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ABSTRACT 
Social networks have been mostly based on a centralized 
infrastructure where the owner hosts all the data and services. 
This model of “fat server & thin clients” results in many systems 
and practical problems such as privacy, censorship, scalability, 
and fault-tolerance. While a P2P infrastructure would be a natural 
alternative for implementing social networks, it has surprisingly 
not attracted enough attention yet. Significant research is needed 
to develop a P2P social network system. From an algorithmic 
perspective, most graph algorithms for social networks assume 
that the global graph is available. These need to be revisited in a 
P2P setting where the nodes have limited information with 
connectivity to only their neighbors. Following these 
observations, in this paper, we focus on social network link 
recommendation problem in a P2P setting. We investigate 
methods to recommend links to improve social connections as 
well as the efficiency of the overlay network. We evaluate our 
methods with respect to measures developed for P2P social 
networks.  

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: J.4 [Social and Behavioral 
Sciences]: 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Experimentation, Security, Social Network. 

Keywords 
Social Network, P2P Network, Link Prediction, Measurement. 

1. INTRODUCTION 
Online social networks have drawn attention in the last decade 
with growing number of people using social platforms like 
Facebook, Twitter, LinkedIn and so on. Social network providers 
offer variety of services, which results in rich content and linkage 
data. The data has been typically administered by a single owner. 
However, this setup is counter-productive in both systems and 
practical perspectives. Users do not have the power to safeguard 
themselves from misuse of their data [1]. The owners of social 
networks can apply censorships and other exercises of central 
authority [2]. These problems arise mainly because of the classical 
paradigm of thin clients and a fat server. P2P systems can be an 
alternative to the client-server model for social networks, where 
data is maintained in all peers and the users define their level of 
privacy.  

From a systems perspective, a P2P implementation of social 
networks is expected to scale better. Social networking companies 
make investments to handle scalability problems employing large 
data centers. The consumption of resources of energy and time 
may not be necessary if a P2P implementation could be made 
possible. 

P2P social networks introduce significant challenges in terms of 
P2P storage, topology and local graph algorithms [1]. The 
connections and sharing in a P2P social network need to be a 
continuous process, unlike a typical P2P setting where the 
connections are constructed based on a file being searched at the 
time. Most graph models and algorithms for social networks in the 
literature assume that the global network is available at hand, 
hence only the owner can truly employ them. This assumption is 
reasonable in a single administration setting, however needs to be 
revisited for a distributed infrastructure.  

In this paper, we address the problem of link prediction in a P2P 
social network. The P2P link prediction problem differs due to the 
distributed nature, where each node has only local information 
about the network. We propose an approach by adapting a top-k 
search algorithm to P2P link recommendation. We also present 
scoring methodologies for nodes in a P2P social network, 
considering accuracy and efficiency of the underlying topology.  

2. BACKGROUND 
2.1 Social Networks and Link Prediction 
Centrally administered social networks made a significant impact 
on business and social life. From computer science perspective, 
they  introduced problems such as community detection, influence 
analysis, ranking, node classification, and link prediction [3]. 
These problems can be revisited in a P2P setting.  In this paper, 
we focus on link prediction as an essential problem. The link 
prediction problem was introduced by Nowell and Kleinberg as 
estimating new interactions between the nodes of a social network 
[4]. Methods for link prediction rely on content shared among 
nodes and topology of the network. Latter is preferred especially 
due to privacy issues. Topological methods are based on paths 
between nodes and neighborhoods [4].  Paths between nodes 
approach uses shortest path, ensemble of paths or their variants to 
handle the link prediction problem. Likewise, Bakstrom and 
Leskovec use network structure and node/edge attributes to 
predict new interaction by the help of random walks [5].  

Neighborhood approaches, such as Common Neighbors, are also 
used in link prediction. For example, Adamic and Adar use 
weighted neighborhood information to find relationship between 
individuals [6]. Intuition behind Common Neighbor is that a node 
is more likely to interact with another node if the number of 
overlaps between their neighbors is high. It is a simple heuristic 
that can often outperform complex heuristics [7].  

While most current link prediction methods work on a global 
network, we aim to build a localized algorithm in a P2P setting. 

2.2 P2P Infrastructures 
P2P systems enable sharing data and resources between the peers. 
File sharing applications are best-known realization of P2P 
systems. Some successful applications are Napster, Gnutella and 
BitTorrent. P2P frameworks can also be used for distributed 
computation, collaboration and communication between peers [8].  



P2P systems can be categorized according to the degree of 
centralization: purely decentralized, partially centralized and 
hybrid decentralized [8]. In purely decentralized systems 
resources are shared among all peers uniformly. In partially 
centralized systems, super peers handle coordination of resources. 
Lastly, hybrid systems have a central server that keeps track of 
indexes. Hybrid systems offer an effective tradeoff for 
implementing P2P social networks, since fully decentralized 
systems have disadvantages like recalling peer addresses. In a 
case where all peers are offline, all information can be lost in a 
decentralized system while we at least expect one super peer can 
take care of peer addresses. DNS like protocols can be easily 
implemented in hybrid system using the power of super peers.  

In a P2P environment, the link prediction problem becomes 
different since we do not have control on the full network. Each 
node has partial information about the network. Thus, there is a 
need for distributed algorithms to find predicted links in P2P 
infrastructure. One can utilize a Common Neighbor approach to 
locally gather and merge link strengths from neighbors. We 
approach this merging problem as a top-k query processing [9] 
and implement a set of distributed top-k link recommendation 
algorithm. 

2.3 Related Work 
The closest work to our study is the CNP (Common Neighbor 
Predictor) method proposed by Zhang et al.  [10]. While that work 
does not consider a social network and does not consider P2P 
performance issues, it uses a distributed algorithm to predict 
future links in a P2P infrastructure. They express their ground 
truth through the following formula: 

 
where Epre is the set of predicted links by the algorithm between 
two time instants t1 and t2. Furthermore, E2 is the set of links that 
are newly created by the network between times t1 and t2. First, 
NCNP (Neighbor’s Common Neighbor Predictor) is proposed that 
considers neighbors’ Common Neighbor when predicting a new 
link, when at least two neighbors of a node share the same node in 
common as a neighbor. Based on this intuition, they run their 
prediction algorithm for a given number of cycles, λ. Later, the 
algorithm is refined as Refined or Popularity aware NCNP. This 
version considers the weights of the possible links. As a result, a 
link is predicted if its probability is higher than a given threshold. 
Our approach is different from Zhang et al.’s methods since we 
return top-k neighbors while decreasing the number of 
communications with other nodes.  

Another related work is SoCS (Social Coordinate Systems), an 
algorithm proposed by Kermarrec et al. for link prediction in 
decentralized social networks [11]. While SoCS is a distributed 
algorithm, it considers neither P2P environment nor related 
performance issues. SoCS uses force based graph embedding that 
depends on iterative forces that are attractions and repulsions.  

In Figure 1, nodes c, b and e apply attraction to node a and all the 
nodes except a itself apply repulsions to node a.  Each neighbor of 
the selected node applies an attraction force to that node and all 
nodes apply a repulsion force to it. 
 

 
Figure 1 - Example of a friendship social network 

The SoCS algorithm represents each node by a vector. After the 
graph is initialized, repulsions and attractions are calculated for 
each node in the network.  To do so, each node retrieves 
neighbors of its neighbors by calling a function of its neighbors. 
The algorithm then calculates velocity and direction of each node. 
As a result, it finds new position of each node. This process is 
applied while the graph is unstable which is decided by a 
convergence function. At last, the algorithm calculates the 
distance between the node and its neighbors’ neighbors and 
returns the ones that are less than or equal to the acceptable range. 
SoCS does not consider a P2P environment, while our approach is 
built on a P2P setting.  

We utilize Fagin’s top-k query processing for middleware that 
filters conditions to get top-k objects [12]. Since optimality is 
often achieved on the worst case, Fagin et al. proposed another 
approach, TA (Threshold Algorithm), which terminates earlier 
[13]. Top-k query processing is also discussed in [14] for 
unstructured P2P networks that focus on challenges of dynamic 
structure. 
Buchegger et al. discuss the requirements of a P2P infrastructure 
for social networks including distributed storage of data, 
networking, security, and privacy [1]. In a P2P social network 
environment, providing a reliable and secure platform is an 
important challenge. This can be achieved by encryption of data 
and digestion of access authentication [15]. A potential solution is 
to use available metadata information, which has some potential 
side effects [16].   

3. P2P LINK RECOMMENDATION 
In this section, we discuss how the link prediction problem can be 
adapted to a P2P setting where each node has only local 
information about the network. Every node is able to initiate a 
local link recommendation process of its own. We define ‘link 
recommendation’, as suggesting a new link to a peer by 
considering not only social neighborhood but also network weight 
information to improve the network performance.  While one 
could assume a uniform weighting of nodes, a more appropriate 
solution should assign weights based on a P2P social network 
criteria. A global weight can be assigned to each node in a 
distributed fashion. Alternatively, each node can assign weights to 
its neighbors locally utilizing methods from the P2P literature.  

The efficiency of a link recommendation algorithm can be 
measured simply by the cost of communication between nodes. 
The accuracy of the result can be measured based on both the 
traditional social network measures (difference between predicted 
vs. actual) and how the result improves the underlying P2P 
infrastructure.  



3.1 Common Neighbor Recommendation 
To solve the P2P link recommendation problem, we start by 
adapting a Common Neighbor based approach which produces a 
recommendation to a node x based on highly weighted common 
neighbors of x’s neighbors. To minimize the communication cost 
while merging the weights of recommendations from the 
neighbors, we utilize Fagin’s top-k algorithm (FA) and an 
approximate threshold algorithm (TA) that were originally 
proposed for top-k Common Neighbor processing. 

In FA, each node initializes its neighbor map and enters a loop 
until finding k neighbor recommendations retrieved from all its 
neighbors. For each iteration i, neighbor recommendations are 
retrieved from each neighbor, which is the ith top neighbor of the 
requested neighbor.  Then the neighbor map is updated and the 
node checks if k recommendations have been retrieved from all its 
neighbors. If so, it stops and calculates top-k neighbors by 
assessing weights; otherwise it starts another iteration. The 
threshold algorithm is the modified version of FA differing for its 
stopping condition [13]. Even though FA is optimal, it can result 
in the worst-case scenario with high probability. To avoid this 
problem TA was proposed where it stops at least as early as FA. 
Thus, TA calculates a threshold value at each iteration for the last 
retrieved recommendations. If there are k neighbors that have 
higher rate than the threshold value, the algorithm terminates. 

 

 
Figure 2 – Top-K TA Common Neighbor algorithm 

Figure 2 shows the P2P TA algorithm. Similar to FA, TA also 
initializes the neighbor map. For each neighbor, it requests the 
next recommendation, which is the ith top neighbor. At the end of 
each recommendation, an approximate threshold is calculated by 
the last retrieved recommended nodes. k neighbors that have the 
highest weights are remembered at each step, and the others are 
discarded. If the remembered neighbors’ weights are all higher 
than the threshold that is calculated, it ends up with the neighbors 
in the neighbor map. The algorithm uses weights of nodes in 
pruning and decision of final recommendation. We discuss next 
how these weights can be assigned. 

3.2 Node Scoring 
While a simple Common Neighbors approach would consider no 
weights of nodes, one can actually assign weights representing 
each node’s strength in topology, social network, or P2P structure. 
There is a significant body of work that assigns scores to nodes in 
a social network, or in a P2P structure. One can borrow those 
methods to deduct a combined weighting for P2P social networks. 
We now present such strategies based on the properties of the 
social networks, P2P systems and their combination.  

Node Importance. Centrality is defined as the relative 
importance of an individual node in the network [17].  There are 
several types of centrality such as betweenness, closeness, and 
eigenvector [18]. Betweenness centrality is related with the 
number of shortest paths that pass through a node. Closeness is 
inverse of the average distance from all the other nodes to a 
particular node. Eigenvector centrality promotes high-scoring 
nodes more than the others. 
Influence is another measure commonly used to determine how to 
select an initial set of k users such that they influence the largest 
number of users at the end [19]. Reputation and authority are 
other measures that are similar to influence score. 
Clustering Coefficient is a measure related with the number of 
neighbors a node has and the edges between its neighbors [20]. 
 

Reputation Scoring. Trust is one of the most challenging tasks 
in P2P systems since a node can appear and disappear instantly 
[21]. Trust/Reputation models are based on the values that are 
assigned between nodes such that node i assigns a trust value to 
node j, and vice versa. There are a lot of trust models, including 
CuboidTrust [22], EigenTrust [23], BNBTM [24], GroupRep [25], 
etc.  
 

P2P Systems Measures. The lifetime of a peer determines its 
availability. The simplest way of implementing availability is 
waiting up for a given time and marking the node as online or 
offline [26]. Latency is the time spent transmitting a file from one 
node to another. Bandwidth is the speed of the connections to the 
Internet where bottleneck can be both the receiving peer and the 
sending peer. Thus, bottleneck bandwidth depends on the slowest 
peer in the process. 
 

Composite Measures. For scoring the nodes in a P2P Social 
Network, one can simply combine the scores from social network 
and P2P systems. For example, a “trusted centrality” score can be 
developed by combining P2P trust and graph centrality measures. 
We involve both centrality and trust to recommend new links for 
the peers to trust and provide higher access to other nodes:  

 

where tc stands for trusted centrality, t is the normalized trust 
score, c is the normalized centrality score and α is the constant for 
adjusting the weights of centrality and trust. We used this measure 
for our results in the experimental section. 
Another example for composite measures is “available 
authority”, combining availability score from the P2P network 
and the authority score from the network topology. Recommended 
peers are reachable most of the time and they are authority for the 
communities that the peer is participating in.  
For link recommendation, we utilize a weighting strategy that 
unifies the social and network connections. While this simplifies 
the process, it may result in forcing friendship connections to 
improve the P2P topology. One can separate the problems of 
social connection and network connection and run the common 
neighbor algorithm with separate weights for each.  

4.  EXPERIMENTAL RESULTS 
To evaluate the proposed algorithms, we simulated a P2P network 
where each node knows only its neighbors and their global or 
local weights. We also have been building a P2P social network 
application, which we refer to as SOWHOO [27]. 

We used both real data (Gnutella and Wikipedia), and synthetic 
data for the experiments. For synthetic experiments, we generated 



different classes of network structures using uniform distribution, 
the small world model of Watts and Strogatz [28], and finally the 
clustering model of Holme and Kim [29]. Please note that while a 
graph can have a uniform edge distribution, the weighting scheme 
can be non-uniform. We evaluate the efficiency of the methods 
using the communication cost (the number of messages) as our 
performance measure. The accuracy of the results depends on the 
weighting used. The recommended links are not necessarily the 
common neighbor. The node that collects a higher collective 
weight would be preferred to a common neighbor with low 
weight.  

We first compare the Top-K Common Neighbor, Top-K FA 
Common Neighbor and Top-K TA Common Neighbor with 
respect to the communication cost. We present the cost of each 
algorithm as the number of edges in the underlying graph 
changes. During the experiments, both global and local weights 
are assigned to each node. The global weight for each node is 
single and does not change according to any node. It can be 
assigned in a distributed fashion as well. Examples of such global 
weights are clustering coefficient or influence score. A local 
weight of a node is its value with respect to another node. The 
value is not known by any other node except for the one that made 
the assignment. Examples for local weights are the rating assigned 
by a node to its neighbor or the number of interactions between 
two nodes. 

 
Figure 3 - No of accesses vs. no of edges for uniform graph 

We first test the algorithms on the uniform graph where weights 
of the nodes are assigned locally with power-law distribution. 
Figure 3 illustrates performance results in terms of the number of 
messages as the number of edges in the graph increases. Top-K 
FA Common Neighbor and Regular Top-K Common Neighbor 
algorithms perform the same. Top-K TA Common Neighbor 
algorithm outperforms, by far, the other two algorithms. Note that 
we adapted an approximate version of the original TA algorithm 
to our context. As the number of edges in the network increases, 
the performance benefit increases since it terminates in very early 
iterations compared to the other two. 

 
Figure 4 - No of accesses vs. no of edges for small world graph 
Small World Model. Figure 4 presents the results for the small 
world model graph. The edges of the graph are generated 
according to a ring structure. Weights of the nodes are assigned 

with power-law distribution locally. Similar to the previous 
experiment, as the number of edges in the network increases, Top-
K TA Common Neighbor performs better than the other two 
algorithms, due to its termination in early iterations.  

 
Figure 5 - No of accesses vs no of edges for clustered graph 

Clustered Model. We tested the on  clustered model graph where 
the edges are generated in clusters. Weights assigned to the nodes 
follow power-law distribution. The performance results of the 
three algorithms follow a similar pattern as before (Figure 5).  

 
Figure 6 - No of accesses vs. no of edges for global weights 

Global Weighting. The performance of the algorithms follow a 
similar pattern also with global weights, where each node is 
assigned a global value with power-law distribution. Top-K TA 
Common Neighbor with global weights performs better than its 
local weight case. Figure 6 illustrates these results for the 
clustered graph model. 

Real Data. We compared the performance of the algorithms using 
the Gnutella P2P network [30] and Wikipedia vote network [31]. 
Gnutella data is one of the snapshots of Gnutella network in 2002. 
In this snapshot, there are 6301 nodes and 20777 edges with an 
average clustering coefficient of 0.0150. Wikipedia vote network 
data set includes small part of the Wikipedia contributors voting 
each other to become administrator. Wikipedia voting data is 
extracted from this election data and vote history having 7115 
nodes and 103689 edges with average clustering coefficient of 
0.2089. 

In Gnutella data set, the Top-K TA algorithm does 605,433 
accesses while Top-K FA does 676,430 accesses under uniform 
weight distribution setting. Under power law weight distribution, 
Top-K FA does 676,432 accesses and Top-K TA does 326,227. 
Top-K TA is better than Top-K FA in both settings while the 
difference between two is larger in power law setting. 

In Wikipedia data set, the Top-K TA algorithm outperforms Top-
K FA with 377,929 accesses under power law weight distribution 
setting where Top-K FA does 28,670,223 accesses. Under 
uniform weight distribution setting, Top-K TA results in 
14,687,511 accesses while Top-K FA does 28,671,824.  

Accuracy vs. Efficiency. To understand the accuracy and 
efficiency tradeoff, we use a performance measure that involves 



both accuracy and the number of accesses to a node. Our measure, 
ω, is specified using the following formula, where a denotes the 
accuracy and n denotes the number of accesses. Maximum of n is 
reached when all the nodes are accessed.  

 
 

 
Figure 7 - Uniform (left) and Power-law (right) distribution 

for Gnutella data set 
We have assigned the weights according to both the uniform 
distribution and power law distribution. As shown in Figure 7, 
when the uniform distribution is applied (left hand side), FA 
becomes a good choice; however, when the power law 
distribution is applied (right hand side graph), TA seems to be a 
better choice for Gnutella data set.  

In Figure 8, we can see that Top-K FA behaves similar to its 
performance obtained with the Gnutella data set. On the other 
hand, Top-K TA works better when uniform distribution is 
applied contrary to the Gnutella results. Consequently, Top-K TA 
is the better choice regardless of weight distribution with the 
Wikipedia data set. 
 

 
Figure 8 - Uniform (left) and Power-law (right) distribution 

for Wiki Vote data set 
Trusted Centrality. We also implemented the trusted centrality 
weighting that we propose. To compute this measure, we use the 
betweenness centrality proposed by Newman for each peer [32]. 
Since we do not have a fully working P2P infrastructure yet, we 
assign the trust scores according to the power law distribution as 
suggested by Zhou and Hwang [33]. We have obtained similar 
results with the power law distribution in small-world network 
and clustered network for both Top-K TA and Top-K FA. This 
result can be due to the small number of edges and the small 
network.  

5. DISCUSSION 
We presented our ongoing work on the interesting problem of link 
recommendation in P2P social networks. We studied two 
algorithms, Top-K FA and TA Common Neighbors to find 
recommended links for a node. We also presented weighting 
methods for link recommendation and proposed trusted centrality 
combining P2P trust and social network centrality.  

The TA algorithm is significantly more efficient than the FA 
algorithm. This is mainly due to the observation that FA performs 
mostly in its worst-case in this new setting. Hence FA performs as 
a regular common neighbor approach since finding k common 
nodes in all neighbors is not likely in real social networks. One 
can improve FA by removing the requirement of k nodes retrieved 
from all neighbors. One can approximate this by not retrieving 
nodes from all neighbors but from a certain number of neighbors. 
TA and FA show a tradeoff between accuracy and efficiency as 
illustrated in Figure 7. 

For a complete P2P social network, a large body of research and 
implementation is needed, such as authentication, privacy, 
publish/subscribe services and notifications. We are currently 
building a simple P2P social network application [27]. This 
application will enable experimenting our algorithms on a real 
P2P infrastructure with global or local weights assigned according 
to the underlying activities. There is a wide range of design 
alternatives one can follow to implement such a system. An 
example is a hybrid P2P infrastructure, where there are simple 
peers and super peers. Each peer in the system has a super-peer to 
provide other peer addresses such as neighbor peers. In order to 
provide peer addresses, super peers are designed to have a DNS 
like protocol in which each super-peer delegates address inquiry 
message to parent super-peer if peer-address is not found in local 
repository. As a result, there must be at least one super-peer, 
which has permanent address for system start-up. This super-peer 
would keep track of super-addresses and if there is no other super-
peer, it would also keep track of simple-peers.  

We consider a partitioning algorithm for distribution of peers to 
super-peers. Each super-peer would have a self-balancing 
mechanism to hold similar number of addresses to have more 
uniform network. This would prevent the system from depending 
so much in particular super-peers, which may result in overload 
for that particular super-peer. 
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