
CS 473 Lecture 2 1

CS473-Algorithms I

Lecture 2

Asymptotic Notation

CS 473 Lecture 2 2

O-notation (upper bounds)

• f(n) = O(g(n)) if  positive constants c, n0 such that

 0  f(n)  cg(n), n  n0

e.g., 2n2 = O(n3)

 2n2  cn3  cn  2  c = 1 & n0 = 2

 or

 c = 2 & n0 = 1

Asymptotic running times of algorithms

 are usually defined by functions whose

domain are N={0, 1, 2, …} (natural numbers)

CS 473 Lecture 2 3

O-notation (upper bounds)

• “=” is funny; “one-way” equality

• O-notation is sloppy, but convenient

• though sloppy, must understand what really means

• think of O(g(n)) as a set of functions:

 O(g(n)) = {f(n):  positive constants c, n0 such that

 0  f(n)  cg(n), n  n0}

 hence, 2n2 = O(n3) means that 2n2  O(n3)

CS 473 Lecture 2 4

O-notation

• O-notation is an upper-bound notation

• e.g., makes no sense to say “running time of an

algorithm is at least O(n2)”. Why?

- let running time be T(n)

- T(n)  O(n2) means

 T(n)  h(n) for some h(n)  O(n2)

- however, this is true for any T(n) since

 h(n) = 0  O(n2), & running time > 0,

 so stmt tells nothing about running time

CS 473 Lecture 2 5

 cg(n)

f(n)

f(n) = O (g(n))

n 0 n

O-notation (upper bounds)

CS 473 Lecture 2 6

-notation (lower bounds)

• f(n) =(g(n)) if  positive constants c, n0 such that

 0  cg(n)  f(n), n  n0

 e.g., =  (lg n) (c = 1, n0 = 16)

i.e., 1  lg n  n  16

• (g(n)) = {f(n):  positive constants c, n0 such that

 0  cg(n)  f(n), n  n0}

n

n

CS 473 Lecture 2 7

 f(n)

cg(n)

f(n) =  (g(n))

n 0 n

-notation (lower bounds)

CS 473 Lecture 2 8

-notation (tight bounds)

• f(n)=(g(n)) if  positive constants c1, c2, n0 such that

 0  c1g(n)  f(n)  c2g(n), n  n0

• example:

21

2

2

22

1

22

2

2

1

2
2

1
0

)(2
2

1

c
n

c

ncnnnc

nnn







CS 473 Lecture 2 9

h(n) =1/2-2/n

n

 1 /2

 1/10

1 2 3 4 5

 (n0)

-notation: example (0  c1  h(n)  c2)

CS 473 Lecture 2 10

5,
2

1
,

10

1

therefore

5,
10

12

2

1
)(

0,
2

12

2

1
)(

021

1

2







ncc

nc
n

nh

nc
n

nh

-notation: example (0  c1  h(n)  c2)

CS 473 Lecture 2 11

-notation (tight bounds)

(g(n))={f(n):  positive constants c1, c2, n0 such that

 0  c1g(n)  f(n)  c2g(n), n  n0}

f(n)

c1g(n)

n0 n

c2g(n)

CS 473 Lecture 2 12

-notation (tight bounds)

• Prove that 10-8 n2  (n)

 - suppose c2, n0 exist such that 10-8 n2  c2n, n  n0

 - but then c2  10-8 n

 - contradiction since c2 is a constant

• Theorem: leading constants & low-order terms don’t

matter

• Justification: can choose the leading constant large

enough to make high-order term dominate other terms

CS 473 Lecture 2 13

-notation (tight bounds)

• Theorem: (O and )  

-  is stronger than both O and 

- i.e., (g(n))  O(g(n)) and

 (g(n))  (g(n))

CS 473 Lecture 2 14

Using asymptotic notation for describing

running times

O-notation

• used to bound worst-case running times

 also bounds running time on arbitrary inputs as well

• e.g., O(n2) bound on worst-case running time of

insertion sort also applies to its running time on every

input

CS 473 Lecture 2 15

Using O-notation for describing running times

• Abuse to say “running time of insertion sort is O(n2)”

- for a given n, actual running time depends on

particular input of size n

- i.e., running time is not only a function of n

- however, worst-case running time is only a

function of n

CS 473 Lecture 2 16

 Using O-notation for describing running times

• What we really mean by “running time of insertion

sort is O(n2)”

- worst-case running time of insertion sort is O(n2)

 or equivalently

- no matter what particular input of size n is chosen

(for each value of) running time on that set of

inputs is O(n2)

CS 473 Lecture 2 17

Using  -notation for describing running times

• used to bound the best-case running times

 also bounds the running time on arbitrary

 inputs as well

• e.g., (n) bound on best-case running time of

insertion sort

 running time of insertion sort is (n)

CS 473 Lecture 2 18

 Using  -notation for describing running times

• “running time of an algorithm is (g(n))” means

- no matter what particular input of size n is chosen

(for any n), running time on that set of inputs is at

least a constant times g(n), for sufficiently large n

- however, it is not contradictory to say

 “worst-case running time of insertion sort is (n2)”

 since there exists an input that causes algorithm to

take (n2) time

CS 473 Lecture 2 19

Using -notation for describing running times

1) used to bound worst-case & best-case running times

of an algorithm if they are not asymptotically equal

2) used to bound running time of an algorithm if its

worst & best case running times are asymptotically

equal

CS 473 Lecture 2 20

Using -notation for describing running times

Case (1):

• a -bound on worst-/best-case running time does not

apply to its running time on arbitrary inputs

• e.g., (n2) bound on worst-case running time of

insertion sort does not imply a (n2) bound on

running time of insertion sort on every input

 since T(n) = O(n2) & T(n) = (n) for insertion sort

CS 473 Lecture 2 21

Using -notation for describing running times

Case (2):

• implies a -bound on every input

- e.g., merge sort

 T(n) = O(nlgn)

 T(n) = (nlgn)

T(n) = (nlgn)

CS 473 Lecture 2 22

Asymptotic notation in equations

• Asymptotic notation appears alone on RHS of an equation

- means set membership

- e.g., n = O(n2) means n  O(n2)

• Asymptotic notation appears on RHS of an equation

- stands for some anonymous function in the set

- e.g., 2n2 + 3n + 1 = 2n2 + (n) means that

 2n2 + 3n + 1 = 2n2 + h(n), for some h(n)  (n)

 i.e., h(n) = 3n + 1

CS 473 Lecture 2 23

Asymptotic notation appears

on LHS of an equation

• stands for any anonymous function in the set

- e.g., 2n2 + (n) = (n2) means that

 for any function g(n)  (n)

  some function h(n)  (n2)

 such that 2n2+g(n) = h(n), n

• RHS provides coarser level of detail than LHS

CS 473 Lecture 2 24

Other asymptotic notations

o-notation

• upper bound provided by O-notation

 may or may not be tight

- e.g., bound 2n2 = O(n2) is asymptotically tight

 bound 2n = O(n2) is not asymptotically tight

• o-notation denotes an upper bound

 that is not asymptotically tight

CS 473 Lecture 2 25

o-notation

• o(g(n)) = {f(n): for any constant c  0,

  a constant n0  0

 such that 0  f(n) < cg(n), n  n0}

• Intuitively,

- e.g., 2n = o(n2), any positive c satisfies

- but 2n2  o(n2), c  2 does not satisfy

0
)(

)(
lim 

 ng

nf

n

CS 473 Lecture 2 26

-notation

• denotes a lower bound that is not asymptotically tight

• (g(n)) = {f(n): for any constant c  0,

  a constant n0  0

 such that 0  cg(n) < f(n), n  n0}

• Intuitively

- e.g., n2 / 2 = (n), any c satisfies

- but n2 / 2  (n2), c1/2 does not satisfy


)(

)(
lim

ng

nf

n

CS 473 Lecture 2 27

Asymptotic comparison of functions

• similar to the relational properties of real numbers

- Transitivity: (holds for all)

 e.g., f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))

- Reflexivity: (holds for , O, )

 e.g., f(n) = O(f(n))

- Symmetry: (holds only for )

 e.g., f(n) = (g(n))  g(n) = (f(n))

- Transpose symmetry: ((O  ) and (o  ))

 e.g., f(n) = O(g(n))  g(n) = (f(n))

CS 473 Lecture 2 28

Analogy to the comparison of two real numbers

• f(n) = O(g(n))  a  b

• f(n) = (g(n))  a  b

• f(n) = (g(n))  a = b

• f(n) = o(g(n))  a < b

• f(n) = (g(n))  a > b

CS 473 Lecture 2 29

Analogy to the comparison of two real numbers

• Trichotomy property of real numbers does not hold for

asymptotic notation

- i.e., for any two real numbers a and b,

 we have either a < b, or a = b, or a > b

- i.e., for two functions f(n) & g(n), it may be the case

that neither f(n) = O(g(n)) nor f(n) = (g(n)) holds

- e.g., n and n1+sin(n) cannot be compared asymptotically

