
Site-Based Dynamic Pruning for Query Processing
in Search Engines

Ismail Sengor Altingovde, Engin Demir, Fazli Can, Özgür Ulusoy
Computer Engineering Department, Bilkent University, Ankara 06800, Turkey

{ismaila, endemir, canf, oulusoy}@cs.bilkent.edu.tr

ABSTRACT
Web search engines typically index and retrieve at the page level.
In this study, we investigate a dynamic pruning strategy that
allows the query processor to first determine the most promising
websites and then proceed with the similarity computations for
those pages only within these sites.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – clustering, search process, query formulation.

General Terms
Performance, Experimentation.

Keywords
Cluster-skipping, dynamic query pruning, inverted index.

1. INTRODUCTION
In most of the search engines, a typical unit of the indexing and

retrieval is a single Web page. That is, each page is considered as
a separate entity (sometimes associated with the anchor text of the
referring pages), which is indexed off-line and compared to a
query on-line. On the other hand, Web pages are usually hosted
by a particular organization, person, etc. and pages at the same
site may form a more coherent set in terms of the content, with
respect to the pages that reside in other sites. In this study, we
propose a (conceptually) two-stage query processing strategy, in
which first the websites that are most similar to a query are
determined, and then pages within these sites and most similar to
the query are returned as the final result. Our goal is to reduce the
query processing time while maintaining the quality of the top-K
results (where K is a small number, typically less than 30, since
very few Web users look at more than the first 30 results). The
contributions of this work are as follows: we (i) investigate the
quality of results for a site-based pruning approach, and (ii) adapt
a specifically tailored inverted index [1, 3] that allows the
efficient computation of the proposed strategy.

2. SITE-BASED DYNAMIC PRUNING
For a given query, we first determine the top-N sites, best-sites,

that are most similar to the query, and then we obtain the top-K
Web pages, best-pages, within these sites. Notice that, this is
similar to the cluster-based retrieval as described in [1, 3]. That is,
it can be considered as if each Web page belongs to the “cluster”
identified by its website (i.e., the hostname part of its URL).
Thus, we employ the cluster-skipping inverted index structure
(CS-IIS) of [1] to create an index which interleaves the site and
page information and allows efficient query processing.

In CS-IIS, the <document, term frequency> pairs in a posting
list are reorganized such that all documents from the same site are
grouped together, and at the beginning of each such group two
extra elements are stored in the form of <site id, next site
address> and <no of documents, avg. term frequency> [1]. The
former element allows query processor to jump to the next site
without processing the postings of a particular site. In the latter
additional element, we store adequate information to compute the
(partial) similarity of a site S to a query including a term t: the
first value is the number of documents including t at S, and the
second one is the average term frequency of t at S.

During query processing, there are two possible strategies. In
the typical strategy (i.e., similar to CBR) there are two stages [3]:
in the first stage, best-sites are determined by using the additional
elements in the posting lists of the each query term; i.e., posting
list for each query term is retrieved and processed, to obtain the
top-N best-sites. Notice that, during this stage, only the additional
elements are accessed. In the second stage, for each posting list,
only those portions of the list that are from the best-sites are
accessed: if a site is not in best-sites, it is simply skipped by
jumping to the next site pointed by the “next site address”.

An alternative incremental strategy is proposed in [1]. In this
case, each posting list is fetched only once, but two passes are
made on each list. In the first pass, the current best-sites are
determined, and in the second pass, partial similarities for only
those pages that are from these current best-sites are computed. In
[1], it is stated that both strategies provide comparable
effectiveness, whereas the latter avoids fetching each list twice.
This is important in case that the lists are stored on disk.

In this study, without loss of generality, we assume that all
index structures are stored in the main memory (as in [8]) and
compare two strategies: (i) the baseline (no-pruning) strategy
which involves a traditional inverted index and processes the
entire posting list for each query term, and (ii) the site-based
pruning approach with typical and incremental strategies, both of
which employ a CS-IIS.

3. EXPERIMENTS
Dataset. In this study, we use a collection of about 4.3 million
Web pages obtained from Stanford University's WebBase Project
repository. This dataset involves pages crawled from the US
government domain during the first quarter of 2007. The pages in
the dataset are from 1,103 websites.
Indexing. We eliminated HTML tags, scripts, etc. and English
stopwords. No stemming is applied. Next, the typical inverted
index and CS-IIS are constructed. Both files are compressed using
the same procedures as described in [1]. The resulting typical and
cluster-skipping inverted files take 6.3 GB and 6.6 GB
(uncompressed) and 767 MB and 785 MB (compressed),
respectively. Note that, the increase in the CS-ISS file size is only Copyright is held by the author/owner(s).

SIGIR’08, July 20–24, 2008, Singapore.
ACM 978-1-60558-164-4/08/07.

861

0

0.2

0.4

0.6

0.8

1

10% 30% 50%
Percentage of sites selected

Si
m

ila
rit

y

Typical top-10
Typical top-20
Typical top-30
Incremental top-10
Incremental top-20
Incremental top-30

Figure 1. Similarity of pruned results to the baseline results.

2%, an affordable overhead. During the experiments, only the
compressed files are used.
Query processing. We use the efficiency task topics of TREC
2005 terabyte track, including 50K queries and 2.3 terms per
query, on the average. The similarity computations between
queries and sites/documents use TF-IDF and the cosine metric [1].
Effectiveness Experiments. We first compare the typical and
incremental strategies for site-based pruning to the baseline
strategy. Since there are no relevance judgments for our collection
and query set, the top-K results obtained from each pruning
strategy is compared to those results from the baseline. A measure
based on the symmetric difference is used for comparing two lists
[4]. In Figure 1, we plot the similarity between the top-K (K ∈
{10, 20, 30}) results of the baseline approach and site-based
pruning approaches, namely typical and incremental strategies,
versus the pruning level. The pruning level is simply controlled
by the parameter N, which denotes that the top-N% of the sites is
selected as the best-sites.

Our findings reveal that (i) the pruned results reveal a high
similarity to the non-pruned results (e.g., incremental strategy
achieves 74% similarity for top-10 results using 10% of the sites
only), (ii) the incremental strategy for site-based pruning does not
degrade result quality with respect to the typical strategy (as also
observed in [1]) and may even improve the latter, and (iii) as the
number of the selected sites increase, the results converge.
Efficiency Experiments. The performance of the baseline
strategy and site-based pruning strategy are compared with
respect to pruning level. Note that, since the inverted index is
assumed to be in-memory, both typical and incremental pruning
strategies work in almost the same time and thus a single figure is
presented. Figure 2 reveals that the site-based pruning strategy
provides significant efficiency improvements over the baseline,
reaching up to 46% when the top-10% of the sites is selected.

4. COMPARISON WITH RELATED WORK
Li et al. [5] defines the notion of Web information unit (WIU)

as logical Web document including several real Web pages.
During query processing, they retrieve such WIUs, which are
computed by graph traversals starting from the pages that include
the query terms (i.e., initial pages). Our work is significantly
different from that in two aspects: First, they essentially aim to
improve search effectiveness by retrieving semantically coherent
pages as a logical unit, whereas our goal is improving efficiency
at the first place. Second, their logical units are constructed in a
bottom-up manner. In contrast, we apply a simple top-down
approach in which the relatively non-promising sites, a rather
coarse unit of content, are eliminated so that the resources for the
query processing can only be devoted to these pages within
promising sites. Notice that, websites may not always include
semantically coherent pages. Still, we envision that for most of

0
10
20
30
40
50
60

10% 30% 50%

Percentage of sites selected

Ti
m

e
(m

s)

Site-based pruning

Baseline

Figure 2. Average times for query processing strategies.

the sites, the overlap in terms of the content is higher for pages in
a particular site than those pages that are not within this site. For
instance, the findings in [7] imply that as the degree of overlap
among the URLs increase, the coherency in the content
 (i.e., terms) in the corresponding pages also increase.

There are efficient dynamic pruning techniques such as those
based on the quit-continue approach [6] and impact-sorted lists
[2]. Both the baseline and the proposed approaches can benefit
from such techniques. For instance, the impact-based pruning may
be coupled with our site-based pruning, for further improvements
in efficiency (i.e., postings for each site in CS-IIS can be sorted
with respect to impacts).

5. CONCLUSION
We present a dynamic query pruning technique that eliminates

relatively less promising sites (and Web pages) during retrieval.
The preliminary results are encouraging in that the top-K results
returned by the site-based pruning strategy exhibit strong
similarity to those of the no-pruning case, while the proposed
strategy achieves significant reductions in processing times. The
future work involves exploiting URL hierarchy to obtain more
coherent groups of Web pages and comparison and combination
of the proposed approach with other dynamic pruning approaches.

6. ACKNOWLEDGEMENTS
This work is partially supported by The Scientific and Technical
Research Council of Turkey (TÜBİTAK) by the grant # 108E008.

7. REFERENCES
[1] Altingovde, I. S., Demir, E., Can, F., Ulusoy, Ö. Incremental

cluster-based retrieval using compressed cluster-skipping
inverted files. ACM TOIS, in press. Available at
http://139.179.21.106/tois.pdf

[2] Anh, V.N., Moffat, A. Simplified similarity scoring using
term ranks. In SIGIR’05, 226–233, 2005.

[3] Can, F., Altingovde, I.S., Demir, E. Efficiency and
effectiveness of query processing in cluster-based retrieval.
Information Systems 29, 8, 697-71, 2004.

[4] Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M.,
Maarek, Y. S., Soffer, A. Static index pruning for
information retrieval systems. In SIGIR’01, 43-50, 2001.

[5] Li, W.-S., Candan, K. S., Vu, Q., Agrawal, D. Retrieving and
organizing Web pages by “information unit”. In WWW’01,
230–244, 2001.

[6] Moffat, A., Zobel, J. Self-indexing inverted files for fast text
retrieval. ACM TOIS 14, 4, 349-379, 1996.

[7] Silvestri, F. Sorting out the document identifier assignment
problem. In ECIR’07, 101-112, 2007.

[8] Strohman, T., Croft, W. B. Efficient document retrieval in
main memory. In SIGIR’07, 175-182, 2007.

862

