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Asymptotic Notation 
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O-notation (upper bounds) 
 

• f(n) = O(g(n)) if   positive constants c, n0 such that  

                             0  f(n)  cg(n), n  n0 
 

e.g., 2n2  =  O(n3) 

      2n2    cn3      cn  2     c = 1 & n0 = 2 

                                                              or 

                                                c = 2 & n0 = 1 

Asymptotic running times of algorithms 

 are usually defined by functions whose  

domain are N={0, 1, 2, …} (natural numbers) 
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O-notation (upper bounds) 

• “=” is funny; “one-way” equality 

• O-notation is sloppy, but convenient 

• though sloppy, must understand what really means 

• think of O(g(n)) as a set of functions: 

 O(g(n)) = {f(n):  positive constants c, n0 such that 

    0  f(n)  cg(n), n  n0} 

 hence, 2n2 = O(n3) means that 2n2  O(n3) 
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O-notation 

• O-notation is an upper-bound notation  

• e.g., makes no sense to say “running time of an 

algorithm is at least O(n2)”. Why? 

- let running time be T(n) 

- T(n)  O(n2) means  

        T(n)  h(n) for some h(n)  O(n2) 

- however, this is true for any T(n) since 

    h(n) = 0  O(n2),   &  running time > 0, 

         so stmt tells nothing about running time 
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 cg(n) 

f(n) 

f(n) =  O (g(n)) 

n 0 n  

O-notation (upper bounds) 



CS 473 Lecture 2 6 

-notation (lower bounds) 
 

• f(n) =(g(n)) if   positive constants c, n0 such that 

                            0  cg(n)  f(n), n  n0 

 e.g.,        =  (lg n)     (c = 1, n0 = 16) 

i.e., 1  lg n              n  16 

 

• (g(n)) = {f(n):  positive constants c, n0 such that  

                       0  cg(n)  f(n), n  n0} 

 

n

n
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 f(n) 

cg(n) 

f(n) =   (g(n)) 

n 0 n  

-notation (lower bounds) 
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-notation (tight bounds)  

• f(n)=(g(n)) if  positive constants c1, c2, n0 such that  

                        0  c1g(n)  f(n)  c2g(n), n  n0 

•  example:  
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h(n) =1/2-2/n  

n  

 1 /2  

  1/10 

1  2   3   4    5  

                (n0) 

-notation: example (0  c1  h(n)  c2)  
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-notation: example (0  c1  h(n)  c2)  
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-notation (tight bounds) 

(g(n))={f(n):  positive constants c1, c2, n0 such that  

                        0  c1g(n)  f(n)  c2g(n), n  n0} 
 

f(n) 

c1g(n) 

n0 n  

c2g(n) 
 



CS 473 Lecture 2 12 

-notation (tight bounds) 

 

• Prove that 10-8 n2  (n) 

 - suppose c2, n0 exist such that 10-8 n2  c2n, n  n0 

 - but then c2  10-8 n  

 - contradiction since c2 is a constant 

• Theorem: leading constants & low-order terms don’t 

matter 

• Justification: can choose the leading constant large 

enough to make high-order term dominate other terms 
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-notation (tight bounds) 

 

• Theorem: (O and )   

-  is stronger than both O and  

- i.e., (g(n))  O(g(n)) and  

               (g(n))  (g(n))  
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Using asymptotic notation for describing 

running times 

 

O-notation 

 

• used to bound worst-case running times 

 also bounds running time on arbitrary inputs as well 

• e.g., O(n2) bound on worst-case running time of 

insertion sort also applies to its running time on every 

input 
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Using O-notation for describing running times 
 

• Abuse to say “running time of insertion sort is O(n2)” 
 

- for a given n, actual running time depends on 

particular input of size n 

- i.e., running time is not only a function of n 

- however, worst-case running time is only a 

function of n 
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 Using O-notation for describing running times 
 

• What we really mean by “running time of insertion 

sort is O(n2)” 

- worst-case running time of insertion sort is O(n2) 

 
             or equivalently 

 

- no matter what particular input of size n is chosen 

(for each value of) running time on that set of 

inputs is O(n2) 
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Using  -notation for describing running times 

 

• used to bound the best-case running times 

 also bounds the running time on arbitrary 

   inputs as well 
 

• e.g., (n) bound on best-case running time of 

insertion sort 

 running time of insertion sort is (n)  
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  Using  -notation for describing running times 
 

• “running time of an algorithm is (g(n))” means 
 

- no matter what particular input of size n is chosen 

(for any n), running time on that set of inputs is at 

least a constant times g(n), for sufficiently large n 
 

- however, it is not contradictory to say 

 “worst-case running time of insertion sort is (n2)”  

 since there exists an input that causes algorithm to 

take (n2) time 
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Using -notation for describing running times 

 

1) used to bound worst-case & best-case running times 

of an algorithm if they are not asymptotically equal 

 

2) used to bound running time of an algorithm if its 

worst & best case running times are asymptotically 

equal 
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Using -notation for describing running times 
 

Case (1):  
 

• a -bound on worst-/best-case running time does not 

apply to its running time on arbitrary inputs 

 

• e.g., (n2) bound on worst-case running time of 

insertion sort does not imply a (n2) bound on 

running time of insertion sort on every input 

 since T(n) = O(n2) & T(n) = (n) for insertion sort 
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Using -notation for describing running times 

 

Case (2):  
 

• implies a -bound on every input 

- e.g., merge sort 

     T(n) = O(nlgn)    

        T(n) = (nlgn)  

         

 

T(n) = (nlgn) 
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Asymptotic notation in equations 
 

• Asymptotic notation appears alone on RHS of an equation 

- means set membership 

- e.g., n = O(n2) means n  O(n2)  
  

• Asymptotic notation appears on RHS of an equation 

- stands for some anonymous function in the set 

- e.g., 2n2 + 3n + 1 = 2n2  +  (n) means that 

           2n2 + 3n + 1 = 2n2  + h(n), for some h(n)  (n)  

   i.e., h(n) = 3n + 1 
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Asymptotic notation appears  

on LHS of an equation 
 

• stands for any anonymous function in the set 

- e.g., 2n2 + (n) = (n2) means that 

 for any function g(n)  (n)  

  some function h(n)  (n2)  

 such that 2n2+g(n) = h(n), n 

 

• RHS provides coarser level of detail than LHS 
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Other asymptotic notations 
 

o-notation 

 
• upper bound provided by O-notation  

    may or may not be tight 
 

- e.g., bound 2n2 = O(n2) is asymptotically tight 

         bound 2n = O(n2) is not asymptotically tight 
 

• o-notation denotes an upper bound  

 that is not asymptotically tight 
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o-notation 

• o(g(n)) = {f(n): for any constant c  0,  

                               a constant n0  0  

                                    such that 0  f(n) < cg(n), n  n0} 

 

• Intuitively, 
 

 

 

- e.g., 2n = o(n2), any positive c satisfies  

- but  2n2  o(n2), c  2 does not satisfy 
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-notation 

 
• denotes a lower bound that is not asymptotically tight 

• (g(n)) = {f(n): for any constant c  0,  

                               a constant n0  0  

                              such that 0  cg(n) < f(n), n  n0} 

 

• Intuitively 

 

- e.g., n2 / 2 = (n),  any c satisfies 

- but   n2 / 2  (n2), c1/2 does not satisfy 
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Asymptotic comparison of functions 

• similar to the relational properties of real numbers 

- Transitivity: (holds for all) 

 e.g., f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n)) 

- Reflexivity: (holds for , O, ) 

 e.g., f(n) = O(f(n)) 

- Symmetry: (holds only for ) 

 e.g., f(n) = (g(n))  g(n) = (f(n)) 

- Transpose symmetry: ((O  ) and (o  )) 

 e.g., f(n) = O(g(n))  g(n) = (f(n)) 
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Analogy to the comparison of two real numbers 

 

• f(n) = O(g(n))  a  b 

• f(n) = (g(n))  a  b 

• f(n) = (g(n))  a = b 

• f(n) = o(g(n))  a < b 

• f(n) = (g(n))  a > b 



CS 473 Lecture 2 29 

Analogy to the comparison of two real numbers 

 

• Trichotomy property of real numbers does not hold for 

asymptotic notation 

- i.e., for any two real numbers a and b,  

     we have either a < b, or a = b, or a > b 

- i.e., for two functions f(n) & g(n), it may be the case 

that neither f(n) = O(g(n)) nor f(n) = (g(n)) holds 

- e.g., n and n1+sin(n) cannot be compared asymptotically 


