
Propagating Expiration Decisions in
a Search Engine Result Cache

Fethi Burak Sazoglu
Bilkent University
Ankara, Turkey

fethi.sazoglu@bilkent.edu.tr

Ismail Sengor Altingovde
Middle East Technical University

Ankara, Turkey
altingovde@ceng.metu.edu.tr

Rifat Ozcan
Turgut Ozal University

Ankara, Turkey
rozcan@turgutozal.edu.tr

B. Barla Cambazoglu
Yahoo Labs

Barcelona, Spain
barla@yahoo-inc.com

Özgür Ulusoy
Bilkent University
Ankara, Turkey

oulusoy@cs.bilkent.edu.tr

ABSTRACT
Detecting stale queries in a search engine result cache is an
important problem. In this work, we propose a mechanism
that propagates the expiration decision for a query to similar
queries in the cache to re-adjust their time-to-live values.

1. INTRODUCTION
Result caching is a key technique that is widely employed

by search engines, helping them to improve their efficiency
by reducing the query processing workload on their backend
search systems. Due to increasing storage capacities and
dropping hardware prices, it is now possible to construct a
cache that is large enough to contain the results of all queries
submitted to a search engine for a very long time period,
maybe for several months or even years [6]. Given that the
web content and hence indexes of search engines are updated
continuously, it now becomes important to correctly identify
the stale query results in the cache.

Earlier work proposed methods to identify and refresh the
stale results in the cache. The so-called informed strategies
interact with the underlying index to detect the query re-
sults that are likely to be stale [1, 3, 4]. These techniques are
known to be effective. Yet, they may be non-trivial to im-
plement in existing search systems and may incur additional
computational costs. In contrast, a straightforward strategy
that is blind to changes in the underlying index is to assign
a time-to-live (TTL) value to each result in the cache [6].
When a cache hit occurs, the corresponding result is served
by the cache only if its TTL has not yet expired. Cam-
bazoglu et al. [6] proposed such a proactive strategy, which
exploits the idle cycles of the backend to refresh the query
results that were expired (or close to expiration) and likely
to be submitted again soon. Bortnikov et al. [5] introduced
the frequency-based TTL strategy, which takes into account

Copyright is held by the author/owner(s).
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742772.

the number of cache hits for a query result before making an
expiration decision. Alici et al. [2] used adaptive TTL val-
ues that are tailored for each query rather than assigning the
same TTL value to all queries. Recently, Sazoglu et al. [7]
showed that certain combinations of different TTL strategies
perform better than using each strategy in isolation.

In this work, we seek to improve the performance of the
TTL-based expiration strategy by propagating the expira-
tion decision made for a query among similar queries in the
cache. The underlying motivation is that, when a cached
query result is found to be stale, it is very likely that the
results of similar queries may also be stale, and the search
engine should consider reducing the TTL values assigned to
such queries. In Section 2, we provide the details of this
similarity-based TTL strategy. In Section 3, we present our
experimental setup and results.

2. SIMILARITY-BASED TTL STRATEGY
In the proposed expiration strategy, for each query q

whose results are cached, we maintain a short list of most
similar queries (Sq). Earlier work have shown that the num-
ber of overlapping results is a good indicator of query sim-
ilarity. Therefore, we compute the similarity of two queries
using the Jaccard similarity between their top-10 result sets.

As usual, a fixed TTL value is assigned to each query at
the time of caching. Upon a cache hit on an expired query,
the search engine computes the new (fresh) query results
and, before replacing the old results in the cache, compares
the two copies to see if the cached results were really stale
(recall that TTL expiration does not necessarily imply that
the cached results are stale). If the new results differ from
the cached results, i.e., it is verified that the cached results
were really stale, then this information is propagated to all
queries in Sq. Each query qi∈Sq is “warned” proportional to
its similarity to q. Finally, the current TTL of qi is reduced
if there is enough evidence that its results are stale. To
this end, we associate each query q with a warning score
wq, which is initially set to 0, and increment wq every time
a similar query is found to be stale. If the warning score
exceeds a threshold T , the TTL of q is reduced by half. We
evaluate two alternative methods to set the warning score
wq: BasicScore and AgeScore. Given an expired query
qe and a similar query qs ∈ Sqe , BasicScore and AgeScore

update wqs as shown in Eqs. 1 and 2, respectively:

107



Figure 1: Performance of fixed TTL vs. similarity-based TTL with BasicScore (left) and AgeScore (right).

wqs ← wqs + similarity(qe, qs), (1)

wqs ← wqs + similarity(qe, qs)×
cacheAge(qs)

cacheAge(qe)
, (2)

where cacheAge(q) denotes the difference between the cur-
rent time and the time at which query q was cached.
BasicScore simply increments wqs by the similarity be-

tween qe and qs. AgeScore also takes into account the ratio
between the times spent by qs and qe in the cache. If the
ratio is greater than 1, i.e., the results of qs were cached
before the expired results of qe were cached, we increase the
weight of the similarity score added to wqs . This procedure
is illustrated in Algorithm 1.

3. EXPERIMENTS
Data. In this study, we use a sample of 2,044,531 queries

submitted to the Spanish frontend of Yahoo Web Search.
The sample is sorted in timestamp order. We use the queries
in the first half of the sample to warm up the cache and those
in the remaining half to evaluate the performance.

Simulation setup. We assume an infinitely large cache
so that we can evaluate the performance independent of vari-
ous parameters, such as the cache capacity or eviction policy,
as in [2]. We assume that, for a given query-timestamp pair
(q, t), the corresponding top k (k≤10) URLs in the query log
serve as the ground truth result R∗q,t, i.e., the fresh result set
for query q at time t is R∗q,t. During the simulations, when
query q is first encountered, say at time t, its result set R∗q,t
is cached. When the same query is submitted again at time
t′, if the cached results were not expired, we assume that
the results are served by the cache. Otherwise, the cached
results are evicted and the results in the query log (R∗q,t′)
are inserted. A result set Rq,t served by the cache at some
time point t is said to be stale if it differs from the result set
R∗q,t in the query log. We consider two query result sets to
be different if the same URLs are not present in exactly the
same order, following [1, 4].
Evaluation metrics. We evaluate the similarity-based

TTL strategy in terms of the stale traffic (ST) ratio and the
false positive (FP) ratio metrics [1, 4]. The stale traffic ratio
is the percentage of queries for which the results served from
the cache turn out to be stale. The false positive ratio is the
percentage of redundant query executions, i.e., the fraction
of queries for which the refreshed results are found to be the
same as the cached results.
Results. The results shown in Fig. 1 reveal that the

similarity-based TTL strategy (with both BasicScore or

AgeScore) can outperform the fixed TTL baseline. AgeScore
seems to be slightly better than BasicScore for larger values
of TTL. Although improvements over the baseline are rather
small, they are promising. As the future work, we plan to
apply the similarity-based TTL idea to certain subsets of
queries, e.g., based on the query frequency (head/tail), in-
tent (informational/navigational), or query topic.

ALGORITHM 1: The similarity-based TTL strategy.

Input: q: query, C: cache, T : warning threshold, wq : warning
score of query q.

Rq ← ∅ . initialize the result set of q;
if q 6∈ C then /* not cached */

evaluate q over the backend and obtain Rq ;
insert Rq into C;

else if q ∈ C then /* cached */
if cacheAge(q) ≥ TTLq then /* expired */

evaluate q over the backend and obtain R′q ;

if Rq 6= R′q then
foreach qi ∈ Sq do

increment wqi using BasicScore or AgeScore;
if wqi ≥ T then

TTLqi ← TTLqi/2;

end
Rq ← R′q ;

return Rq ;

Acknowledgments. This work is partially supported by
the Ministry of Science, Industry and Technology of Turkey
and Huawei Inc. under the grant no 0441.STZ.2013-2, and
the Yahoo Faculty Research Engagement Program.

4. REFERENCES
[1] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and

O. Ulusoy. Timestamp-based result cache invalidation for
web search engines. In SIGIR, pages 973–982, 2011.

[2] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and
O. Ulusoy. Adaptive time-to-live strategies for query result
caching in web search engines. In ECIR, pages 401–412,
2012.

[3] X. Bai and F. P. Junqueira. Online result cache invalidation
for real-time web search. In SIGIR, pages 641–650, 2012.

[4] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel, L. Telloli,
and H. Zaragoza. Caching search engine results over
incremental indices. In SIGIR, pages 82–89, 2010.

[5] E. Bortnikov, R. Lempel, and K. Vornovitsky. Caching for
realtime search. In ECIR, pages 104–116, 2011.

[6] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras,
S. Banachowski, B. Cui, S. Lim, and B. Bridge. A refreshing
perspective of search engine caching. In WWW, pages
181–190, 2010.

[7] F. B. Sazoglu, B. B. Cambazoglu, R. Ozcan, I. S.

Altingövde, and Ö. Ulusoy. Strategies for setting time-to-live
values in result caches. In CIKM, pages 1881–1884, 2013.

108




