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Introduction 

 

• O(n lg n) worst case 

• Sorts in place 

• Another design paradigm 

– Use of  a data structure (heap) to manage 

information during execution of algorithm 
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Heap Data Structure 

• Nearly complete binary tree 

– Completely filled on all levels,  

 except possibly the lowest level 

– Lowest  level is filled from left to right 

– Each node of the tree stores an element 

• Height of a node 

– Length of the longest simple downward path from the node to a 

leaf 

 Height of the tree: height of the root 

• Depth of a node 

– Length of the simple downward path from the root to the node 

h h-1
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Heap Property 

• For every node i other than root 

– Max-Heap: A[parent(i)]  A[i] 

– Min-Heap:  A[parent(i)]  A[i] 

Where A[i] denotes the element stored at node i 

• Will discuss Max-Heap 

 

 

i

parent(i)

x

> x

Max-Heap

x
i

S
i

< x

Fact: Largest element in a 

subtree of a heap is at the 

root of the subtree. 
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Example 

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

16 1410 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

A:
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Heap Data Structure 

• Store a heap in an array with implicit links 

– Left child: left(i)=2i 

– Right child: right(i)= 2i1 

Computing 2i is fast: left shift in binary 

– Parent of i is: parent(i)=i/2 

Computing i/2 is fast: right shift in binary 

• A[1]: element stored at the root 

• Array has two attributes 

– length[A]: number of elements in A 

– heap-size[A]=n: number of elem. in heap stored in A 

n  length[A] 
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Heap Operations 

 

EXTRACT-MAX(A, n) 

 max  A[1] 

 A[1]  A[n] 

 n  n  1 

 HEAPIFY(A, 1, n) 

 return max 

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

max to be

returned

1

2 3

4 5 6 7

8 9

1

14 10

8 7 9 3

2 4

Heapify(A, 1, 9) max=16 returned

O(1) + heapify time 
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Heap Operations 

HEAPIFY(A, i, n) 

 if 2i  n and A[2i]  A[i] 

 then largest  2i 

 else largest  i  

 if 2i 1  n and A[2i1]  A[largest] 

   then largest  2i 1 

 if largest  i  then 

  exchange A[i] A[largest] 

  HEAPIFY(A, largest, n) 

 else return 

Maintaining heap property: 

Subtrees rooted at left[i] 

and right[i] are already 

heaps. 

But, A[i] may violate the 

heap property (i.e.,  may be 

smaller than its children) 

Idea: Float down the value 

at A[i] in the heap so that 

subtree rooted at i becomes 

a heap. 



CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

9 

Maintaining Heap 

1

2 3

4 5 6 7

8 9

16

4 10

14 7 9 3

2 8

HEAPIFY(A,2,10)

1

10

1

2 3

4 5 6 7

8 9

16

14 10

4 7 9 3

2 8 1

10

HEAPIFY(A,4,10)

1

2 3

4 5 6 7

8 9

16

14 10

4

7 9 3

2

8

1

10
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Intuitive Analysis of HEAPIFY 

• Consider HEAPIFY(A, i, n) 

– let h(i) be the height of node i 

– at most h(i) recursion levels 

• Constant work at each level: (1)  

– Therefore T(i)  O(h(i)) 

• Heap is almost-complete binary tree 

 h(i)  O(lg n)  

• Thus T(n)  O(lg n)  
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Formal Analysis of HEAPIFY 

• Worst case occurs when last row of the subtree Si rooted at 

node i is half full 

 

 

• T(n)  T(| SL(i)|) + (1)  

• SL(i) and SR(i) are complete 

  binary trees of heights  

 h(i) 1 and h(i) 2,  

 respectively 

h(i)-2h(i)-1

i

L(i) R(i)

S
L(i)

S
R(i)

m leaf nodes
m / 2 leaf

nodes



CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

12 

• Let m be the number of leaf nodes in SL(i)  

• | SL(i) | = m  +  (m – 1) = 2m – 1 ;  

 

• | SR(i) | = m/2 + (m/2 – 1) = m – 1  

       

• | SL(i) |     +    | SR(i) | +1= n 

 (2m – 1) +  (m – 1) +1= n  m = (n+1)/3 

 | SL(i) | = 2m – 1=2(n+1)/3 – 1=(2n/3+2/3) –1=2n/3 –1/3  2n/3  

• T(n)  T(2n/3) + (1)  T(n)  O(lg n)  

Formal Analysis of HEAPIFY 

ext int 

By case 2 of 

Master Thm 

i

L(i) R(i)

S
L(i)

S
R(i)

m leaf nodes
m / 2 leaf

nodes
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Maintaining Heap Property: Efficiency Issues 

HEAPIFY(A, i, n) 

 j  i  

 while true do 

  if 2j  n and A[2j]  A[j]  
   then largest  2j 

  else largest  j 

  if 2j 1  n and A[2j1]  A[largest] 

    then largest  2j 1 

  if largest  j  then 

   exchange A[j] A[largest] 

    j  largest 

  else return 

Recursion vs iteration: 

•In the absence of tail 

recursion iterative 

version is in general more 

efficient.  

Because of the pop/push 

operations to/from stack 

at each level of recursion.  
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Building Heap 

• Use HEAPIFY in a bottom-up manner 

– This processing order guarantees that SL(i) and SR(i) are 

already heaps when HEAPIFY is run on node i 

Lemma: last n/2 nodes of a heap are all leaves 

Proof:  

nodesf/2

f/2

dd-1

f leaf nodes

m -

leaf nodes

m = 2d – 1: # nodes at level d – 1 

f : # nodes at level d (last level) 
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Proof of Lemma 

• # of leaves=f + (m – f/2) 

     =m+ f/2  

m+(m – 1) + f = n 

2m + f = n+1 

    (2m+f ) =     (n+1)  

m+f/2 = n/2 

m+ f/2 = n/2 

• # of leaves= n/2                     Q.E.D 

 

nodesf/2

f/2

f leaf nodes

m -

leaf nodes

m = 2d – 1  

2

1

2

1
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Building Heap 

BUILD-HEAP(A, n) 

for i            downto 1 do 

HEAPIFY(A, i, n) 
 

Running time analysis 

• Get simple O(nlgn) bound 

 n calls to HEAPIFY each of which takes  O(lgn) time 

 Loose bound 

 A good approach in general 

 Start by proving easy bound 

 Then, try to tighten it 

 2/n
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1

2 3

4 5 6 7

8 9

4

1 3

2 16 9 10

14 8 7

10

i

Build-Heap: Example 

1

2 3

4 5 6 7

8 9

4

1 3

2 16 9 10

14 8 7

10

i

1

2 3

4 5 6 7

8 9

4

1 3

14 16 9 10

2 8 7

10

i

1

2 3

4 5 6 7

8 9

4

1 10

14 16 9 3

2 8 7

10

i

4 1 3 2 16 9 10 14 8 7 

1 2 3 4 5 6 7 8 9 10 
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Build-Heap: Example(cont’) 

1

2 3

4 5 6 7

8 9

4

16 10

14 7 9 3

2 8 1

10

i

1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1

10



CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

19 

d

 =1, d – 2  h1  d –1 

 = 0, h0= d 

, d –  – 1  h  d –  

= d – 1, 0  hd–1  1 

= d, hd= 0 

 

 

 

 

 

 

 

 

 

Build-Heap: tighter running time analysis 

If the heap is complete binary tree then h = d –  

Otherwise, nodes at a given level do not all have the same height 

But we have d –  – 1  h   d –  
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T(n)= O( 2 (d – )) 
Let h = d –    = d – h (change of variables) 

T(n)= O( h 2d-h)= O( h 2d/2h)= O(2d h (1/2)h) 

but 2d= (n)  T(n)= O(n h (1/2)h) 

Assume that all nodes at level = d – 1 are processed  

T(n)= nO(h)= O(n h) 

Build-Heap: tighter running time analysis 

=0 

d-1 

h=1 

d 

h=1 

d 

h=1 

d 

h=1 

d 

=0 

d-1 

=0 

d-1 n = 2 = # of nodes at level  

h
 = height of nodes at level  
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recall infinite decreasing geometric series 
 
 
 

differentiate both sides 
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Build-Heap: tighter running time analysis 
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then, multiply both sides by x 
 
 
 
in our case: x  1/2 and k  h 
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Build-Heap: tighter running time analysis 
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The HEAPSORT algorithm 
 
(1) Build a heap on array A[1…n] by calling BUILD-HEAP(A, n) 

(2) The largest element is stored at the root A[1] 

      Put it into its correct final position A[n] by A[1]  A[n]  

(3) Discard node n from the heap 

(4) Subtrees (S2 & S3) rooted at children of root remain as heaps 

      but the new root element may violate the heap property 

      Make A[1…n  1] a heap by calling HEAPIFY(A, 1, n  1) 

(5) n  n  1 

(6) Repeat steps 24 until n  2 

Heapsort Algorithm 
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HEAPSORT(A, n) 

BUILD-HEAP(A, n) 

for i  n downto 2 do 

exchange A[1]  A[i] 

HEAPIFY(A, 1, i 1) 

Heapsort Algorithm 
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1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1

10

Heapsort: Example 
1

2 3

4 5 6 7

8 9

14

8 10

4 7 9 3

2 1 16 i

1

2 3

4 5 6 7

8

10

8 9

4 7 1 3

2 14 16

i

1

2 3

4 5 6 7

9

8 3

4 7 1 2

10 14 16

i
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1
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4 5 6

8
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4 2 1 9

10 14 16

i

Heapsort: Example 
1

2 3

4 5

7

4 3

1 2 8 9

10 14 16

i

1

2 3

4

4

2 3

1 7 8 9

10 14 16

i

1

2 3
3

2 1

4 7 8 9

10 14 16

i
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Heapsort: Example 

1

2
2

1 3

4 7 8 9

10 14 16

i

1

1

2 3

4 7 8 9

10 14 16

i

1

2 3

4 7 8 9

10 14 16

i

1 2 3 4 7 8 9 10 14 16 



CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

28 

 
 
• BUILD-HEAP takes O(n) time 

• i-th iteration of for loop takes O(lg(n  i)) time 

 

 

 

• Heapsort is a very good algorithm but, a good 
implementation of quicksort always beats heapsort 
in practice 

• However, heap data structure has many popular 
applications, and it can be efficiently used for 
implementing priority queues 
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Heapsort Run Time Analysis 
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Data structures for Dynamic Sets  

• Consider sets of records having key and 

satellite data 

key 

satellite data x 

record 
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Operations on Dynamic Sets  
• Queries: Simply return info; Modifying operations: Change the set 

 

– INSERT(S, x): (Modifying) S S {x} 

– DELETE(S, x): (Modifying) S  S  {x} 

– MAX(S) / MIN(S): (Query) return xS with the largest/smallest key  

– EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and 
delete xS with the largest/smallest key  

– SEARCH(S, k): (Query) return xS with key[x]= k 

– SUCCESSOR(S, x) / PREDECESSOR(S, x) : (Query) return yS which 
is the next larger/smaller element after x 

 

• Different data structures support/optimize different operations 
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Priority Queues (PQ) 

• Supports  
– INSERT  

– MAX / MIN  

– EXTRACT-MAX / EXTRACT-MIN 

• One application: Schedule jobs on a shared resource 

– PQ keeps track of jobs and their relative priorities 

– When a job is finished or interrupted, highest priority job is 

selected from those pending using EXTRACT-MAX  

– A new job can be added at any time using INSERT 
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Priority Queues 

• Another application: Event-driven simulation 

– Events to be simulated are the items in the  PQ  

– Each event is associated with a time of occurrence which serves 

as a key 

– Simulation of an event can cause other events to be simulated in 

the future 

– Use EXTRACT-MIN at each step to choose the next event to 

simulate 

– As new events are produced insert them into the PQ using 
INSERT 
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Implementation of Priority Queue 

• Sorted linked list: Simplest implementation 

– INSERT  

– O(n) time 

– Scan the list to find place and splice in the new item 

– EXTRACT-MAX  

– O(1) time 

– Take the first element 

 Fast extraction but slow insertion. 
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Implementation of Priority Queue 
• Unsorted linked list: Simplest implementation 

– INSERT  

– O(1) time 

– Put the new item at front 

– EXTRACT-MAX  

– O(n) time 

– Scan the whole list 

 Fast insertion but slow extraction 

 Sorted linked list is better on the average 

– Sorted list: on the average, scans n/2 elem. per insertion 

– Unsorted list: always scans n elem. at each extraction 
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Heap Implementation of PQ 
• INSERT and EXTRACT-MAX are both O(lg n)  

– good compromise between fast insertion but slow extraction and vice versa 

• EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX 

INSERT: Insertion is like that of Insertion-Sort.  

HEAP-INSERT(A, key, n) 

 n  n 1  
 i   n   

 while i 1 and A[i/2] < key do 

  A[i]  A[i/2]  

  i  i/2 

 A[i]  key 

Traverses O(lg n) nodes, as 

HEAPIFY does but makes 

fewer comparisons and 

assignments 

–HEAPIFY: compares parent 
with both children 

–HEAP-INSERT: with only one  
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HEAP-INSERT(A, 15) 
1

2 3

4 5 6 7

8 9

16

14 10

8

7

9 3

2 4 1

10 11

1

2 3

4 5 6 7

8 9

16

14

10

8

7

9 3

2 4 1

10 11

1

2 3

4 5 6 7

8 9

16

14

10

8

7

9 3

2 4 1

10 11

15



CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

37 

Heap Increase Key 

• Key value of i-th element of heap is 

 increased from A[i] to key 

  HEAP-INCREASE-KEY(A, i, key) 

 if key < A[i] then 

  return error 

 while i 1 and A[i/2] < key do 

  A[i]  A[i/2]  

  i  i/2 

 A[i]  key 
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HEAP-INCREASE-KEY(A, 9, 15) 
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8 9

16

14

10

7 9 3

2 8 1

10

1

2 3

4 5 6 7

8 9

16

14

10

7 9 3

2 8 1

10

15



CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

39 

Heap Implementation of PQ 
1

2 3

4 5 6 7

8 9

16

14

10

7 9 3

2 8 1

10

15

1

2 3

4 5 6 7

8 9

d

a

c

k f j

g m b

10

h

a 4 14 
b 1 10 
c 3 10 
d 16 1 
e ¬ * 
f 9 6 
g 2 
h 2 15 
i * ¬ 
j 7 3 
k 7 5 
l ¬ * 

m 8 9 
n * 

8 

¬ 
o * ¬ 

key data H-ptr 


