
A Financial Cost Metric for Result Caching

Fethi Burak Sazoglu
Bilkent University
Ankara, Turkey

fethi.sazoglu@bilkent.edu.tr

B. Barla Cambazoglu
Yahoo! Labs

Barcelona, Spain
barla@yahoo-inc.com

Rifat Ozcan
Turgut Ozal University

Ankara, Turkey
rozcan@turgutozal.edu.tr

Ismail Sengor Altingovde
Middle East Technical University

Ankara, Turkey
altingovde@ceng.metu.edu.tr

Özgür Ulusoy
Bilkent University
Ankara, Turkey

oulusoy@cs.bilkent.edu.tr

ABSTRACT
Web search engines cache results of frequent and/or recent
queries. Result caching strategies can be evaluated using dif-
ferent metrics, hit rate being the most well-known. Recent
works take the processing overhead of queries into account
when evaluating the performance of result caching strate-
gies and propose cost-aware caching strategies. In this pa-
per, we propose a financial cost metric that goes one step
beyond and takes also the hourly electricity prices into ac-
count when computing the cost. We evaluate the most well-
known static, dynamic, and hybrid result caching strategies
under this new metric. Moreover, we propose a financial-
cost-aware version of the well-known LRU strategy and show
that it outperforms the original LRU strategy in terms of the
financial cost metric.

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

General Terms
Design, Performance, Experimentation
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1. INTRODUCTION
Web search engines cache query results for efficiency rea-

sons. In the literature, the performance of different query
result caching strategies is evaluated using different metrics.
Hit rate (or miss rate), which is a widely used metric for
result caches [3], measures the proportion of query requests
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that are answered (or missed) from the cache. This met-
ric assumes that the processing cost of every cache miss is
the same. Later, it was shown through cost-aware caching
policies [7, 11] that queries have varying processing costs
and the cache performance should be measured by taking
these costs into account for cache misses. In [7], the cost
of a query is simulated by considering the shortest posting
list associated with the query terms. In a similar study [11],
the cost is computed as the sum of the measured CPU time
and simulated disk access time (under different posting list
caching scenarios) and various static, dynamic, and hybrid
cost-aware caching policies are proposed. In a more recent
work [1], the performance of a hybrid dynamic result cache
is also evaluated by the query cost metric.

Commercial web search engines rely on a large number of
search clusters, each containing hundreds of nodes. Hence,
they consume significant amounts of energy when process-
ing user queries and the electricity bills for the large data
centers form an important part of the operational costs of
search engine companies[4]. In a recent work [8], energy-
price-driven query forwarding techniques are proposed to
reduce the electricity bills. The main idea in that work is to
exploit the spatio-temporal variation in electricity prices and
forward queries to search clusters that consume the cheap-
est electricity under certain performance constraints. Being
inspired by that work, we propose a financial cost metric
for evaluating the performance of query result caches. This
new metric measures the total electricity cost incurred to the
search engine company due to cache misses. Since the elec-
tricity prices and the query traffic of the search engine both
show high volatility within a day, it is important to analyze
the overall financial cost of query result caching techniques.
To the best of our knowledge, the most similar metric to
our financial cost metric is the power consumption metric
used in [9]. In that work, a cache hierarchy consisting of
result and list caches is evaluated in terms of the power con-
sumption. Our financial cost metric considers the hourly
electricity price rates and presents a more realistic financial
cost evaluation.

The main contributions of this work are the following.
First, we define a financial cost metric for query result
caches. Second, the state-of-the-art static, dynamic, and
hybrid caching techniques in the literature are evaluated us-
ing this new metric. Finally, a financial-cost-aware version
of the well-known LRU strategy is proposed and shown to
be superior to the original LRU strategy under this metric.
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Figure 1: Hourly query traffic volume distribution
and hourly variation in electricity prices.

The rest of the paper is organized as follows. Section 2
presents the proposed financial cost metric. In Section 3, we
describe the well-known static, dynamic and hybrid result
caching techniques that we evaluated under the hit rate and
financial cost metrics. We also describe our financial-cost-
aware LRU strategy. Section 4 presents the experimental
results. We conclude the paper in Section 5.

2. FINANCIAL COST METRIC
Cost-aware caching strategies [7, 11] consider the time

overhead of processing cache misses. The financial cost met-
ric goes one step forward and computes the cost of elec-
tricity consumed when processing cache misses. The un-
derlying motivation here is that the electricity prices show
temporal variation and hence the financial cost of process-
ing a query varies in time. In practice, the electricity price
changes mainly based on supply-demand rates and certain
seasonal effects [13]. The query traffic received by a search
engine also fluctuates depending on time. As an example,
Fig. 1 shows the hourly electricity prices taken from an elec-
tricity provider located in New York and the distribution
of the query traffic received by Yahoo! web search. The
electricity prices are normalized by the mean price value.

Our financial cost metric simply computes the processing
time of the query weighted by the electricity price at the
time of processing the query. The financial cost incurred by
cache hits is ignored. Our financial cost metric is defined as

Cq = Tq × P [t], (1)

where q is a query submitted at time t, P [t] is the electricity
price at time t, and Tq is the time needed to process q.

3. RESULT CACHING TECHNIQUES
We evaluate the most well-known policies in terms of our

financial cost metric. We also propose a new financial cost
aware caching policy. In the rest of the paper, the frequency
of a query q is denoted as Fq. We now briefly describe each
caching policy.

Most Frequent (MostFreq): This policy basically fills
the static cache with the results of the most frequent queries
in the query log. Thus, the value of a cache item is simply
determined as follows:

V alue(q) = Fq. (2)

Frequency and Cost (FC): This policy [11] combines
the frequency and cost of queries in a static caching setting.
The value of a cached query is determined by the product
of its (boosted) frequency and cost:

V alue(q) = Cq × (Fq)K , (3)

where K > 1.
Least Recently Used (LRU): This well-known dynamic

caching policy chooses the least recently requested query as
the victim for eviction.

Least Frequently Used (LFU): In this policy, each cache
item has a frequency value that shows how many times the
item is requested. The cache item with the lowest frequency
value is replaced when the cache is full.

Least Frequently and Costly Used (LFCU): This pol-
icy [11] is the dynamic version of the FC static caching policy.
When the cache is full, the item with the lowest value (de-
termined by its frequency and cost in Eq. (3)) is evicted.

Greedy Dual Size (GDS): This policy [5] computes a
so-called H value metric for each cached query q as

H value(q) =
Cq

Sq
+ L. (4)

This value combines the cost and size of the item with an
aging factor L. This aging factor creates an effect similar to
the recency component in the LRU policy. The cache item
with the lowest H value is chosen as the victim for eviction.

Greedy Dual Size Frequency (GDSF): This policy [2]
is a slightly modified version of the GDS policy. It further
considers the frequency of the cache item when computing
the H value. We also boost the frequency component with
a power coefficient K as in [11].

H value(q) = (Fq)K × Cq

Sq
+ L. (5)

Static Dynamic Cache (SDC): SDC [6] is a hybrid
caching policy that reserves a portion of the cache space for
static caching and the remaining space for dynamic caching.
Static cache handles long term popular queries while the dy-
namic cache handles short term (recent) popular queries. It
is shown that this strategy outperforms both purely static
and purely dynamic caches.

Two-Part LRU Cache (2P_LRU): We propose a two-
part LRU cache (similar to [1]) to optimize the result cache
performance in terms of the financial cost metric. This strat-
egy combines the segmented LRU idea (evaluated in [10])
with an admission control mechanism based on a financial
cost threshold. Algorithm 1 presents the pseudocode for the
2P_LRU policy, which exploits the financial cost variation in
time and reserves a certain portion of the cache space for
queries submitted in the high financial cost period (i.e., ex-
pensive cache (E)) and the rest for those submitted in the
low cost period (i.e., cheap cache (C)). We decide on the
expensive and cheap time periods based on a financial cost
threshold (TP ). If the current financial cost (Tq×P [t]) is less
(greater) than this threshold, we say that the query is sub-
mitted in the cheap (expensive) time period, respectively.
The 2P_LRU policy operates as follows: If the result of a
requested query q is not found in the expensive and cheap
caches, it is evaluated at the backend and then inserted into
the cheap cache (incurs a financial cost of Tq × P [t]) re-
gardless of the submission time of the query, i.e., cheap or
expensive periods. The intuition behind this choice is that,



ALGORITHM 1: Two-part LRU caching algorithm.

Input: q: query, E: Expensive cache, C: Cheap cache,
TP : financial cost threshold, tq : submission time of q,
Tq : time cost of q, P [t]: price at time t, Cq : financial cost of q

Rq ← ∅ . initialize the result set of q;

if q 6∈ E and q 6∈ C then /* Cq =Tq × P [tq ] */
evaluate q over the backend and obtain Rq ;
insert Rq into C (if full, evict the LRU item);

else if q ∈ E then /* Cq =0 */
get Rq from E;
update statistics of q in E;

else if q ∈ C and Tq × P [tq ] < TP then /* Cq =0 */
get Rq from C;
update statistics of q in C;

else if q ∈ C and Tq × P [tq ] ≥ TP then /* Cq =0 */
evict Rq from C and insert into E (if full, evict LRU item);

return Rq ;
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Figure 2: Financial cost evaluation of caching poli-
cies assuming variable query processing time costs.

as there is a high chance for a query to be singleton (i.e.,
submitted only once), we do not want to waste the expen-
sive cache capacity without having enough evidence that the
query will be re-submitted. If the query result is found in
the cheap cache, then we check the current financial cost of
the query and determine the time period. If we are in the
cheap period, we simply serve from the cheap cache and up-
date the query access statistics (i.e., housekeeping for LRU).
Otherwise, we evict the query result from the cheap cache
and insert it into the expensive cache (i.e., after seeing that
the query is not a singleton). Finally, if the query result
is found in the expensive cache, it is served from the cache
and, again, the statistics are updated.

4. EXPERIMENTS
We evaluate the performance via a simulation using a sub-

set of the AOL query log [12], which contains around 20 mil-
lion queries. We use 2.2 million pages crawled from the Open
Directory Project Web directory (http://www.dmoz.org) as
our document collection. These pages are indexed using
the Zettair search engine (http://www.seg.rmit.edu.au/
zettair/) and a 1.1M query subset from the AOL query
log is processed. We remove queries with no results. After
this process, we end up with a stream of 809,795 queries over
a period of six weeks. We reserve 446,952 queries (253,961
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Figure 3: Hit rates of caching policies assuming vari-
able query processing time costs.

unique) submitted in the first three weeks as the training
set and use this set to fill the static caches and/or to warm
up the dynamic caches. The remaining 362,843 (209,636
unique) queries form the test set, and the hit rate and fi-
nancial cost metrics are computed over this set.

Our experiments consider two different cases. In the first
case, query processing times of queries (Tq) are assumed to
be variable. These times are measured as CPU times using
the Zettair search engine. We refer to this case as “nonuni-
form (variable) time costs”. In the second set of experiments,
we consider only the price rate at the hour of the query sub-
mission (P [tq]) and set the processing cost of queries to 1
(i.e., Tq = 1 for all queries). We refer to this case as “uni-
form (fixed) time costs”. This latter scenario is motivated
by the fact that search engines limit the time spent process-
ing a query [8], i.e., we assume that the processing times of
queries are nearly the same and close to this limit.

In our static cache simulation, when we compute the cost
(Tq × P [t]) for a query, we use the average electricity price
observed in the training set when the query is processed at
different times. For the dynamic caching setup, we consider
the last time the query is issued and use the electricity price
at that time point. We set various parameters as follows:
For the FC, LFCU, and GDSF policies, K is set to 2.5 [11].
When dividing the cache space in SDC, %20 is reserved for the
static portion and the rest is for the dynamic portion (tuned
empirically). We also experimentally tune the 2P_LRU policy
and allocate %60 of the cache space for the cheap cache,
and the remaining %40 for the expensive cache. We set the
financial cost threshold (TP ) parameter to 0.02 and 0.9 in
the variable and fixed time cost scenarios, respectively.

Figs. 2 and 3 present the performance of caching policies
for the variable time cost scenario, in terms of the financial
cost and hit rate metrics, respectively. For a typical large
cache (90K or 100K), the policies can be ordered according
to their performance as follows:

• Financial cost: LFU ∼= MostFreq > FC > LRU >
2P_LRU > SDC_MostFreq_LRU > GDS ∼= LFCU > GDSF
∼= SDC_MostFreq_GDSF

• Hit rate: GDS < LFCU < FC < GDSF ∼= LFU <
MostFreq < 2P_LRU ∼= SDC_MostFreq_GDSF < LRU <
SDC_MostFreq_LRU

It is interesting to note that even though LRU and
SDC_MostFreq_LRU policies are the best-performing policies,
according to the hit rate metric, they are outperformed
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Figure 4: Financial cost evaluation of caching poli-
cies assuming fixed query processing time costs.

by the cost-based policies (LFCU, GDS, SDC_MostFreq_GDSF,
GDSF) in terms of the financial cost metric. The proposed
2P_LRU policy incurs lower financial costs than the LRU pol-
icy. The reductions in financial cost reach up to 3.8% and
1% for small and large cache sizes, respectively. The best
policies, based on the financial cost metric, namely GDSF and
SDC_MostFreq_GDSF, outperform LRU by around 4%.

Figs. 4 and 5 show the performance for the fixed time cost
scenario. For large caches, ordering of policies in decreasing
financial cost and increasing hit rate are as follows:

• Financial cost: LFU > MostFreq ∼= FC ∼= LFCU >
GDS ∼= LRU > 2P_LRU ∼= SDC_MostFreq_LRU > GDSF ∼=
SDC_MostFreq_GDSF

• Hit rate: LFU < MostFreq ∼= FC ∼= LFCU < GDS
∼= LRU < 2P_LRU ∼= SDC_MostFreq_LRU < GDSF ∼=
SDC_MostFreq_GDSF

We note that, in this case, the two orderings are the
same. This is because, when we consider only the electricity
price as the cost, the variation between the costs of different
queries is not high. Let P (q) be the probability that query
q leads to a cache hit. In this case, our objective function
is to minimize the sum of all (1 − P (q)) × Cq values, i.e.,
the cost of all cache misses. If the variation between the
Cq values of different queries is not high, then the objective
becomes similar to minimizing the (1 − P (q)) function, i.e.,
increasing the hit rate. Therefore, the hit rate and financial
cost metrics are highly correlated in this case.

5. CONCLUSION
We proposed the financial cost as a new evaluation metric

for query result caches in web search engines. We evaluated
the well-known static, dynamic, and hybrid result caching
strategies using this metric. In general, we observed that
the improvement of cost based strategies in terms of the
financial cost metric over cost-unaware strategies is more
emphasized when there is a sufficient variation between the
costs of queries. The proposed financial-cost-aware LRU
cache, 2P_LRU, outperforms the original LRU strategy. For
fixed time costs, 2P_LRU achieves performance results that
are very close to the best performing policies, GDSF and
SDC_MostFreq_GDSF. However, in practice, 2P_LRU could be
a better option as the latter policies require a priority queue
structure that results in higher computational complexity.
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