CS473-Algorithms |

_ecture 8

Heapsort

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

Introduction

* O(nlgn) worst case
 Sorts In place

 Another design paradigm

— Use of a data structure (heap) to manage
Information during execution of algorithm

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

Heap Data Structure

* Nearly complete binary tree I
— Completely filled on all levels,
except possibly the lowest level h

h-1

— Lowest level is filled from left to right
— Each node of the tree stores an element

« Height of a node

— Length of the longest simple downward path from the node to a
leaf

> Height of the tree: height of the root

« Depth of a node
— Length of the simple downward path from the root to the node

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

Heap Property

 For every node i other than root
— Max-Heap: A[parent(1)] > Ali]
— Min-Heap: Afparent()] < A[i]

parent(i)

Max-Heap

Where A[i] denotes the element stored at node i

« Will discuss Max-Heap

Fact: Largest element in a
subtree of a heap Is at the
root of the subtree.

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

Example

CS473 — Lecture 8

1 2 3456 78910

A

16

14

10

8

v

9

3

2

4

1

Cevdet Aykanat - Bilkent University
Computer Engineering Department

Heap Data Structure

 Store a heap in an array with implicit links
— Left child: left(i)=2i
— Right child: right(i)= 2i+1
Computing 2i Is fast: left shift in binary
— Parent of i is: parent(i)=Li/2]

Computing Li/2] is fast: right shift in binary
« A[1]: element stored at the root
 Array has two attributes

— length[A]: number of elements in A

— heap-size[A]

=n. number of elem. in heap stored in A

n < length[A]

CS473 — Lecture 8

Cevdet Aykanat - Bilkent University
Computer Engineering Department

Heap Operations

]_' ~__.—m max to be

returned

EXTRACT-MAX(A, n)
max <« A[1]

A[l] « Aln]

nN«<—n-1

HEAPIFY(A, 1, n)

return max
O(1) + heapify time s/ \g
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 7

Computer Engineering Department

Heap Operations

Maintaining heap property: HEAPIFY(A, 1, n)

Subtrees rooted at left[i] If 21 <nand A[21] > All]

and right[i] are already then largest < 2i

heaps. else largest «— i

But, A[i] may violate the If 21 +1 <nand A[2i+1] > A[largest]
heap property (i.e., may be then largest < 2i +1

smaller than its children) if largest # i then

exchange A[i]«> A[largest]

Idea: Float down the value
HEAPIFY (A, largest, n)

at A[i] in the heap so that

subtree rooted at | becomes else return
a heap.
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 8

Computer Engineering Department

Maintaining Heap | .earirvasio,

HEAPIFY(A,2,10) ¢

CS473 — Lecture 8

Cevdet Aykanat - Bilkent University 9
Computer Engineering Department

Intuitive Analysis of HEAPIFY

« Consider HEAPIFY(A, I, n)
— let h(i) be the height of node |

— at most h(i) recursion levels
 Constant work at each level: ®(1)

— Therefore T(i) = O(h(1))

» Heap Is almost-complete binary tree
>h(i) = O(lgn)

e Thus|T(n) = O(lgn)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

10

Formal Analysis of HEAPIFY

« Worst case occurs when last row of the subtree S; rooted at

node 1 is half full

binary trees of heights

h(i) —1 and h(i) -2,

respectively

CS473 — Lecture 8

T(n) <T(| SLpl) +O(1)

Sy and Sg; are complete

_/
— ~—

m leaf nodes

m/ 2 leaf
nodes

Cevdet Aykanat - Bilkent University
Computer Engineering Department

11

Formal Analysis of HEAPIFY

Let m be the number of leaf nodes In SL(i)
|Spl=m + (m-1)=2m-1,;
ext Int
— ——
| Sgepy [=m2+(M/2-1)=m-1
Syl [Sgg [+1=n

m/ 2 leaf
nodes

~—_—
m leaf nodes

2m—-1)+ (m—-1) +1=n=m=(n+1)/3

| S | = 2m — 1=2(n+1)/3 — 1=(2n/3+2/3) ~1=2n/3 ~1/3 < 2n/3

T(n) < T(2n/3) + ©(1) =

T(n) =0O(lgn)

By case 2 of
Master Thm

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

12

Maintaining Heap Property: Efficiency Issues

HEAPIFY (A, i, n)
J <1

Recursion vs iteration: while true do
*In the absence of tail iIf 2 <nand A[2]] > A[J]
recursion iterative then largest « 2)
version is in general more else largest «— |
efficient. if 2j +1 <nand A[2j+1] > A[largest]
Because of the pop/push then largest «— 2j +1
operations to/from stack if largest =] then
at each level of recursion. exchange A[j]«> A[largest]

| < largest

else return
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 13

Computer Engineering Department

Building Heap

» Use HEAPIFY In a bottom-up manner

— This processing order guarantees that SL(,) and Sg; are
already heaps when HEAPIFY is run on node i

Lemma: last| n/2 | nodes of a heap are all leaves

Proof: T f

d-1 d
m = 29-1: # nodes at level d — 1
f/g\ nodes
K X f : # nodes at level d (last level)
A m-fg L
f leaf nodes leaf nodes
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 14

Computer Engineering Department

Proof of Lemma

o # of leaves=f + (m —| /2 |) m=20"
=m+ | /2]

m+(m-1)+f=n

2m + f=n+1 ﬁ/%]\mdes

Lem)leLin)) e e n

m+f/2]=[n/2]|

m+ 2] =] n/2 |

. # of leaves=|n/2] Q.E.D

Computer Engineering Department

Building Heap

BUILD-HEAP(A, n)

for i « |_n / 2J downto 1 do
HEAPIFY(A, i, n)

Running time analysis
« Get simple O(nlgn) bound
— n calls to HEAPIFY each of which takes O(lgn) time
— Loose bound
— A good approach in general
— Start by proving easy bound
— Then, try to tighten it

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 16
Computer Engineering Department

12345 6 7 8 910
411/3/216|91014| 8|7

Build-Heap: Example

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 17
Computer Engineering Department

Build-Heap: Example(cont’)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 18
Computer Engineering Department

Build-Heap: tighter runnlngt me analysis

A :Oh d
/=1,d-2<h,<d-1
d . 0,d—0—1<h,<d-/¢
—.¢=d-1,0<h,,<1
v \ - /=d, hy=0

If the heap Is complete binary tree then h,=d — /
Otherwise, nodes at a given level do not all have the same height

Butwehaved—-/—-1<h ,<d-/

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 19
Computer Engineering Department

Build-Heap: tighter running time analysis

Assume that all nodes at level /=d — 1 are processed
n,=2’=# of nodes at level /

h, = height of nodes at level ¢

d-1 d-1
T(n)= Eonﬁo(hﬁ): Og;‘)nz h) {

d-1
= T(n)=0\2 2/ (d - 6))
=0
Leth=d- /= /¢ =d-h (change of variables)

T(n)= O(hZ h 20h) o(Z h 26/20) = o(zdélh (1/2)")

but 2¢= O(n) = T(n)= o(nhglh (1/2)")

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 20
Computer Engineering Department

Build-Heap: tighter running time analysis

ShL/2)" <3 h1/2)" <3 h/2)"

recall infinite decreasing geometric series

©¢]

Z =—where X <1

differentiate both sides

2.0 (- X)

k=0

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 21
Computer Engineering Department

Build-Heap: tighter running time analysis
2= x)

=0

then multiply both sides by x

OMS

(1 X)
In our case: x=1/2and k=h

& . U2
..hz_;)h(1/2) =12y =2=0()

= T(n) = O(ni h(1/2)") = O(n)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 22
Computer Engineering Department

Heapsort Algorithm

The HEAPSORT algorithm

(1) Build a heap on array A[1...n] by calling BUILD-HEAP(A, n)
(2) The largest element is stored at the root A[1]
Put it into its correct final position A[n] by A[1] <> A[n]
(3) Discard node n from the heap
(4) Subtrees (S, & S;) rooted at children of root remain as heaps
but the new root element may violate the heap property
Make A[1...n — 1] a heap by calling HEAPIFY(A, 1,n—1)
B5)n«n-1
(6) Repeat steps 2—4 until n =2

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 23
Computer Engineering Department

Heapsort Algorithm

HEAPSORT(A, n)
BUILD-HEAP(A, n)
for 1 « n downto 2 do
exchange A[1] <« Ali]
HEAPIFY (A, 1,1 -1)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

24

Heapsort: Example

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 25
Computer Engineering Department

Heapsort: Example

10 4 16 ;@
1
‘ é/@\é
A
@/i@ @ i®w @ (9
10 4 16 10 4 16

CS473 — Lecture 8

Cevdet Aykanat - Bilkent University

Computer Engineering Department

26

Heapsort: Example

1 1

é/@ @ @) 3

@ @ ® ©® @ © ® @

10 14 16 ;@
=)

@ @ @ 112/ 3/4|7|8/9/10 14|16
10 14 16

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 27
Computer Engineering Department

Heapsort Run Time Analysis

« BUILD-HEAP takes O(n) time
* |-th 1teration of for loop takes O(lg(n — 1)) time

T(n) = ZO(Ig(n—i)) = ZO(IQ K) = o(z Iy kj nlgn)

. Heapsort IS a very goc_)d algorithm but, a good
Implementation of quicksort always beats heapsort
In practice

« However, heap data structure has many popular

appllcatlons and it can be efficiently used for
Implementing priority queues

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 28
Computer Engineering Department

Data structures for Dynamic Sets

 Consider sets of records having key and
satellite data

— key

X : —— satellite data

record

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 29
Computer Engineering Department

Operations on Dynamic Sets

Queries: Simply return info; Modifying operations: Change the set

INSERT(S, X): (Modifying) S« S U{x}
DELETE(S, X): (Modifying) S <« S —{x}
MAX(S) / MIN(S): (Query) return xeS with the largest/smallest key

EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and
delete xeS with the largest/smallest key

SEARCH(S, k): (Query) return xeS with key[x]=k

SUCCESSOR(S, X) / PREDECESSOR(S, X) : (Query) return yeS which
IS the next larger/smaller element after x

Different data structures support/optimize different operations

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 30
Computer Engineering Department

Priority Queues (PQ)

e Supports
— INSERT

— MAX/ MIN
— EXTRACT-MAX [EXTRACT-MIN

» One application: Schedule jobs on a shared resource

— PQ keeps track of jobs and their relative priorities

— When ajob is finished or interrupted, highest priority job is
selected from those pending using EXTRACT-MAX

— A new job can be added at any time using INSERT

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 31
Computer Engineering Department

Priority Queues

« Another application: Event-driven simulation

— Events to be simulated are the items in the PQ
— Each event is associated with a time of occurrence which serves

as a key

— Simulation of an event can cause other events to be simulated in
the future

— Use EXTRACT-MIN at each step to choose the next event to
simulate

— As new events are produced insert them into the PQ using
INSERT

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 32

Computer Engineering Department

Implementation of Priority Queue

 Sorted linked list: Simplest implementation

— INSERT
—O(n) time
— Scan the list to find place and splice in the new item
— EXTRACT-MAX
—0O(1) time
— Take the first element
> Fast extraction but slow insertion.

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 33
Computer Engineering Department

Implementation of Priority Queue

» Unsorted linked list: Simplest implementation

— INSERT
—0O(1) time
— Put the new item at front
— EXTRACT-MAX
—O(n) time
— Scan the whole list
> Fast insertion but slow extraction

Sorted linked list Is better on the average
— Sorted list: on the average, scans n/2 elem. per insertion
— Unsorted list: always scans n elem. at each extraction

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

34

Heap Implementation of PQ

INSERT and EXTRACT-MAX are both O(lgn)
— good compromise between fast insertion but slow extraction and vice versa

EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX

INSERT: Insertion Is like that of Insertion-Sort.

Traverses O(lgn) nodes, as
HEAPIFY does but makes
fewer comparisons and
assignments

~HEAPIFY: compares parent

HEAP-INSERT (A, key, n)
N« n+l
| <N
while 1 >1 and AJLi/2]] < key do
Ali] <« AJLI/2]]

with both children | < LI/2]
~HEAP-INSERT: With only one A[l] < key
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 35

Computer Engineering Department

HEAP-INSERT(A, 15)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 36
Computer Engineering Department

Heap Increase Key

» Key value of i-th element of heap Is
Increased from AJi] to key

HEAP-INCREASE-KEY(A, i, key)
If key < A[i] then
return error
while 1 >1 and A[Li/2]] < key do
Alil] <« A[Li/2]
| < L1/2]
A[i] < key

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University
Computer Engineering Department

37

HEAP-INCREASE-KEY (A, 9, 15)

CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 38
Computer Engineering Department

Heap Implementation of PQ

key |datal H-ptr
a |14 4
b |1 10
c | 10 3
d |16 1
e |* =
f |9 §}
g |2 8
h |15 2 S
i * — \
i [3 7
K |7 5
| | * -
m | 8 9
n|* =
o|* =
CS473 — Lecture 8 Cevdet Aykanat - Bilkent University 39

Computer Engineering Department

