorized into four simple types, namely
JOIN, SPLIT, MOVE, and STOP, based on the appearance of the
identified moving regions. The input stream is represented as
a temporally ordered sequence of keyframe labels, and the
event classification is carried out on this compact represen-
tation. Since the input size is significantly reduced with this
representation, the detection and after-the-fact analysis tasks
are facilitated.

We also provide mechanisms to detect a set of events,
including crossover, deposit, and pickup, which may be con-
sidered peculiar for an indoor surveillance system. To this
end, we devise three separate finite state automata (FSAs) to
recognize the sequences corresponding to these behaviors.
The inputs of these FSAs are the keyframe labels that we
assign to the extracted keyframes. The basic aim in devising
these FSA-based mechanisms is to validate the use of our
keyframe labeling technique in surveillance event classifica-
tion. It has been shown through the experimental results that
the use of our keyframe labeling technique with the FSA-
based mechanisms yields a reasonable event detection and
classification performance.
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The rest of the paper is organized as follows: Section 2
discusses related studies. The keyframe labeling technique
that we propose is discussed in Sec. 3. The algorithms based
on finite state automata to detect a set of basic events, such as
crossover, deposit, and pickup, are provided in Sec. 4. The re-
sults of the performance experiments are presented in Sec. 5,
and Sec. 6 concludes the paper.

2 Related Work
There exist quite a number of systems in the literature deal-
ing with monitoring and anomalous behavior detection (e.g.,
Refs. 3, 4, and 18). Many techniques are proposed for dy-
namic scene segmentation as the preprocessing phase of
anomaly detection. One of the widely used approaches for
scene segmentation is background foreground segmenta-
tion. Depending on the complexity of the background, var-
ious techniques based on the running average with learn-
ing constant,3 the running Gaussian average,5 the mixture
of Gaussians,6 the average of median of a set of previous
frames,7 the kernel density estimators,8 and the codebook
model9 are employed. The background model generally re-
quires an initialization step, which can be applied as a part of
the model or as a separate scheme (e.g., Ref. 19). Temporal
template-based methods10, 11 are also used for dynamic scene
segmentation to detect moving objects.

One of the challenging tasks in monitoring is detecting
the abnormal actions caused by moving objects in the scene.
The video surveillance data have both spatial and temporal
characteristics, and the anomalies are caused by motion or
insertion of foreign object(s) into the scene.15 Each data point
has a few continuous attributes, such as color, lightness, and
texture, and the anomalies to be detected are either anoma-
lous points or regions in the scene.16 The activities of the
moving objects has to be modeled to detect unusual object
behaviors in terms of the observed continuous attributes (e.g.,
Refs. 10,14, and 20). Anomalous events are also detected by
analyzing motion trajectories of objects by employing an un-
supervised clustering approach.21 One of the key challenges
in this domain is the large input size. Online anomaly de-
tection techniques are required as well as offline processing
support1 for a complete video surveillance system. Below,
some of the existing surveillance systems are discussed.

The techniques for anomaly detection are generally em-
ployed within video surveillance systems designed for con-
tinuously monitoring the environments. The video surveil-
lance and monitoring (VSAM) system proposed by Collins
et al. is one of the complete prototypes for object detection,
tracking, and classification.3 The hybrid algorithm developed
in that work is based on adaptive background subtraction
by three-frame differencing. The background maintenance
scheme is based on a classification of pixels (either mov-
ing or nonmoving) performed by a simple threshold test. A
model is provided on temporal layers for pixels and pixel
regions in order to better detect stop-and-go movements.

IBM’s Smart Surveillance System (S3)22 is an advanced
surveillance system that provides the capability to auto-
matically monitor a scene, manage the surveillance data,
perform event-based retrieval, receive real-time event alerts
through standard web infrastructure, and extract long-term
statistical patterns of activity. It also provides middleware
for surveillance, namely MILS (Middleware for Large Scale
Surveillance),23 which provides a complete solution for video
surveillance, including data-management services that can

be used for building large-scale systems. MILS also pro-
vides query services for surveillance data, including object-
specific attributes. The system employs relevance feedback
and data-mining facilities to increase its effectiveness.

Knight24 is an automatic multicamera surveillance system
deployed in a variety of sites ranging from railway security to
law enforcement. It detects, categorizes, and tracks moving
objects in the scene, flags significant events, and presents a
summary in terms of keyframes and a textual description of
observed activities to a human operator for final analysis and
decision.

Haritaoğlu et al.10 propose a model for real-time analysis
of people’s activities. Their model uses a stationary camera
and background subtraction to detect the regions correspond-
ing to a specific person(s). Their system, called W 4, uses
shape information to locate people and their body parts (head,
hands, feet, and torso). The system operates on monocular
grayscale video data, and no color cues are used. Creating
models of people’s appearances helps track interactions (e.g.,
occlusions) and simultaneous activities. The system uses a
statistical background model holding a bimodal distribution
of intensity at each pixel to locate people. The system is
capable of detecting a single person, multiple persons, and
multiple-person groups, in various postures.

Lyons et al.25 present a system called Video Content Ana-
lyzer (VCA), the main components of which are background
subtraction, object tracking, event reasoning, graphical user
interface, indexing, and retrieving. VCA differentiates be-
tween people and objects, and the main events it recognizes
are entering scene, leaving scene, splitting, merging, and
depositing/picking-up. Brodsky et al.26 describe a system for
indoor visual surveillance, specifically for use in retail stores
and homes. They assume a stationary camera and use back-
ground subtraction. A list of events that the object participates
in is stored for each object, simply, entering, leaving, merg-
ing, and splitting. Both of these techniques operate at the pixel
level and the region level, whereas we provide techniques to
transform the input stream into an event sequence represen-
tation, which is easier to process and has lower storage costs.

Kim and Hwang present an object-based video abstrac-
tion model, where a moving-edge detection scheme is used
for video frames.27, 28 A semantic shot-detection scheme is
employed to select object-based keyframes. When a change
occurs in the number of moving regions, the current frame
is declared as a keyframe, indicating that an important event
has occurred. This scheme also facilitates the detection of
important events. If the number of moving objects remains
the same in the next frame, a shape-based change detector is
applied to the remaining frames. The use of keyframes in this
approach is very similar to our keyframe detection scheme;
however, we utilize a keyframe detection scheme with in-
verted tracking data model and extend it further by assigning
descriptive labels to the keyframes.

In Ref. 29, a view-based multiple-object tracking system
is proposed, including a human action recognition scheme.
The basic aim in that work is to recognize human actions
in an interactive virtual environment even when the actions
are not abnormal. The blob-tracking phase that they have
developed assigns labels to each blob based on its previous
motion and current motion. The labels used are continue,
merge, split, appear, and disappear, and an inference graph
is maintained to track multiple objects simultaneously. The
labeling mechanisms of this scheme and ours are similar;
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Fig. 1 The pseudocode of the keyframe labeling algorithm.

however, we assign labels to a frame as a global represen-
tation of the events that occurred at the frame.Moreover, we
apply a keyframe-based technique to narrow the storage and
processing requirements.

3 Keyframe Labeling
In video processing, storage requirement is a very crucial
issue due to huge size of a video data set. Keyframe-based
video-processing techniques are popular because they re-
duce the storage requirements significantly by storing only
the data at the keyframes. A keyframe is generally identified
when there is a change in the spatiotemporal relations among
the salient objects in the scene. In video surveillance, there
are abnormal behaviors to be detected, and hence, there could
be other conditions, based on the change in the global motion
of the scene, to detect keyframes. Our keyframe detection al-
gorithm categorizes the keyframes into four primitive types,
namely JOIN, SPLIT, MOVE, and STOP, based on the appear-
ances of the extracted moving regions. These four labels are
among the primitive event types, and it is observed that they
can be used to detect typical abnormal behaviors such as
crossover, deposit, and pickup. As a result of this step, a la-
bel is assigned for each keyframe, and the input video stream
is represented as a sequence of events.

The keyframe labeling technique relies on moving-region
extraction and tracking steps, where the extracted moving re-
gions are indexed with respect to a grid-based representation.
The appearances of the identified moving regions are stored

in the motion appearance mask (MAM) for each frame f ; a 1
in this mask represents the presence of a motion in that cell.
The keyframe labeling computations for f are performed
based on MAM f and MAM f −1. Hence, the keyframe label-
ing technique produces a temporal ordering of the keyframe
labels as an event sequence that can be used to classify a
set of basic potentially abnormal events, such as crossover,
deposit, and pickup.

The pseudo code of our keyframe-labeling algorithm is
given in Fig. 1. At the first step, the moving regions are
extracted for each frame. This step includes a foreground ex-
traction scheme where morphological operations are applied
a priori. The morphological operations are used to group the
moving pixels into moving regions by the help of size filters,
in terms of minimum and maximum object size. The salient
regions are extracted through these grouping and filtering
operations at the end of the first step. At the next step,
the motion appearance mask of the frame is computed and
compared with that of the previous frame in order to detect
whether the current frame is a keyframe. At the last step, the
identified keyframe is labeled. In both the moving-region
detection and the keyframe detection step, temporal filtering
is applied to minimize the effect of temporal noise. Temporal
filtering is applied in both the moving-region detection and
the keyframe detection steps. For the former, the number of
frames that the extracted region has appeared is used in a
thresholding scheme. For the latter, the number of frames that
a keyframe label is identified consecutively is thresholded.
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Fig. 2 The noise reduction filters applied on a sample frame at a moving-region extraction step: (a) original frame from PETS 2006 S1-T1-C
data set30 at t1, (b) processed frame at t1, and (c) processed frame at t2 = t1 + 0.25 s.

3.1 Moving-Region Extraction
We employ an adaptive background maintenance scheme to
extract the moving regions, similar to the one proposed in
Ref. 3. We combine the scheme with three-frame differenc-
ing to detect the moving pixels. Then, we apply region group-
ing methods and morphological operations to these pixels to
identify the moving regions.

This technique can be described as follows: Let I f (x, y)
denote the intensity value of a pixel at (x, y) in video frame f .
Hence, M f (x, y) = 1 if (x, y) is moving in frame f , where
M f (x, y) is a vector holding moving pixels. A threshold
vector T f (x, y) for a frame f is needed for detecting pixel
motions. The basic test condition to detect moving pixels
with respect to T f (x, y) can be formulated as

M f (x, y) =

⎧⎪⎨
⎪⎩

1 if (|I f (x, y) − I f −1(x, y)| > T f (x, y)) and

(|I f (x, y) − I f −2(x, y)| > T f (x, y)),

0 otherwise.

(1)

The (moving) pixel intensities larger than the background
intensities [B f (x, y)] are used to fill in the region of a moving
object. This step requires a background maintenance task
based on the previous intensity values of the pixels. Similarly,
the threshold is updated based on the observed moving-pixel
information in the current frame. A statistical background
and threshold maintenance scheme is employed, as follows:

B0(x, y) = 0, (2)

B f (x, y)

=
{
αB f −1(x, y) + (1 − α)I f −1(x, y), M f (x, y) = 0,

B f −1(x, y), M f (x, y) = 1,

(3)

T0(x, y) = 1, (4)

T f (x, y)

=
⎧⎨
⎩

αT f −1(x, y) + (1 − α)[k
×|I f −1(x, y) − B f −1(x, y)|], M f (x, y) = 0,

T f −1(x, y), M f (x, y) = 1,

(5)

where α is the learning constant and the constant k is set to 5
in Eq. (5).3

We employ a view-based motion-tracking approach sim-
ilar to the motion history image (MHI) technique proposed
in Ref. 11. The MHI technique detects and tracks the param-
eters (i.e., structure and orientation) of the moving regions.
In an MHI, the pixel intensity is encoded as a function of
the temporal history of the motion at that pixel, where the
pixels that moved more recently are brighter. MHI f (x, y) of
f is constructed by the update rule

MHI f (x, y)

=
{
τ, M f (x, y) = 1,

max(0, MHI f −1(x, y) − 1), M f (x, y) = 0,
(6)

where τ denotes the temporal extent of a motion.
A set of filters is applied to reduce the effect of noise

in moving-region detection. First of all, a distance filter is
applied to the extracted moving regions, such that the closer
regions are joined. The distance threshold is adjusted with
respect to the perimeter of the smaller region to be joined. As
the next step, a size filtering is applied to the moving regions,
which filters out the ones below the size threshold ts in terms
of both area and perimeter. The distance and size filtering
thresholds are computed as functions of the width and height
of the frame to preserve the scale invariance.

The last filtering scheme that we employ is temporal fil-
tering. The temporal appearances of a moving region are
counted, and the region is filtered out if it fails to be present
in a predefined number of frames. The temporal threshold t0
is computed according to the frame rate of the input stream.
For example, for a temporal threshold duration of 0.25 s, t0
will be 6 if the input video stream is 24 frames/s. To elab-
orate further, the noise reduction filters that we applied are
shown in Fig. 2 on a sample frame. In Fig. 2(a) and 2(b),
the original frame and its corresponding processed version
at time t1 are shown, respectively. The object in the bot-
tom right corner in Fig. 2(b) has failed to pass the temporal
filter, since it has not appeared in a sufficient number of
frames. However, as shown in Fig. 2(c), the same object is
extracted, since it passed the temporal filter t0. On the other
hand, the smallest rectangle without an object label in the
mid-left part of the scene in Fig. 2(c) is failed to pass the size
threshold.

Optical Engineering November 2010/Vol. 49(11)117203-4

Downloaded from SPIE Digital Library on 22 Dec 2010 to 139.179.21.162. Terms of Use:  http://spiedl.org/terms
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Fig. 3 Motion appearance mask (MAM) computation on a sample frame: (a) original frame from PETS 2006 S1-T1-C data set,30 (b) processed
frame for 8×8 grid, and (c) MAM of the frame.

3.2 Computation of the Motion Appearance Mask
The actual content of a frame consists of the extracted mov-
ing regions, and in our approach a grid-based mapping is
held along with the actual content. In this scheme, instead
of processing moving regions, the corresponding grid-based
representation, which we call the motion appearance mask
(MAM), is processed for semantic analysis of the input
stream. The video frame I (x, y) is divided into a predefined
number of cells corresponding to the subdivisions in the x
and y directions. The appearances of the identified moving
regions are stored in the MAM of a frame f ; a 1 in this mask
represents the presence of a motion in the corresponding cell.
The moving-object appearances in a cell are computed with
respect to the center of mass (cm) of a region corresponding
to the moving object. Figure 3 illustrates the computation of
the MAM that we employ on a sample video frame by using
an 8×8 grid.

This grid-based representation of the extracted moving
regions at each frame significantly reduces the storage space
and the processing cost during the keyframe detection pro-
cess. The reason is that the amount of information to be pro-
cessed is significantly lower while using MAMs for keyframe
detection instead of the pixel-level information of the ex-
tracted moving regions. The effectiveness of this grid-based
representation depends on the effectiveness of the moving-
region extraction step, which is an expected prerequisite for
most of the event classification techniques. In our scheme,
the effect of false detection in moving-region extraction is
minimized with the use of distance, size, and temporal fil-
ters. Another well-known difficulty is the occlusion problem
during moving-region extraction. Since a MAM holds the
appearance of the motion at a specific cell without knowing
the actual moving region, the occlusion of moving regions is
not a problem in our grid-based representation.

The most challenging task in this scheme is the selection
of the grid size, which is crucial for the structure of the mo-
tion appearance mask. Even though the camera is generally
fixed in surveillance videos, an appropriate grid size has to be
specified to represent the motion effectively, since the field
of view of the cameras or depth of the scenes may change
in different applications. Object-based heuristics could be
applied to select the grid size as a function of the small-
est or the largest object/region size. These heuristics might
work, but in our opinion, the grid size has to be selected
in a way that is independent of the pixel level parameters

(e.g., size, perimeter). The main reason is that the grid-based
index representation is a view-based data model on top of
the pixel level, and hence, the view-based scheme has more
adaptive processing capabilities on various data sets when
loosely coupled with the pixel-level representation. Another
reason is that using a variable grid size based on the pixel-
level parameters of the objects makes on-the-fly processing
complex. Hence, we used fixed grid sizes in our experiments.

3.3 Keyframe Detection
The keyframe detection scheme uses only the motion ap-
pearance masks of the current frame and the previous frame,
which makes the processing easier. The pseudocode of the
keyframe detection algorithm is shown in Fig. 4. This algo-
rithm corresponds to steps 10 and 11 of the keyframe labeling
algorithm shown in Fig. 1, where a temporal filtering is ap-
plied after the keyframe detection to reduce the misdetection
rate based on sudden changes in MAM f . If the keyframe fails
to be the same for a duration of td frames, it is considered as a
sudden change in the scene. A keyframe is formally defined
as follows: Frame f is a keyframe if (MAM f �= MAM f −1)
∨ (MAM f = MAM f −1 = · · · = MAM f −k if k ≥ tstop),
where tstop denotes the maximum allowed number of frames
without motion.

We employed another filtering mechanism to reduce the
number of keyframes. The current frame is not detected as
a keyframe if the current and previous frames are labeled as
MOVE by the keyframe labeling algorithm. The idea behind
this filtering scheme is that consecutive MOVE labels have
no use in the mechanisms to classify surveillance events.
Figure 5 shows the effect of this keyframe filtering step on
two sample videos in the PETS 200630 data set. The subjec-
tive ground truth for the S1-T1-C data set [see Fig. 5(a)] is
148 keyframes, and for S2-T3-C data set [see Fig. 5(b)] is
142 keyframes. The extracted keyframe count is significantly
reduced after the filtering step, and the final keyframe counts
are 154 and 138 on the average for these two sample videos,
respectively. The average is computed using different values
of the grid size parameter, as shown in Fig. 5(a) and 5(b).

Besides reducing the number of extracted keyframes, an-
other gain is reducing the criticality of selecting appropriate
values for the grid size parameter.As shown in Fig. 5(a) and
5(b), the number of extracted frames without filtering in-
creases with the grid size, since the number of frames with
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Fig. 4 The pseudocode of the keyframe detection algorithm.

the MOVE label increases with smaller grid size values. How-
ever, the final keyframe count is almost constant when this
keyframe filtering scheme is applied.

Since the labels assigned to the extracted keyframes do
not change with this filter, the surveillance event classifica-
tion performance is not affected. Hence, the input size is
reduced by decreasing the number of extracted keyframes,
and the effect of the grid size parameter is minimized without
degrading the classification performance.

4 Surveillance Event Classification
Providing a general solution to anomalous event detection in
video surveillance is still an open research area. Reasonable
accuracies can be achieved for specific video surveillance
applications by restricting the variation of the video data.
Detecting anomalous events requires tracking the actions

of moving regions. A typical video stream has too many
frames, and hence too many moving regions to deal with.
Keyframe-based techniques reduce the number of regions
to be processed, but effective data models are required for
surveillance event detection and classification. Pixel-level or
region-level detection techniques may have high processing
costs or performance limitations for on-the-fly detection, due
to their large input size.

The keyframe labeling algorithm (see Fig. 1) that we em-
ploy transforms the input video stream to a textual represen-
tation of sequence of events in the video. The steps dealing
with moving regions are performed once, and a textual repre-
sentation of the video with a relatively small size is achieved.
The event classification, then, becomes detecting a sequence
of event labels in this input sequence. We devise three finite
state automata for crossover, deposit, and pickup. Formally,

Fig. 5 Keyframe filtering applied to PETS 2006 data sets. (a) S1-T1-C; ground truth is 148 keyframes; 154 keyframes are extracted on the
average. (b) S2-T3-C; ground truth is 142 keyframes; 138 keyframes are extracted on the average.
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Fig. 6 (a) The FSA for recognizing an event sequence for crossover.
(b) The state transition function δC for the automaton detecting
crossover. Here S0 is the initial state, and S3 is the final state ac-
cepting an event sequence for crossover.

a deterministic FSA is denoted as a quintuple (�, S, S0, δ,
F), where � is the input alphabet (a finite, nonempty set of
symbols); S is a finite, nonempty set of states; S0 is an initial
state where S0 ∈ S; δ is the state transition function such that
δ : S×� → S; and F is the set of final states, where F ⊂ S.
The FSAs that we devised for crossover, deposit, and pickup
are discussed with on this notation. The input to these FSAs is
the sequence of keyframe labels representing the input video
stream. Reasonable detection accuracies are achieved in our
experiments.

4.1 Crossover
A crossover situation occurs when at least two moving ob-
jects have passed through each other in the video scene. For
the two-object case, this event may occur in two different
forms:

1. if the objects move in the same direction and the faster
object passes the slower object, and

2. if the moving objects move in opposite directions and
cross each other.

These situations can be extended for more than two objects in
a similar manner. In both cases, tracking the moving objects
according to their locations to detect a crossover situation
imposes a high processing cost. The FSA-based approach
proposed for crossover detection operates effectively because
the input size is reduced.

Let FSAC = (�, SC , S0, δC , FC ) represent the FSA de-
tecting crossover event occurrences SC = {S0, S1, S2, S3},
� = {JOIN, SPLIT, MOVE, STOP}, and FC = {S3}. Figure 6
presents the automation FSAC in (a), and the state transition
function δC in (b).

A sample crossover detection by FSAC on a sample video
of the PETS 2006 data set30 is shown in Fig. 7. At the begin-
ning, the active state sc of FSAC is at S0. When the objects
shown in Fig. 7(a) enter the scene, sc becomes S1, and even-
tually |MAM f | = 2, where |MAM f | denotes the total num-
ber of 1’s in MAM f . When the execution reaches Fig. 7(b),
|MAM f | = 1 and |MAM f −1| = 2, which signals JOIN; hence
sc reaches S2. Finally, in Fig. 7(c), |MAM f | = 2 again and
|MAM f −1| = 1, which signals SPLIT and makes sc reach the
final state S3.

4.2 Deposit
A deposit situation occurs when a moving object leaves a
smaller object (e.g., suitcase, bag) in the video scene. Ef-
fective motion models are required for detecting the moving
object’s action.

Let FSAD(�, SD , S0, δD , FD) represent the fi-
nite state automaton detecting deposit event occurrences
SD = {S0, S1, S2, S3}, � = {JOIN, SPLIT, MOVE, STOP}, and
FD = {S3}. Figure 8 presents the automaton FSAD in (a),
and the state transition function δD in (b).

A sample deposit detection by FSAD on a sample video of
the PETS 2004 data set31 is shown in Fig. 9. At the beginning,
the active state sd of FSAD is at S0. When the object shown
in Fig. 9(a) enters the scene, sd becomes S1, and eventu-
ally |MAM f | = 1. When the execution reaches Fig. 9(b),
|MAM f | = 2 and |MAM f −1| = 1, which signals SPLIT;
hence sd reaches S2. Finally, in Fig. 9(c), MOVE is detected
when |MAM f | = 2 and |MAM f −1| = 2, which makes sd
reach the final state S3.

Fig. 7 FSA state transitions for crossover detection for PETS 2006 S1-T1-C data set30: (a) transition from S0 to S1, (b) transition from S1 to S2,
(c) transition from S2 to S3 and crossover detection.
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Fig. 8 (a) The FSA for recognizing an event sequence for deposit.
(b) The state transition function δD for the automaton detecting de-
posit. Here S0 is the initial state, and S3 is the final state accepting
the event sequence for deposit.

4.3 Pickup
Pickup can be considered as the dual of deposit; thus a pickup
situation occurs when a moving object picks up a smaller
object (e.g., suitcase, bag) in the video scene. Similarly, ef-
fective motion models are required for detecting the moving
object’s action.

Let FSAP = (�, SP , S0, δP , FP ) represent the FSA
detecting pickup event occurrences SP = {S0, S1, S2, S3},
� = {JOIN, SPLIT, MOVE, STOP}, and FP = {S3}. Figure 10
presents the automation FSAP in (a), and the state transition
function δP in (b).

A sample pickup detection by FSAP on a sample video
of the PETS 2004 data set31 is shown in Fig. 11. At the
beginning, the active state sp of FSAP is at S0. When the
object shown in Fig. 11(a) enters the scene, sd becomes S1,
and eventually |MAM f | = 1. When the execution reaches
Fig. 11(b), |MAM f | = 1 but sufficiently many frames have

Fig. 10 (a) The FSA for recognizing an event sequence for pickup.
(b) The state transition function δP for the automaton detecting pickup.
Here S0 is the initial state, and S3 is the final state accepting the event
sequence for pickup.

passed for tstop, which signals STOP; hence sd reaches S2.
Finally, in Fig. 11(c), MOVE is detected when |MAM f | = 1
and |MAM f −1| = 1, which makes sd reach the final state S3.

5 Performance Experiments
To evaluate the performance of our event detection tech-
nique, we manually annotated two sample videos from PETS
2004,31 namely leftbag and meetsplit, having 426 and 543
frames, respectively, and two sample videos from PETS
2006,30 namely S1-T1-C3 and S2-T3-C3, having 2526 and
2763 frames, respectively. We employed a fivefold cross-
validation method for the following experimental evalu-
ation. Although there exist performance evaluation tech-
niques based on object tracking32 and event detection33 in
PETS 2006, a direct comparison of the performance of our
keyframe labeling technique with that of the ones in PETS
2006 (e.g., Ref. 34) is not quite possible, since the latter use
metrics based on the object position for performance eval-
uations. Hence, we utilized receiver operating characteristic
(ROC) analysis based on the parameters of our technique

Fig. 9 FSA state transitions for deposit detection for PETS 2004 leftbag data set31: (a) transition from S0 to S1, (b) transition from S1 to S2,
(c) transition from S2 to S3 and deposit detection.
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Fig. 11 FSA state transitions for pickup detection for the PETS 2004 leftbag data set31: (a) transition from S0 to S1, (b) transition from S1 to S2,
(c) transition from S2 to S3 and pickup detection.

to validate its applicability for surveillance event classifica-
tion using our ground truth data. The benchmark data sets
provided by PETS 2004 and PETS 2006 are used in these
analysis. The use of these widely accepted data sets enables
us to evaluate the effectiveness of our technique.

ROC analysis is used to inspect the effect of a single
parameter on the classifier by plotting the true-positive rate
(TPR) and false-positive rate (FPR) values that are calculated
while keeping all the other parameters fixed. It indicates the
effectiveness of the classifier by altering values of a single pa-
rameter. Since our keyframe labeling algorithm yields exact
keyframe labels instead of label percentages for keyframes,
and our FSA-based schemes give binary output for surveil-
lance event classification, a set of points is plotted on ROC
curves. The points above the x = y line are considered as
good classification results, whereas the ones below are bad.

Figure 12 shows the ROC analysis results for inspecting
the effect of the grid size parameter in surveillance event
classification. TPR and FPR values were computed using
the outputs of the FSA-based detection algorithms. The pos-
itive output frames for each of the classes were annotated
manually, and a similar set of negative output frames was
annotated for the analysis. For this experimental setup, the

temporal detection threshold td is set to 3 frames for the
PETS 2006 and 2 frames for the PETS 2004 data set. In
Fig. 12(a), the only bad classification occurs when the grid
size is 6, and the detection algorithm gives best results for
the grid size 8. In Fig. 12(b), the classification for the grid
sizes 10 and 12 are among the good ones, and 10 gave better
results. The main reason behind this difference among data
sets is the variation in the pixel-level properties, such as ob-
ject sizes, object average velocities, etc. Obtaining a formula
to express the appropriate grid size in terms of the pixel-
level parameters is very hard. Hence, ROC analysis can be
performed, as just discussed, to determine effective grid size
values for the data sets. However, since the camera is gen-
erally fixed for surveillance data sets, this step can be taken
once in preprocessing for each different camera setting, to
minimize the overall processing cost.

Figure 13 shows the ROC analysis results for inspecting
the effect of the temporal detection threshold parameter td in
surveillance event classification. The TPR and FPR values are
based on the outputs of the FSA-based detection algorithms.
The positive output frames for each class are annotated man-
ually, as well as a similar set of negative output frames for
the analysis. For this experimental setup, the grid size is set

Fig. 12 ROC curve analysis for the grid size parameter: (a) PETS 2006 data set, (b) PETS 2004 data set.
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Fig. 13 ROC curve analysis for the temporal detection threshold parameter td : (a) PETS 2006 data set, (b) PETS 2004 data set.

to 8 for the PETS 2006 and 10 for the PETS 2004 data set. In
Fig. 13(a), td = 3 gives the best results, whereas in Fig. 13(b),
td = 2 detects the anomalies better than the other values. As
expected, increasing the temporal detection threshold frame
count lowers the detection accuracy significantly.

In our keyframe labeling technique, the outcome of the
moving-region extraction scheme is crucial for the rest of the
steps. By the help of the filtering steps that we employ to
reduce the noise and improve the detection performance, the
keyframe detection algorithm yields reasonable performance
for event classification. To elaborate on this, we provide the
results of a set of experiments in Table 1. The experiments
were carried out on the PETS 2006 data set; the grid size
was set to 6, and the temporal detection threshold was set
to 3. The false-detection rate of the moving-region extraction
step is significantly lowered by means of the filters. Since the
keyframe detection scheme depends on the MAM of the
frame, and since the grid-based foreground mask depends
on the existence of the motion at a specific grid, occlusion
would not be a problem for the keyframe labeling algorithm.

One of the primary advantages of our keyframe label-
ing scheme is the gain in storage, which is obtained simply

Table 1 The effect of filtering on moving-region extraction. Experi-
ments on S1-T1-C3 and S2-T3-C3 data sets were performed with
grid size set to 6 and temporal detection threshold set to 3.

Count

S1-T1-C3 S2-T3-C3

Prior to filtering 5986 6027

Distance filtering 4212 4365

Size filtering 3743 4056

Temporal filtering 2419 2620

Ground truth 2480 2745

Frame count 2526 2763

by reducing the input size. In general, the storage gain of
keyframe-based techniques in video processing can be ex-
pressed by the ratio of the number of keyframes extracted to
the total number of frames. In order to compare the storage
gain, a fair approach is to compare the input sizes of different
techniques. In our keyframe labeling scheme, the processing
for event detection and classification can be handled with
the help of the extracted event label sequence, which yields
a significant storage gain over object-based approaches. The
input sizes of the object-level approaches are estimated by the
total number of extracted objects, since the extracted objects
have to be processed for event detection, whereas only the ex-
tracted keyframe labels are to be processed in our approach.
To be fair, the number of objects is computed after complet-
ing all of the filtering steps. Figure 14 presents the results of

Fig. 14 Storage gain and reduction of the input size for detection for
PETS 2004 and PETS 2006 data sets. The keyframe count that is
extracted by our technique significantly reduces not only the input
size for event detection but also the storage space for after-the-fact
analysis.
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this analysis. As expected, the keyframe-based approach has
a significantly lower storage cost and input size.

The major drawback of our keyframe labeling algorithm
is that it may not be suitable for crowded scenes, such as
video streams of the PETS 200735 data set. The ROC analysis
gives poor results for this data set, and the detection accu-
racy is low. The main reasonis that it is very hard to identify
the keyframe with a single label in a crowded scene. Too
many SPLIT, JOIN, and MOVE events occur simultaneously.
Another drawback is the algorithm’s behevior when the ob-
ject size is very large (e.g., an object occupies nearly one-
fourth of the video frame). In such cases, forming a grid for
representing the moving regions in the MAM does not bring
significant improvement over ordinary detection techniques.

6 Conclusion
We propose a keyframe labeling technique, which simply
assigns labels to the keyframes extracted by a keyframe de-
tection algorithm. Our keyframe detection technique relies
on a grid-based index representation, which is used to com-
pute the motion appearance mask (MAM) of the frame. A
keyframe is detected if a change occurs in the MAM of
the frame with respect to that of the previous frame. The
keyframes are categorized into four simple types based on
the appearance of the identified moving regions. As a result
of the keyframe labeling process, the input stream is repre-
sented as a temporally ordered sequence of keyframes. The
surveillance event classification task is carried out on this
sequence; hence, the complexity of the detection is reduced.
The keyframe labeling technique reduces the large input size
for on-the-fly processing, and thus reduces the storage re-
quirements for after-the-fact analysis.

We also provide FSA-based mechanisms to detect a typ-
ical set of anomalous behaviors. We devise three separate
FSAs to recognize sequences corresponding to a typical set
of events, the inputs of which are the sequence of keyframe
labels that we assign to the extracted keyframes. The perfor-
mance experiments based on the benchmark data sets PETS
2004 and PETS 2006 show that the FSA-based approach,
together with the keyframe labeling technique, provides ef-
fective on-the-fly anomaly detection, in that reasonable de-
tection performance is achieved.
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(TÜBİTAK), with grant No. EEEAG-105E065.

References
1. C. S. Regazzoni, V. Ramesh, and G. L. Foresti, “Scanning the issue/

technology: special issue on video communications, processing, and un-
derstanding third generation surveillance systems,” Proc. IEEE 89(10),
1355–1367 (2001).

2. N. Haering, P. L. Venetianer, and A. Lipton, “The evolution of
video surveillance: an overview,” Mach. Vis. Appl. 19(5–6), 279–290
(2008).

3. R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y.
Tsin, D. Tolliver, N. Enomoto, O. Hasegawa, P. Burt, and L. Wixson,
“A system for video surveillance and monitoring,” Technical Report
CMU-RI-TR-00-12, Carnegie Mellon Univ., Robotics Insti. (2000).

4. D. Duque, H. Santos, and P. Cortez, “The OBSERVER: an intelligent
and automated video surveillance system,” in Proc. Int. Conf. on Image
Analysis and Recognition (ICIAR), A. Campilho and M. Kamel, Eds.,
pp. 898–909, Springer-Verlag, Berlin (2006).

5. C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: real-
time tracking of the human body,” IEEE Trans. Pattern Anal. Mach.
Intell. 19(7), 780–785 (1997).

6. C. Stauffer and W. E. L. Grimson, “Adaptive background mixture mod-
els for real-time tracking,” in Proc. IEEE Computer Soc. Conf. on
Computer Vision and Pattern Recognition (CVPR’99), pp. 246–252
(1999).

7. R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving
objects, ghosts and shadows in video streams,” IEEE Trans. Pattern
Anal. Mach Intell. 25(10), 1337–1342 (2003).

8. A. Elgammal, R. Duraiswami, D. Harwood, and L.S. Davis, “Back-
ground and foreground modeling using non-parametric kernel den-
sity estimation for visual surveillance,” Proc. IEEE, 90, 1151–1163
(2002).

9. K. Kim, T. Chalidabhongse, D. Harwood, and L. Davis, “Real-
time foreground/background segmentation using codebook model,”
Real-time Imaging 11(3), 172–185 (2005).
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