
Timestamp-based Result Cache Invalidation for
Web Search Engines

Sadiye Alici
Computer Engineering Dept.

Bilkent University, Turkey
sadiye@cs.bilkent.edu.tr

Ismail Sengor Altingovde
∗

L3S Research Center
Hannover, Germany

altingovde@l3s.de

Rifat Ozcan
Computer Engineering Dept.

Bilkent University, Turkey
rozcan@cs.bilkent.edu.tr

B. Barla Cambazoglu
Yahoo! Research
Barcelona, Spain

barla@yahoo-inc.com

Özgür Ulusoy
Computer Engineering Dept.

Bilkent University, Turkey
oulusoy@cs.bilkent.edu.tr

ABSTRACT
The result cache is a vital component for efficiency of large-
scale web search engines, and maintaining the freshness of
cached query results is the current research challenge. As a
remedy to this problem, our work proposes a new mechanism
to identify queries whose cached results are stale. The basic
idea behind our mechanism is to maintain and compare gen-
eration time of query results with update times of posting
lists and documents to decide on staleness of query results.
The proposed technique is evaluated using a Wikipedia doc-
ument collection with real update information and a real-life
query log. We show that our technique has good prediction
accuracy, relative to a baseline based on the time-to-live
mechanism. Moreover, it is easy to implement and incurs
less processing overhead on the system relative to a recently
proposed, more sophisticated invalidation mechanism.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Design, Experimentation, Performance

Keywords
Web search, result cache, cache invalidation, freshness

1. INTRODUCTION
Large-scale web search engines maintain a cache of pre-

viously computed search results [5]. Successive occurrences

∗Work done while the author was at Bilkent University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’11, July 24–28, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

of a query are served by the cache, decreasing the average
query response latency as well as the amount of query traf-
fic hitting the backend search servers. So far, most works in
literature addressed issues related to cache eviction [23], ad-
mission [6], and prefetching [18], assuming limited capacity
caches and a static web index. In practice, however, search
engine caches are stored on disk and hence can be very large,
resembling a cache with almost infinite capacity [10]. More-
over, the web index is not static; it is continuously updated
due to new document additions, deletions, or modifications.

It has been recently shown that, when an incrementally
updated web index is coupled with a very large result cache,
the staleness of cache entries becomes an issue since cache
hits may result in stale search results to be served [8, 10],
potentially degrading user satisfaction. A simple solution to
this problem is to associate with every cache entry a time-
to-live (TTL) value so that the validity of an entry is expired
after some time, i.e., hits on expired cache entries are con-
sidered misses and lead to reevaluation of the query. The
TTL solution can be coupled with proactive refreshing of
stale entries, i.e., recomputing cached results when backend
servers have low user query traffic [10]. An alternative is
to couple the TTL solution with cache invalidation mecha-
nisms, where the cache entries whose results are predicted to
change due to index updates are detected and invalidated [8].

This paper introduces a new mechanism, which utilizes
timestamps to facilitate invalidation decisions. The pro-
posed mechanism maintains a separate timestamp for each
document in the collection and posting list in the index.
Timestamps indicate the last time a document or posting
list became stale, decided based on an update policy. Sim-
ilarly, every query result in the cache is time-stamped with
its generation time. In case of a cache hit, the invalida-
tion mechanism compares the timestamp of the query result
with timestamps of associated posting lists and documents
to decide whether the query result is stale or not, based on
a certain invalidation policy.

The proposed approach does not involve blind decisions,
as in the case of TTL-based invalidation [10], or techniques
that are computationally expensive [8]. In terms of compu-
tation, the proposed approach incurs little overhead on the
system. Moreover, our approach can be easily integrated
into a real search engine, due to its distributed nature. Fi-
nally, its accuracy in identifying stale queries and its suc-

cess in reducing redundant query executions at the backend
search system is better than that of TTL and reasonably
close to that of a sophisticated mechanism [8]. In addition
to the proposed invalidation mechanism, our work provides
a detailed study of the cache invalidation problem, with sev-
eral important parameters, such as query length, query fre-
quency, result update frequency, and query execution cost,
as real life query streams exhibit different characteristics for
different applications (e.g., query results containing news
pages may become stale more often than others).

The rest of the paper is organized as follows. Section 2
provides some preliminaries. The proposed cache invalida-
tion framework and policies are presented in Section 3. We
discuss our experimental setup in Section 4. Experimen-
tal results are presented in Section 5. Section 6 provides a
cost analysis for the overhead incurred on the search system.
Section 7 provides a survey of related work. We conclude
and point to future research directions in Section 8.

2. PRELIMINARIES

2.1 Incremental Indexing Framework
We assume that every search node is responsible for stor-

ing and indexing a subset of documents in the collection
as well as processing queries over its index (i.e., document-
based partitioning). Mapping of documents to search nodes
is through hashing of document ids into search node ids. Fu-
ture modifications in the original document collection (i.e.,
document addition, deletion, and updates) are communi-
cated to search nodes by the crawler, which continuously
monitors the changes in the Web. Search nodes incremen-
tally reflect these changes to their local indexes. We model
updates on already indexed documents as the deletion of the
old version succeeded by an addition of the new version.

In an ideal incremental indexing setup, changes on the
document repository are immediately reflected to local in-
dexes in search nodes. In practice, depending on the fresh-
ness requirements, the changes can be accumulated for a
small time period and then reflected to index at once [8]. If
the majority of the entire index is kept in main memory [13],
this update process does not require a strict locking mecha-
nism, i.e., updates can be applied on copies of inverted lists
and do not affect queries that are concurrently processed on
the lists. After all lists of a particular update are processed,
the index pointers are set to point to the new lists. Doc-
ument properties (such as length, link and content scores,
etc.) are also updated accordingly. In our setup, we also
maintain and update some timestamp values for affected
documents and terms, as we will discuss in Section 3.

In Fig. 1, we illustrate a simplified version of the search
system architecture we consider in this work. Typically, a
result cache is placed within a broker machine. If the query
is found in the cache, the answer is immediately served by
the cache; otherwise, the query is processed at the back-
end search system. Note that, in the incremental indexing
framework described above, the underlying index may be
modified after query results are generated and stored in the
cache. In this paper, we introduce mechanisms to detect
and invalidate such stale query result entries in the cache.

2.2 Root Cause Analysis of Staleness
Before discussing our invalidation mechanism, we take a

closer look at the causes that make a result in the cache

incremental
indexer

query
processor

result
cache

Web
crawler

user inverted
index

document
collection

the Web

Broker Indexing/search system Crawling system

Figure 1: Architecture of the search system.

stale. We consider a query result stale if there is a change
in the ids or the order of documents in the result [8]. In this
respect, we claim that at least one of the following cases
should hold to make the cached result R of a query q stale:

Case (i). At least one document d that was initially in
R is either deleted, or revised in such a way that its rank
in R is changed. In the latter case, some query terms that
were previously found in d could have been deleted, their
frequency could have been modified (i.e., by an increase or
decrease), or document length could have been changed (i.e.,
terms that are not in q can be added to or deleted from d,
or their frequency in d can be modified).

Case (ii). At least one document d that was not pre-
viously in R can qualify to enter R. In this case, a new
document including all query terms (and yielding a high-
enough score) could have been added to the collection, or
an existing document could have been revised in such a way
that its new score qualifies for R. In such an update, some
query terms that were not previously in d could have been
added to d, the frequency of query terms that appear in d
could have been modified or, as in the previous item, the
document length could have been changed due to modifica-
tions in other terms that are not in q.

We note that our discussion assumes a ranking function
that is essentially based on basic document and collection
statistics (e.g., TF-IDF, BM25). In practice, a revision on a
document can also change the term distances within the text
and subsequently, the document score, if a proximity-based
scoring function is employed [24]. Similarly, changes on the
graph-based features of a document (such as its PageRank
score) may also change its overall score. In this paper, we
assume a basic scoring function while evaluating the pro-
posed timestamp-based invalidation framework to keep our
experimental setup tractable (as in [8]). However, through-
out the discussions, we point to possible extensions to our
policies to cover more sophisticated ranking functions.

For handling case (i), the primary source of required infor-
mation is the query result R (in addition to deleted and re-
vised documents). However, handling case (ii) requires some
knowledge of documents that are not in R, i.e., all other
candidate documents for q in the collection. Obviously, this
constraint is harder to satisfy. In the following section, we in-
troduce our timestamp-based invalidation framework (TIF),
which involves various policies that attempt to detect if one
of the above cases hold for a cached query result. Note
that, since it is not always possible to guarantee if any of
these cases really occurred (without reexecuting the query),
all invalidation prediction approaches involve a factor of un-
certainty, and subsequently, a trade-off between prediction
accuracy and efficiency. Hence, while tailoring our policies,
our focus is on both keeping them practical and efficient to
be employed in a real system and as good as the approaches
in the literature in terms of prediction accuracy.

qi, Ri, TS(qi)

q1 R1 TS(q1)
q2 R2 TS(q2)

...

TS(qC)qC RC

Result cache

qi

TS(d1) TS(d2) TS(dD)...

Document timestamps

TS(t1)

TS(t2)

...

TS(tT)

... Document
parser

documents
assigned

to the node
document
timestamp
updates

index updates

term timestamp updates

Invalidation
logic

0/1

miss/stale

SEARCH
NODE

results of the node

Figure 2: Proposed cache invalidation architecture.

3. INVALIDATION FRAMEWORK
Our framework has an offline (i.e., indexing time) and an

online (i.e, query time) component (see Fig. 2). The offline
component is responsible for reflecting document updates on
the index and deciding on stale terms and documents. To
this end, each term t in the vocabulary and each document d
in the collection are associated with timestamps TS(t) and
TS(d), respectively. The value of a timestamp shows the
last time a term (or document) is deemed to be stale. The
staleness decision for terms and documents are given based
on the policies discussed in Section 3.1.

The online component is responsible for deciding on stal-
eness of a query result. Each query q in the result cache is
associated with a timestamp TS(q), showing the last time
the query results are computed at the backend. Our invali-
dation policy (Section 3.2) aims to predict whether any one
of the cases discussed in Section 2.2 hold for a cached result.
In a nutshell, we compare documents’ TS values to query’s
TS value to identify the documents that are deleted or up-
dated after the query result was generated, and can render
the cached result invalid. To predict results that became
stale due to the second reason, we compare query terms’ TS
values to query’s TS value to identify queries whose terms
start to appear in some new documents.

3.1 Timestamp Update Policies
Updating document timestamps. In Fig. 2, for the

sake of simplicity and saving space, we present the data
stored at a single node in the search cluster. At each index
node, in addition to the inverted index and other auxiliary
data structures that are typically used for query processing,
we keep timestamp values for documents and terms.

We set the timestamp of newly added documents to the
current date. For all deleted documents, we set TS to a
predefined infinite value.1 Finally, for a revised document,
we compare the old and new versions of the document and
set the timestamp to the new version’s date only if their
lengths (the total number of terms) differ by more than a
fixed percentage L (this is similar to [8]). This parameter is
intended to allow a level of flexibility in when a document
can be considered as updated. When L is set to 0, every
single modification of document would cause a TS update.

For document revisions, it is also possible to consider other
features relevant to the underlying score function while de-
termining the new TS. For instance, when the DOM struc-
ture or PageRank of an existing document changes (e.g.,

1This choice simply allows a uniform presentation of our
invalidation policy in the next section. In practice, it is also
possible to set the timestamp value of a deleted document
to a null value, or the deletion can be inferred by the system
if it can not be found in the document TS data structure.

more than a predefined threshold), the document TS can
also be updated. We leave exploring alternative score func-
tions and their impact on invalidation as a future work.

Since each document is assigned to a certain index node
via a hash function, we store a document’s TS value only on
the associated index node. That is, keeping track of docu-
ment TS values is a simple operation and since its cost would
be amortized during the in-place index update it would yield
almost no additional burden on the system.

Updating term timestamps. For each term in the in-
dex (again, on a certain node), we update the timestamp
value when a term’s list is significantly modified in a time
period. Analogous to the document TS case, our decision is
guided by the amount of change in the length of a posting
list. Furthermore, for terms, we can not only keep track of
the number of modifications (addition and deletion of post-
ings) but also estimate which of these modifications are more
important in terms of the ranking score. In this respect, we
describe two alternative policies, as follows.

i) Frequency-based update: In this policy, we keep an up-
date counter that is incremented whenever the term’s post-
ing list is modified by addition or deletion of postings. Here,
we only take into account the modifications due to postings
that are newly added to a term’s list (due to our anticipation
that deletions from a revised document may less often make
a result stale, in comparison to the addition of new content).
When the value of a term’s update counter exceeds a certain
fraction (F) of its initial posting list length, the term is said
to be stale. Then, a new timestamp is assigned to the term,
and its update counter is set to zero.

ii) Score-based update: For each term’s posting list, we
initially sort the postings (in descending order) using the
ranking function of the search system and store the score
threshold, i.e., the score of posting at rank P (S@P). The
parameter P can be set to a constant value (such as 10), or
adaptively determined for each term as some percentage of
the term’s posting list length. At each modification to a list,
we compute the score of the newly added posting, Snew. If
Snew > S@P for this list, we assign a new TS to the term,
and recompute S@P .

In some sense, the latter policy resembles the posting list
pruning method proposed by Carmel et al. [11]. In [11],
posting lists are again sorted based on their ranking scores;
and those postings with scores smaller than the score of
the P th postings are decided to be less worthy, i.e., can be
pruned safely. Here, conversely, we imply that only those
postings that can enter among the top-P postings of a term
are valuable enough to update this term’s timestamp.

Note that, both of these timestamp-update polices require
only an additional field to be stored per index term, which a
very modest requirement. Clearly, the score-based policy is
more expensive than the frequency-based one as the former
requires ranking of the postings in a list at each timestamp
update for that term. In return to its higher cost, we antic-
ipate that the score-based policy may identify those update
operations that can change query results more accurately.
This expectation is experimentally justified in Section 5.

It is possible to reduce the cost of the score-based up-
date policy by employing a hybrid approach. For instance,
it is possible to apply the score-based policy only for terms
that appear in the most frequent queries (as can be obtained
from previous query logs), whereas the frequency-based pol-
icy can be applied to other terms. Alternatively, the terms

to apply the score-based policy can be determined based on
the collection frequency or update frequency. These promis-
ing ideas are not evaluated in this work due to lack of space,
and left as a future work.

3.2 Query Result Invalidation Policies
As seen in Fig. 2, the result cache stores the query string

q, result R and timestamp value TS(q).2 For each cache hit,
the triplet 〈q,R, TS(q)〉 is sent to index servers. Each node,
in parallel, predicts whether the cached result is stale or not,
using the term and document timestamps and the triplet
〈q,R, TS(q)〉 for the query in question. A node decides that
a result is stale if one of the two conditions holds:
• C1: If ∃d ∈ R, s.t. TS(d) > TS(q) (i.e., document

is deleted or revised after the generation of the query
result), or
• C2: If ∀t ∈ q, s.t. TS(t) > TS(q) (i.e., each query term

appeared in some new documents after generation of
the query result)

Each node sends its prediction to the result cache, located
in the broker. If at least one index server returns a stale
decision, the query is re-executed at the index nodes, and R
and TS(q) information are updated in the cache; otherwise,
the result in the cache is served to the user.

Note that the first condition of our policy can correctly
detect all stale results due to deletion of documents in R.
For result documents whose scores may have changed due to
a revision, we adopt a conservative approach. If a document
in R is found to have a larger TS value than the query’s TS
value, we assume that its rank in R would most probably
change and we decide that the result would be stale. We also
propose to relax this latter case by introducing a parameter
M , which is a threshold for the number of revised documents
to be inR to predict its staleness. That is, we predict a query
result as stale if at least M documents in R is found to have
a larger TS values than the query’s TS value.

The second condition is intended to (partially) handle the
stale results that are caused by a newly added document or a
revised document (e.g., after addition of query terms), which
was not in R but now qualifies to enter. For this case, we
again take a conservative approach and decide that a query
is stale if each one of its terms now appear in a sufficiently
large number of new documents.

We note that the first condition, C1 may cause some false
positives (i.e., predict some results as stale that are, in re-
ality, not), however does not yield any stale results to be
served (when L = 0 and M = 1). That is, all stale results
caused by the first case discussed in Section 2.2 would be
caught. On the other hand, the second condition, C2, can
yield both false positives and stale results to be served, as it
cannot fully cover the second case discussed in the previous
section. For instance, assume a document that includes all
terms of a particular query but its score does not qualify for
top-10 results. Then, during a revision, if some terms that
are irrelevant to the query are deleted from this document
(so that it is significantly shortened), its score can now qual-
ify for top-10. Clearly, this situation cannot be deduced by
either conditions of our invalidation policy. We anticipate
that such cases would be rather rare in practice. Neverthe-
less, to handle such cases and prevent accumulation of stale
results in the cache, we adapt the practice in [8] and aug-
ment our policy with an invalidation scheme based on TTL.

2Snippets are omitted as they are irrelevant to this problem.

Thus, in case of a cache hit, a query TS is first compared to
a fixed TTL value, and if expired, it is reexecuted; otherwise,
our timestamp-based invalidation policy is applied.

4. EXPERIMENTAL SETUP
For the sake of comparability, we use the simulation setup

introduced in [8] as blueprint and strictly follow that setup
in terms of the dataset and query set selection as well as the
simulation logic. In what follows, we discuss the details of
our experimental setup.

Data. We obtain a public dump of the English Wikipedia
site. This dump3 includes all Wikipedia articles along with
their revision history starting from Jan 1, 2006 to April,
2007. We omitted certain pages (e.g., help, user, image, and
category pages) from our data as they are not useful for
our experiments. The remaining data includes 3.5 million
unique pages and their revision information. Since the in-
formation about deleted pages is not available, we construct
the list of deleted pages on each day by querying Wikipedia
using the MediaWiki API.4

Simulation setup. We consider all modifications on the
collection (additions, deletions and updates) for the first 30
days following Jan 1, 2006. The initial snapshot on that date
includes almost one million unique pages. For our dataset,
the average number of page additions, revisions and dele-
tions per day are 2,050 (0.2% of the initial dataset), 41,000
(4.1%) and 167 (0.02%), respectively. These numbers are
similar to those reported in [8].

Following the practice in [8] (also to reduce the complexity
of the simulation setup), we assume that all modifications
on the collection are applied as a batch separately for each
day. Thus, we create an index for each day by reflecting all
changes of a particular day on top of the index constructed
for the previous day. We used the open source Lucene li-
brary5 for creating the index files and processing queries.

Query set. As the query set, we sample 10,000 queries
from the AOL query log [28] such that each query has at
least one clicked answer from Wikipedia.6 The queries span
a period of 2 weeks, and 8,673 of them are unique. We also
verify that the query frequency distribution of our sample
follows a power-law, which is typical for the Web.

We assume that, in each day, the set of queries is submit-
ted to the search system. Using a fixed set of queries in each
day allows evaluating the invalidation approaches in a way
independent from other cache parameters (e.g., size, replace-
ment policies, etc.), as discussed in [8]. Therefore, for each
day in our simulation, we execute the query set on the cur-
rent day’s index and retrieve top-10 results per query, which
constitutes the ground truth set. During query processing,
we enforce the conjunctive query processing semantics.

Evaluation metrics. Each invalidation strategy predicts
whether a query result in the cache is stale for each day
within our evaluation period and accordingly decides either
to return the cached result or reexecute the query. As de-
fined in [8, Table 2], we evaluate cache invalidation strategies
in terms of the stale traffic (ST) ratio (i.e., the percentage
of stale query results served by the system) versus the false
positive (FP) ratio (i.e., the percentage of redundant query

3http://www.archive.org/details/enwiki-20070402
4http://www.mediawiki.org/wiki/API.
5http://lucene.apache.org/
6http://en.wikipedia.org

index on day k-1 index on day kindex updates
on day k

invalidation
strategy

result
cache

queries
on day k

evaluation
stale
query
traffic

staleness
predictions

ground-truth
data for

staleness

ST, FP
for

day k

Figure 3: The simulation framework used.

executions). If the returned query result for a particular day
differs from that day’s ground truth in terms of the listed
documents or their order, it is said to be stale. The entire
simulation framework is illustrated in Fig. 3. All reported
results are averages over the evaluation period.

Note that we do not present results with respect to the
false negative (FN) ratio metric, which is also defined in [8],
since we consider the ST ratio, which takes into account the
frequency of the stale results that are served and stale re-
sults accumulated in the cache, as a more realistic metric
to evaluate the success of an invalidation approach. Nev-
ertheless, we also obtain plots with the FN ratio and when
compared to plots with the ST ratio, we observe almost the
same trends reported in [8]. These plots are discarded to
make space for our presumably more interesting findings.

Baseline strategies. We compare our timestamp-based
invalidation framework (TIF) to two baseline approaches in
the literature. The most-straightforward baseline is assign-
ing a fixed time-to-live (TTL) value to each cached query.
As a stronger baseline, we implement the cache invalidation
predictor (CIP) with its best-case parameters (i.e., using
complete documents and score thresholding) [8, Fig. 6].

In our adaptation of the CIP strategy, a cached result is
deemed to be stale if it includes at least one deleted doc-
ument in a particular day (similar to the first case of our
result invalidation policy discussed in Section 3.2). While
handling additions, first all cached queries that match to the
document at hand are determined, using conjunctive query
processing semantics. Next, the score of the document with
respect to each such query is computed, and if this score
exceeds the score of the top-10th document in the cached
result, the query result is marked as stale. For each day, we
assume that collection statistics (such as inverse document
frequency (IDF)) from the previous day are available to CIP.

5. EXPERIMENTAL RESULTS
In Table 1, we summarize the invalidation approaches and

related parameters that are investigated in the following ex-
periments. In the baseline TTL strategy each query result
is associated with an expiration period (τ), and the result
is decided to be stale at the end of this period. Since our
simulation setup reflects all updates to the index in batch,
each day, the τ = 1 case simply corresponds to no caching
at all, i.e., each query is executed everyday. This means
that there is no stale traffic, however a very high fraction
of queries are executed redundantly (i.e., about 86% in this
setup). Not surprisingly, with increasing values of τ , the ST
ratio increases while FP ratio decreases.

For the other baseline, CIP, we have two relevant param-
eters. We employ the document length parameter L in the
same way as it is used for our timestamp-based policies; i.e.,

Table 1: Invalidation approaches and parameters

Approach Parameter Value range
TTL τ 1− 5

CIP [8]
τ 2− 5
L 0%, 1%, or 2.5%

TIF

τ 2− 5
L 0%, 1%, or 2.5%
F 10%
P top-10
M 1 or 2

a revised document is considered for invalidation only if its
older and newer versions differ more than L% in terms of the
number of terms contained. This is similar to the document
modification threshold used in the CIP setup [8]. We also
augment the CIP policy with the TTL strategy such that
each cached query is also associated with τ .

Finally, our timestamp-based invalidation framework
(TIF) uses the following parameters. For the document TS
update policy, we experiment with L values of 0% (i.e., all
revisions to a document causes an update on TS values),
1%, and 2.5%. For updating term timestamps, we use ei-
ther the frequency-based or score-based TS update policy,
as discussed in Section 3.1. For the former case, we set F
to 10% (i.e., a term is assigned a new TS when the number
of newly added postings exceed 10% of the initial count).
For the latter case, we set P to 10 indicating that a term
is assigned a new TS if a new posting has a score that can
enter the top-10 postings of its list. Recall that, while com-
puting posting scores, we can safely use the statistics from
the previous day since the computation actually takes place
at the index nodes and during the incremental index up-
date process. Finally, the parameter M takes the values 1
or 2, indicating that a query result R at a particular day is
predicted to be stale if it includes either one or two docu-
ments updated on that day (see Section 3.2). Our strategy
is also augmented with TTL, i.e., the parameter τ is again
associated with cached queries.

In Fig. 4(a), we compare the performance of TIF that uses
a frequency-based term TS update policy (with L ranging
from 0% to 2.5% and M = 1) to those of the baselines strate-
gies. The figure reveals that our invalidation approach is
considerably better than the baseline TTL strategy. In par-
ticular, for each TTL point, we have a better ST ratio with
the same or lower FP ratio, and vice versa. For instance,
when τ is set to 2 for TTL policy, an ST ratio of 7% is ob-
tained while causing an FP ratio of 37%. Our policy halves
this ST ratio (i.e., to less than 4%) for an FP ratio of 36%.
Similarly, for τ values 3 and 4, we again provide ST ratio
values that are relatively 31% and 38% lower than those of
the TTL policy at the same or similar FP ratios.

In Fig. 4(b), we compare the performance of TIF that uses
a score-based term TS update policy (with L ranging from
0% to 2.5% and M = 1) to those of the baselines strate-
gies. A quick comparison of Figs. 4(a) and (b) reveals that
TIF performs better when term update decision are given
based on the scores, as expected. In this case, TIF yields
about a half of the ST ratio values produced by TTL for the
corresponding FP ratios for all values of τ . For instance,
TIF yields around an ST ratio of 6% for an FP ratio of 23%,
whereas TTL causes an ST ratio of 13% for almost the same
number of false positives, i.e., at 22%.

While TIF can significantly outperform TTL baseline, its

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2 0

0 . 2 4 T T L 1 < τ < 5
 T I F L = 0 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 1 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 2 5 , F = 0 . 1 , 2 < τ < 5
 C I P L = 0 , 2 < τ < 5
 C I P L = 0 . 0 1 , 2 < τ < 5
 C I P L = 0 . 0 2 5 , 2 < τ < 5

τ = 5

τ = 4

τ = 3

τ = 2

Sta
le

Tra
ffic

 Ra
tio

F a l s e P o s i t i v e s R a t i o

τ = 1

(a)

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2 0

0 . 2 4 T T L 1 < τ < 5
 T I F L = 0 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 1 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 2 5 , F = 0 . 1 , 2 < τ < 5
 C I P L = 0 , 2 < τ < 5
 C I P L = 0 . 0 1 , 2 < τ < 5
 C I P L = 0 . 0 2 5 , 2 < τ < 5

τ = 5

τ = 4

τ = 3

τ = 2

Sta
le

Tra
ffic

 Ra
tio

F a l s e P o s i t i v e s R a t i o

τ = 1

(b)

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2 0

0 . 2 4
 T T L 1 < τ < 5
 T I F L = 0 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 1 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 2 5 , F = 0 . 1 , 2 < τ < 5

τ = 5

τ = 4

τ = 3

τ = 2

Sta
le

Tra
ffic

 Ra
tio

F a l s e P o s i t i v e s R a t i o

τ = 1

(c)

Figure 4: ST vs. FP for TIF: (a) frequency-based, (b) score-based, and (c) frequency-based (M=2).

performance is inferior to CIP, although with a smaller mar-
gin at the smaller ST ratios. Our implementation of CIP is
quite successful for reducing ST ratio; and it is even about
30% better than the best case reported in [8], which might
be due to minor variations in the setup or other factors.
However, this accuracy does not come for free, as CIP also
involves some efficiency and practicality issues (of which dis-
cussion is deferred to Section 6). On the other hand, our
approach is tailored to provide a compromise between pre-
diction accuracy and efficiency, and not surprisingly, placed
between TTL and CIP strategies in Figs. 4(a) and (b). In
the following experiments, we also present cases where the
gaps between TIF and CIP are further narrowed.

Impact of M . In Fig. 4(c), we report results with M =
2 for the case corresponding to Fig. 4(a). As expected, a
higher value of M yields smaller false positive predictions
but causes higher ST ratios. Surprisingly, even such a slight
increase in M drastically affects the performance of TIF,
rendering it almost same as the TTL strategy. This indicates
that, document revisions are the most important causes of
stale results, at least in our setup.

In the rest of this section, we analyze the performance of
TIF regarding other aspects such as the query length, fre-
quency, result update frequency and query processing cost.

Impact of query length. Previous works show that
queries that are repeatedly submitted to a search engine
have smaller lengths and, indeed, single-term queries con-
stitute a large portion of them(e.g., see [32]). Therefore, it
would be valuable to investigate the performance of cache
invalidation approaches for single-term queries.

In Fig. 5(a), we compare the performance of TIF with
the frequency-based TS update policy to TTL and CIP for
single-term queries. As a quick comparison of Fig. 4(a) and
Fig. 5(a) reveals, all strategies are more successful for single-
term queries, as the absolute values of ST ratios drop. It
also seems that the relative gain of our TIF over TTL is
slightly improved for this case. For instance, in Figure 4(a),
the ST ratios are around 9% and 13% for TIF and TTL for
an FP ratio around 22%, respectively. Thus, the relative
improvement of TIF over TTL is 31%. For the same FP
ratio, Fig. 5(a) reveals ST ratios of 10% to 5%, for TTL and
TIF, respectively, indicating a relative improvement of 50%.

For TIF with the score-based TS update policy, perfor-
mance relative to baseline strategies are even better. In this
case, TIF is not only superior to TTL, but it also performs
very closely to the CIP strategy, as shown in Fig. 5(b). As
the TIF approach employed in this experiment takes into
account the changes in top-10 postings per each term, it can

more accurately predict the changes in the results of single-
term queries. Nevertheless, this experiment implies that for
a real-life search engine where a significant amount of re-
peated queries include a single-term, the achievements of all
invalidation strategies would be better and our TIF would
provide better prediction accuracy.

Impact of query frequency. The simulation setting
that we adapted from [8] involves several simplifications to
be able to cope with the dynamicity and complexity of the
overall system. One such simplification is for the query set,
which is assumed to be repeated everyday. In fact, among
10,000 sampled queries used in our experiments, only 610 of
them are repeated more than once in the original log (within
the sampling period of two weeks). So, in a separate experi-
ment, we investigated the performance of invalidation strate-
gies for these queries that are more amenable to be repeated
in the future. This is important, as repeated queries have
different characteristics than those submitted only once [32];
i.e., they are shorter, may include more popular terms, etc.

We find that the performance trends are similar to those of
single-term queries for all cases and therefore omit a graph-
ical presentation of the results. The similarity of trends
means that most of the frequent queries may involve only
a single-term and we found that the fraction of single-term
queries in queries repeated more than once reaches to 43%,
whereas it is only 20% for our original query set. Again, this
is an encouraging result indicating that the performance of
invalidation polices would be better in more realistic set-
tings, and the gains of TIF would be even more emphasized.

Impact of result update frequency. Depending on the
collection change dynamics and the content of the queries,
results of some queries may change rapidly (e.g., for a query
about an event in news) while the results of some others may
remain the same for a much longer time. We investigate the
effects of the result update frequency on the invalidation
policies. To this end, for each query, we computed the num-
ber of times the query result changes within our evaluation
period (see Fig. 6(a)), and obtained their average, which
is 4.32. In Figs. 6(b) and (c), we report the performance
for queries that have higher or lower update frequency than
this average value, respectively. In the former case, for all
invalidation approaches, ST ratios significantly increase for
frequently changing query results (see Fig. 6 (b)). This is
an interesting finding, and it implies that more intelligent
mechanisms should be developed for such queries. We also
note that, while TTL gets considerably worse in this setup
(e.g., for τ = 2, ST ratio rises from 7% to 12%, a relative in-
crease of 70%) , the drop in the performance of TIF is more

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2 0

0 . 2 4 T T L 1 < τ < 5
 T I F L = 0 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 1 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 2 5 , F = 0 . 1 , 2 < τ < 5
 C I P L = 0 , 2 < τ < 5
 C I P L = 0 . 0 1 , 2 < τ < 5
 C I P L = 0 . 0 2 5 , 2 < τ < 5

τ = 5

τ = 4
τ = 3

τ = 2

Sta
le

Tra
ffic

 Ra
tio

F a l s e P o s i t i v e s R a t i o

τ = 1

(a)

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2 0

0 . 2 4 T T L 1 < τ < 5
 T I F L = 0 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 1 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 2 5 , F = 0 . 1 , 2 < τ < 5
 C I P L = 0 , 2 < τ < 5
 C I P L = 0 . 0 1 , 2 < τ < 5
 C I P L = 0 . 0 2 5 , 2 < τ < 5

τ = 5

τ = 4
τ = 3

τ = 2

Sta
le

Tra
ffic

 Ra
tio

F a l s e P o s i t i v e s R a t i o

τ = 1

(b)

Figure 5: ST vs. FP for |q|=1 and TIF: (a) frequency-based and (b) score-based.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0

Nu
mb

er
of

Qu
eri

es

N u m b e r o f U p d a t e s

a v g = 4 . 3 2

(a)

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0 T T L 1 < τ < 5

 T I F L = 0 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 1 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 2 5 , F = 0 . 1 , 2 < τ < 5
 C I P L = 0 , 2 < τ < 5
 C I P L = 0 . 0 1 , 2 < τ < 5
 C I P L = 0 . 0 2 5 , 2 < τ < 5

τ = 5

τ = 4

τ = 3

τ = 2

Sta
le

Tra
ffic

 Ra
tio

F a l s e P o s i t i v e s R a t i o

τ = 1

(b)

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2
0 . 1 4
0 . 1 6 T T L 1 < τ < 5

 T I F L = 0 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 1 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 2 5 , F = 0 . 1 , 2 < τ < 5
 C I P L = 0 , 2 < τ < 5
 C I P L = 0 . 0 1 , 2 < τ < 5
 C I P L = 0 . 0 2 5 , 2 < τ < 5

τ = 5

τ = 4

τ = 3

τ = 2

Sta
le

Tra
ffic

 Ra
tio

F a l s e P o s i t i v e s R a t i o

τ = 1

(c)

Figure 6: (a) Update frequency of queries (30 days), (b) ST vs. FP for updateFreq>avg, and (c) ST vs. FP
for updateFreq<avg (TIF with the frequency-based TS update policy).

reasonable, as TIF gets closer to CIP for small ST ratios,
which would be more preferable in practice. Conversely,
for query results that change less frequently, a comparison
of Figs. 6(b) and 4(a) shows that all invalidation strategies
perform better in this case (i.e., absolute ST ratios drop).

Effects of the query cost. In all experiments up to
this point, we report false positive ratio, which is basically
the fraction of queries that are executed redundantly. How-
ever, not all such queries have the same processing costs,
and invalidation strategies may make different choices which
may result in the same FP ratio but different processing
burden on the search cluster. We investigate whether this
phenomenon exists by modeling the processing cost of each
query as the sum of its terms’ posting list lengths (as in [16])
and repeating our experiments. In Fig. 7, we report FP-cost
ratio vs. stale traffic ratio. A comparison of Fig. 4(a) to
Fig. 7 reveals that the FP and FP-cost ratios are positively
correlated for most cases. Therefore, integrating query costs
into the decision mechanisms of the invalidation mechanisms
may not yield significant improvements.

6. COST ANALYSIS
Since our timestamp-based invalidation framework and

the CIP approach [8] share common underlying assump-
tions (i.e., most importantly, an incremental index update
scheme) and have similar experimental setups, it is natural

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2 0

0 . 2 4 T T L 1 < τ < 5
 T I F L = 0 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 1 , F = 0 . 1 , 2 < τ < 5
 T I F L = 0 . 0 2 5 , F = 0 . 1 , 2 < τ < 5
 C I P L = 0 , 2 < τ < 5
 C I P L = 0 . 0 1 , 2 < τ < 5
 C I P L = 0 . 0 2 5 , 2 < τ < 5

τ = 5

τ = 4

τ = 3

τ = 2

Sta
le

Tra
ffic

 Ra
tio

F a l s e P o s i t i v e s C o s t R a t i o

τ = 1

Figure 7: ST vs. FP-cost ratio (TIF with the
frequency-based TS update policy)

to compare their efficiency. Recall that, our aim in this study
is tailoring an efficient and practical invalidation strategy
while providing prediction accuracies higher than the basic
TTL scheme and close to that of the CIP. In the previous
section, we showed that the latter goal is attainable, i.e.,
although CIP is generally superior to TIF, there are certain
cases (especially for low ST values) where the prediction ac-
curacy of TIF gets close to CIP. Here, we turn our attention
to the cost of making invalidation decisions and compare
TIF and CIP in terms of practicality and efficiency.

A major difference between the two approaches is the un-

derlying architecture. Our invalidation framework is dis-
tributed, i.e., each index node updates document and term
timestamps for its own subset of collection (offline) and
checks staleness of results in case of a cache-hit (online).
In contrast, CIP involves one or more centralized modules
that find all matching queries in the cache to every modified
(added or updated) document (offline), which may cause a
bottleneck in the system. In this respect, we envision that
our approach is more practical to fit in a real search engine.
Moreover, our architecture allows the changes on the under-
lying index to affect further staleness predictions as soon as
they are reflected. In contrast, CIP should match each docu-
ment synopsis to the cached queries; and since it may not be
possible to process all of the arriving synopses concurrently
at a CIP module (especially if the collection changes are ac-
cumulated and propagated to CIP in batches), some queries
might be served stale until all predictions are completed.

To evaluate efficiency, we formalize the cost of TIF and
CIP in terms of the communication volume they cause on
the network and the number of comparisons they need to
make a prediction. We also provide a back-of-the-envelope
calculation using some representative values of involved pa-
rameters in cost formulas, as described in Table 2.

i) Communication volume: The network cost of our pol-
icy involves the transfer of 〈q,R, TS(q)〉 triplets between the
cache and index nodes for each cache hit. On the other
hand, for CIP, the indexer should create a synopsis7 for each
change on the collection (i.e., added or updated document)
and propagate it to the CIP module. We assume that the
synopses include the term string, its frequency in the doc-
ument and IDF value [8]. Note that the information in the
synopses is needed to compute scores with matching queries
in the CIP module. Moreover, the CIP module needs to
transfer all cached queries and their results, so that it can
make invalidation predictions and then forward its predic-
tion for each query to the cache. In the formulas in Table 3,
we neglected these latter costs for simplicity and only con-
sider the cost of transmitting synopses.

ii) Number of comparisons during prediction: Another
metric for comparing TIF and CIP is the number of in-
memory operations to make a prediction. TIF (with the
frequency-based TS update policy) simply compares query
term timestamps and result document timestamps to the
query timestamp, which is a negligible number of compar-
isons in the order of r(q)+u(q). In contrast, the CIP module
should make expensive score computations between all docu-
ment synopses and matching queries in the cache. This com-
putation requires an inverted index on the cached queries
and accessing the posting list of each term in a synopsis.

As a further complication, invalidating queries with
deleted result documents would indeed requires another in-
verted index on the cached results, i.e., an index mapping
document ids to queries. This is not considered in cost for-
mulas as its complexity would be similar to the score com-
putation stage discussed above.

In Table 3, we provide the corresponding formulas for each
cost metric discussed above. For a better comparison of TIF
and CIP, we also consider a numerical example using the
representative values provided in Table 2. We believe that
the values presented in the table reflect the state-of-the-art
for a large scale search engine. In particular, we consider

7We assume the synopsis is created for the entire document
content since it yields the best prediction accuracy [8].

Table 2: The parameters and representative values
for a large-scale search engine

Parameter Value

D no. of documents in the collection 50 billion
N no. of index servers 5K
Q no. of queries per day 100M
C no. of changed documents in D per day 0.003×D
H no. of cache-hits per day 0.5×Q
u(d) no. of unique terms in document d 500
u(q) no. of unique terms in query q 2
l(q) length of query q (in bytes) 20
r(q) no. of cached results for query q 10
p(t) posting list length of a term t (in the

index over the cache)
10

l(r) length of a unique result identifier (in
bytes)

8

l(p) length of a posting (in bytes) 8
l(s) length of a timestamp (in bytes) 4
l(t) length of a term (in bytes) 8

a collection size of 50 billion documents that is distributed
over 5,000 index nodes. For simplicity, we assume that the
textual part (after excluding mark-up etc.) of a document
includes 500 unique terms and a query includes 2 unique
terms, on the average.

Two key parameters in Table 2 are the collection change-
rate and cache hit-rate per day, as they essentially determine
the cost of CIP and TIF strategies, respectively. The former
is hard to determine and there are several works reporting
different rates of change for different subsets obtained from
the Web (e.g., see [15, 1, 25]). Among these, the largest
scale study of Web change has been conducted by Fetterly
et al. [15], which reports that almost 3% of all Web docu-
ments change weekly. Relying on this finding, we set the
daily change-rate of Web documents as 0.3% of the entire
collection. That is, for a collection of 50 billion documents,
we assume the number of page additions, deletions and revi-
sions add up to 150M per day, which seems like a reasonable
-or, even conservative- estimation (e.g., we anticipate that
even the news sites all over the world can be adding millions
of new pages in a daily basis). For the cache-hit rate, most
works in the literature report a value around 50% depend-
ing on the cache parameters (e.g., see [5]), so we also rely
on this value. Thus, for a daily load of 100M queries, which
is, again, a reasonable assumption for state-of-the-art search
engines, 50M queries result in as cache-hits. Finally, for the
inverted index constructed over the cached query results in
CIP, we assume average posting list length is 10; i.e., a term
appears in 10 different queries, on the average.

When we plug the numbers of Table 2 into the formulas
presented in Table 3, we see that CIP is more efficient than
TIF in terms of the communication volume metric. The
daily bandwidth usage of CIP is 5% of that of TIF. The
disadvantage of TIF is caused since result triplets are sent
to each of the N index nodes. However, in practice, the up-
dates in the collection can be accumulated for a short time
period and reflected to the index in batch (as discussed in
Section 2). In this case, it is not necessary to resend the
queries that occur frequently within a short time (such as
“wikipedia”) to the index nodes if the query timestamp is
larger than the last batch’s update time. We anticipate that
this would significantly reduce the bandwidth usage of TIF
in practice. Moreover, our calculation favors CIP as we as-

Table 3: The cost formulas for CIP and TIF

Cost Metric (per day) CIP TIF (with freq.-based TS update)

Communication volume (bytes) C × (l(t) + l(p))× u(d) H ×N × (l(q) + r(q)× l(r) + l(s))
No. of comparison operations C ×

∑
t∈d

p(t) H × (r(q) + u(q))

sume just a single dedicated server for this purpose. In prac-
tice, there maybe several CIP servers in the system, which
makes the bandwidth usage of both approaches comparable.

In terms of the number of comparison operations for in-
validation predictions, TIF is a clear winner over CIP. In
this latter case, CIP makes 1500 times more daily compar-
isons (i.e., by traversing the posting lists of the index over
the cached queries) than TIF, which makes only a constant
number of TS comparisons (e.g., 12 comparisons per cache
hit according to Tables 2 and 3).

Finally, note that, although we assume a daily load of
100M queries, a search engine may cache a much larger num-
ber of queries, maybe all queries seen within a month, mim-
icking an infinite cache as discussed before. In this case, TIF
performance would remain the same, as it only depends on
the daily hit rate, but not the queries stored in the cache.
In contrast, CIP has to access all cached queries to be able
to invalidate them, which may further complicate the syn-
chronization with cache servers and increase the costs.

Our analysis and example calculations show that although
TIF causes a higher bandwidth usage, its prediction mech-
anism is very fast. CIP (at a single server) has lower band-
width requirements, but actual prediction is much slower,
which would be a bottleneck if the change-rate of the collec-
tions is high. Furthermore, TIF can be applied on top of a
distributed search setup without additional burden, whereas
CIP needs to synchronize CIP and cache servers. Hence, we
conclude that TIF is a more practical and efficient policy
than CIP, while providing better accuracy than TTL strat-
egy, and a reasonably good accuracy in comparison to CIP.

7. RELATED WORK
Index updates. There are three basic approaches to

keep a Web index fresh [20]. In the first approach, a new web
index is periodically built from scratch over the current doc-
ument collection and replaces the existing index. For mostly
static document collections, this is the preferred approach.
In the second approach, newly discovered documents are
maintained in a so-called delta index [19]. Queries are pro-
cessed over both main and delta indexes. Once the delta
index is large enough, it is merged with the main index and
a new delta index is grown. In the third approach, all mod-
ifications are performed on the main index [12, 31]. Modifi-
cations may be accumulated and performed in batches [33].
This approach requires maintaining some unused free space
at the end of inverted lists, and the efficiency of update op-
erations is important. It is preferred mainly for indexing
document collections that are frequently updated. A hybrid
strategy between the last two techniques is also possible [9].

Result caching. The first work on result caching in the
context of search engines is [23], which provides a compari-
son between static and dynamic result caching approaches.
A probabilistic caching algorithm is introduced in [18]. A
two-level cache architecture that combines result and post-
ing list caching is presented in [30]. A similar idea is dis-
cussed in [7], in the context of static result caching. A three-
level cache architecture, which incorporates a cache for in-

tersection of posting lists besides result and list caches, is
proposed in [21]. A few recent works propose cache archi-
tectures that combine multiple item types [17, 22, 27]. A
hybrid architecture, which combines static and dynamic re-
sult caches is discussed in [14]. Many issues in static and
dynamic caching are covered by [5]. Several works [26, 3, 4,
16] consider query execution costs in caching. An incremen-
tal result cache is proposed in [29] for collection selection.

Staleness of result caches. We are aware of two re-
cent works dealing with staleness of result caches in search
engines. A TTL-based invalidation mechanism is presented
in [10]. The same work also proposed proactively refreshing
cached query results that are predicted to be stale by the
TTL mechanism, before they are reissued by the users. Un-
fortunately, the impact of almost blindly reissuing queries
to the backend servers on financial costs is unclear. This
work is very different from ours in that it does not take into
account the updates on the index when making staleness
decisions. The closest work to ours is that in [8], which pro-
poses an invalidation mechanism based on index updates.
That work proposes identifying all stale queries by build-
ing an inverted index on the queries in the result cache and
evaluating updated documents on this index.

In our work, we do not use a sophisticated invalidation
mechanisms as proposed in [8]. Instead, our invalidation
mechanism relies on very simple heuristics using timestamps
assigned to queries, terms, and documents. Yet, we show
that reasonable accuracies can be achieved by this mecha-
nism, which incurs less overhead on the system and is much
easier to implement. More detailed comparisons to this ear-
lier work is provided in previous sections.

Finally, we have reported some preliminary findings in [2].
This paper extends our previous study in several ways. First,
we introduce a new and effective score-based term TS update
policy. Second, we investigate the performance of our ap-
proach for several parameters, such as query length and fre-
quency, result update frequency, and query execution cost.
Third, we implement and compare another closely related
invalidation strategy, namely CIP [8], from the literature.
Finally, we provide a detailed cost analysis and comparison
of our timestamp based invalidation framework and CIP.

8. CONCLUSION
We investigated the trade-off between a cheap-but-

inaccurate time-to-live based (TTL) strategy and a recently
proposed accurate-but-expensive strategy [8] for invalidat-
ing stale results in a web search engine cache. To this end,
we presented a simple yet effective approach that maintains
timestamps for posting lists and documents, indicating their
last revision times, which are compared with the generation
time of cached query results to give invalidation decisions.
Through a realistic and detailed simulation setup, we veri-
fied that the invalidation accuracy of our approach is better
than TTL and reasonably close to that of the sophisticated
invalidation strategy. Moreover, our approach is easier to
implement and incurs less overhead on the system, render-
ing sophisticated invalidation strategies less attractive.

Result cache invalidation is a recent and active area of re-
search, open to significant improvements. Existing works so
far only concentrate on the accuracy of staleness decisions,
ignoring other factors, such as the financial cost of these de-
cisions on the search engine company or the satisfaction of
users. As a future work, we plan to work on a unified inval-
idation framework that takes into account all these factors.

9. ACKNOWLEDGMENTS
This work is partially supported by The Scientific and

Technological Research Council of Turkey (TÜBİTAK) un-
der grant no. 110E135, FP7 EU Project LivingKnowledge
(contract no. 231126) and the European Community funded
project COAST-ICT-248036.

10. REFERENCES
[1] E. Adar, J. Teevan, S. T. Dumais, and J. L. Elsas. The

Web changes everything: understanding the dynamics of
web content. In Proc. 2nd ACM Int’l Conf. Web Search
and Data Mining, pages 282–291, 2009.

[2] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and

Ö. Ulusoy. Timestamp-based cache invalidation for search
engines. In Proc. 20th Int’l Conf. World Wide Web
(Companion Volume), pages 3–4, 2011.

[3] I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and

Ö. Ulusoy. Second chance: A hybrid approach for dynamic
result caching in search engines. In Proc. 33rd European
Conference IR Research, pages 510–516, 2011.

[4] I. S. Altingovde, R. Ozcan, and Ö. Ulusoy. A cost-aware
strategy for query result caching in web search engines. In
Proc. 31th European Conference on IR Research, pages
628–636, 2009.

[5] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. The impact of caching on
search engines. In Proc. 30th Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval, pages
183–190, 2007.

[6] R. Baeza-Yates, F. Junqueira, V. Plachouras, and
H. Witschel. Admission policies for caches of search engine
results. In Proc. 14th Int’l Symposium on String Processing
and Information Retrieval, pages 74–85. 2007.

[7] R. Baeza-Yates and F. Saint-Jean. A three level search
engine index based in query log distribution. In Proc. 10th
Int’l Symposium on String Processing and Information
Retrieval, pages 56–65. 2003.

[8] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel,
L. Telloli, and H. Zaragoza. Caching search engine results
over incremental indices. In Proc. 33rd Int’l ACM SIGIR
Conf. Research and Development in Information Retrieval,
pages 82–89, 2010.

[9] S. Büttcher, C. L. A. Clarke, and B. Lushman. Hybrid
index maintenance for growing text collections. In Proc.
29th Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval, pages 356–363, 2006.

[10] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras,
S. Banachowski, B. Cui, S. Lim, and B. Bridge. A
refreshing perspective of search engine caching. In Proc.
19th Int’l Conf. World Wide Web, pages 181–190, 2010.

[11] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici,
Y. S. Maarek, and A. Soffer. Static index pruning for
information retrieval systems. In Proc. 24th Int’l ACM
SIGIR Conf. Research and Development in Information
Retrieval, pages 43–50, 2001.

[12] D. Cutting and J. Pedersen. Optimization for dynamic
inverted index maintenance. In Proc. 13th Int’l ACM
SIGIR Conf. Research and Development in Information
Retrieval, pages 405–411, 1990.

[13] J. Dean. Challenges in building large-scale information
retrieval systems. In Proc. 2nd ACM Int’l Conf. Web
Search and Data Mining, page 1, 2009.

[14] T. Fagni, R. Perego, F. Silvestri, and S. Orlando. Boosting
the performance of Web search engines: Caching and
prefetching query results by exploiting historical usage
data. ACM Trans. Inf. Syst., 24(1):51–78, 2006.

[15] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A
large-scale study of the evolution of web pages. In Proc.
12th Int’l Conf. World Wide Web, pages 669–678, 2003.

[16] Q. Gan and T. Suel. Improved techniques for result caching
in web search engines. In Proc. 18th Int’l Conf. World
Wide Web, pages 431–440, 2009.

[17] S. Garcia. Search engine optimisation using past queries.
PhD thesis, RMIT University, 2007.

[18] R. Lempel and S. Moran. Predictive caching and
prefetching of query results in search engines. In Proc. 12th
Int’l Conf. World Wide Web, pages 19–28, 2003.

[19] N. Lester, A. Moffat, and J. Zobel. Efficient online index
construction for text databases. ACM Trans. Database
Syst., 33(3):1–33, 2008.

[20] N. Lester, J. Zobel, and H. E. Williams. In-place versus
re-build versus re-merge: index maintenance strategies for
text retrieval systems. In Proc. 27th Australasian Conf.
Computer Science, pages 15–23, 2004.

[21] X. Long and T. Suel. Three-level caching for efficient query
processing in large web search engines. In Proc. 14th Int’l
Conf. World Wide Web, pages 257–266, 2005.

[22] M. Marin, V. Gil-Costa, and C. Gomez-Pantoja. New
caching techniques for web search engines. In Proc. 19th
ACM Int’l Symp. High Performance Distributed
Computing, pages 215–226, 2010.

[23] E. P. Markatos. On caching search engine query results.
Comput. Commun., 24(2):137–143, 2001.

[24] D. Metzler and W. B. Croft. A Markov random field model
for term dependencies. In Proc. 28th Int’l ACM SIGIR
Conf. Research and Development in Information Retrieval,
pages 472–479, 2005.

[25] A. Ntoulas, J. Cho, and C. Olston. What’s new on the
Web?: the evolution of the Web from a search engine
perspective. In Proc. 13th Int’l Conf. World Wide Web,
pages 1–12, 2004.

[26] R. Ozcan, I. S. Altingovde, and Ö. Ulusoy. Cost-aware
strategies for query result caching in web search engines.
ACM Trans. Web, 5(2):9:1–9:25, May 2011.

[27] R. Ozcan, I. S. Altingovde, B. B. Cambazoglu, F. P.

Junqueira, and Ö. Ulusoy. A five-level static cache
architecture for web search engines. Information Processing
& Management, in press, 2011.

[28] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. In Proc. 1st Int’l Conf. Scalable Information
Systems, 2006.

[29] D. Puppin, F. Silvestri, R. Perego, and R. Baeza-Yates.
Tuning the capacity of search engines: load-driven routing
and incremental caching to reduce and balance the load.
ACM Trans. Inf. Syst., 28(2):1–36, 2010.

[30] P. C. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira,
R. Fonseca, and B. Riberio-Neto. Rank-preserving two-level
caching for scalable search engines. In Proc. 24th Int’l
ACM SIGIR Conf. Research and Development in
Information Retrieval, pages 51–58, 2001.

[31] W.-Y. Shieh and C.-P. Chung. A statistics-based approach
to incrementally update inverted files. Inf. Process.
Manage., 41(2):275–288, 2005.

[32] G. Skobeltsyn, F. Junqueira, V. Plachouras, and
R. Baeza-Yates. Resin: a combination of results caching
and index pruning for high-performance web search
engines. In Proc. 31st Int’l ACM SIGIR Conf. Research
and Development in Information Retrieval, pages 131–138,
2008.

[33] A. Tomasic, H. Garćıa-Molina, and K. Shoens. Incremental
updates of inverted lists for text document retrieval. In
Proc. 1994 ACM SIGMOD Int’l Conf. on Management of
Data, pages 289–300, 1994.

