
CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

1

CS473-Algorithms I

Lecture 8

Heapsort

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

2

Introduction

• O(n lg n) worst case

• Sorts in place

• Another design paradigm

– Use of a data structure (heap) to manage

information during execution of algorithm

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

3

Heap Data Structure

• Nearly complete binary tree

– Completely filled on all levels,

 except possibly the lowest level

– Lowest level is filled from left to right

– Each node of the tree stores an element

• Height of a node

– Length of the longest simple downward path from the node to a

leaf

 Height of the tree: height of the root

• Depth of a node

– Length of the simple downward path from the root to the node

h h-1

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

4

Heap Property

• For every node i other than root

– Max-Heap: A[parent(i)]  A[i]

– Min-Heap: A[parent(i)]  A[i]

Where A[i] denotes the element stored at node i

• Will discuss Max-Heap

i

parent(i)

x

> x

Max-Heap

x
i

S
i

< x

Fact: Largest element in a

subtree of a heap is at the

root of the subtree.

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

5

Example

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

16 1410 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

A:

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

6

Heap Data Structure

• Store a heap in an array with implicit links

– Left child: left(i)=2i

– Right child: right(i)= 2i1

Computing 2i is fast: left shift in binary

– Parent of i is: parent(i)=i/2

Computing i/2 is fast: right shift in binary

• A[1]: element stored at the root

• Array has two attributes

– length[A]: number of elements in A

– heap-size[A]=n: number of elem. in heap stored in A

n  length[A]

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

7

Heap Operations

EXTRACT-MAX(A, n)

 max  A[1]

 A[1]  A[n]

 n  n  1

 HEAPIFY(A, 1, n)

 return max

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

max to be

returned

1

2 3

4 5 6 7

8 9

1

14 10

8 7 9 3

2 4

Heapify(A, 1, 9) max=16 returned

O(1) + heapify time

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

8

Heap Operations

HEAPIFY(A, i, n)

 if 2i  n and A[2i]  A[i]

 then largest  2i

 else largest  i

 if 2i 1  n and A[2i1]  A[largest]

 then largest  2i 1

 if largest  i then

 exchange A[i] A[largest]

 HEAPIFY(A, largest, n)

 else return

Maintaining heap property:

Subtrees rooted at left[i]

and right[i] are already

heaps.

But, A[i] may violate the

heap property (i.e., may be

smaller than its children)

Idea: Float down the value

at A[i] in the heap so that

subtree rooted at i becomes

a heap.

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

9

Maintaining Heap

1

2 3

4 5 6 7

8 9

16

4 10

14 7 9 3

2 8

HEAPIFY(A,2,10)

1

10

1

2 3

4 5 6 7

8 9

16

14 10

4 7 9 3

2 8 1

10

HEAPIFY(A,4,10)

1

2 3

4 5 6 7

8 9

16

14 10

4

7 9 3

2

8

1

10

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

10

Intuitive Analysis of HEAPIFY

• Consider HEAPIFY(A, i, n)

– let h(i) be the height of node i

– at most h(i) recursion levels

• Constant work at each level: (1)

– Therefore T(i)  O(h(i))

• Heap is almost-complete binary tree

 h(i)  O(lg n)

• Thus T(n)  O(lg n)

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

11

Formal Analysis of HEAPIFY

• Worst case occurs when last row of the subtree Si rooted at

node i is half full

• T(n)  T(| SL(i)|) + (1)

• SL(i) and SR(i) are complete

 binary trees of heights

 h(i) 1 and h(i) 2,

 respectively

h(i)-2h(i)-1

i

L(i) R(i)

S
L(i)

S
R(i)

m leaf nodes
m / 2 leaf

nodes

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

12

• Let m be the number of leaf nodes in SL(i)

• | SL(i) | = m + (m – 1) = 2m – 1 ;

• | SR(i) | = m/2 + (m/2 – 1) = m – 1

• | SL(i) | + | SR(i) | +1= n

 (2m – 1) + (m – 1) +1= n  m = (n+1)/3

 | SL(i) | = 2m – 1=2(n+1)/3 – 1=(2n/3+2/3) –1=2n/3 –1/3  2n/3

• T(n)  T(2n/3) + (1)  T(n)  O(lg n)

Formal Analysis of HEAPIFY

ext int

By case 2 of

Master Thm

i

L(i) R(i)

S
L(i)

S
R(i)

m leaf nodes
m / 2 leaf

nodes

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

13

Maintaining Heap Property: Efficiency Issues

HEAPIFY(A, i, n)

 j  i

 while true do

 if 2j  n and A[2j]  A[j]
 then largest  2j

 else largest  j

 if 2j 1  n and A[2j1]  A[largest]

 then largest  2j 1

 if largest  j then

 exchange A[j] A[largest]

 j  largest

 else return

Recursion vs iteration:

•In the absence of tail

recursion iterative

version is in general more

efficient.

Because of the pop/push

operations to/from stack

at each level of recursion.

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

14

Building Heap

• Use HEAPIFY in a bottom-up manner

– This processing order guarantees that SL(i) and SR(i) are

already heaps when HEAPIFY is run on node i

Lemma: last n/2 nodes of a heap are all leaves

Proof:

nodesf/2

f/2

dd-1

f leaf nodes

m -

leaf nodes

m = 2d – 1: # nodes at level d – 1

f : # nodes at level d (last level)

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

15

Proof of Lemma

• # of leaves=f + (m – f/2)

 =m+ f/2

m+(m – 1) + f = n

2m + f = n+1

 (2m+f) =  (n+1) 

m+f/2 = n/2

m+ f/2 = n/2

• # of leaves= n/2 Q.E.D

nodesf/2

f/2

f leaf nodes

m -

leaf nodes

m = 2d – 1

2

1

2

1

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

16

Building Heap

BUILD-HEAP(A, n)

for i  downto 1 do

HEAPIFY(A, i, n)

Running time analysis

• Get simple O(nlgn) bound

 n calls to HEAPIFY each of which takes O(lgn) time

 Loose bound

 A good approach in general

 Start by proving easy bound

 Then, try to tighten it

 2/n

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

17

1

2 3

4 5 6 7

8 9

4

1 3

2 16 9 10

14 8 7

10

i

Build-Heap: Example

1

2 3

4 5 6 7

8 9

4

1 3

2 16 9 10

14 8 7

10

i

1

2 3

4 5 6 7

8 9

4

1 3

14 16 9 10

2 8 7

10

i

1

2 3

4 5 6 7

8 9

4

1 10

14 16 9 3

2 8 7

10

i

4 1 3 2 16 9 10 14 8 7

1 2 3 4 5 6 7 8 9 10

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

18

Build-Heap: Example(cont’)

1

2 3

4 5 6 7

8 9

4

16 10

14 7 9 3

2 8 1

10

i

1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1

10

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

19

d

 =1, d – 2  h1  d –1

 = 0, h0= d

, d –  – 1  h  d – 

= d – 1, 0  hd–1  1

= d, hd= 0

Build-Heap: tighter running time analysis

If the heap is complete binary tree then h = d – 

Otherwise, nodes at a given level do not all have the same height

But we have d –  – 1  h   d – 

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

20

T(n)= O( 2 (d – ))
Let h = d –    = d – h (change of variables)

T(n)= O( h 2d-h)= O( h 2d/2h)= O(2d h (1/2)h)

but 2d= (n)  T(n)= O(n h (1/2)h)

Assume that all nodes at level = d – 1 are processed

T(n)= nO(h)= O(n h)

Build-Heap: tighter running time analysis

=0

d-1

h=1

d

h=1

d

h=1

d

h=1

d

=0

d-1

=0

d-1 n = 2 = # of nodes at level 

h
 = height of nodes at level 

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

21

recall infinite decreasing geometric series

differentiate both sides







001

)2/1()2/1()2/1(
h

h
d

h

h
d

h

h hhh

1 where
1

1

0









x
x

x
k

k

2
0

1

)1(

1

x
kx

k

k










Build-Heap: tighter running time analysis

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

22

then, multiply both sides by x

in our case: x  1/2 and k  h

2
0)1(x

x
kx

k

k

























d

h

h

h

h

nhnnT

h

1

2
0

)())2/1(()(

)1(2
)2/11(

2/1
)2/1(

2
0

1

)1(

1

x
kx

k

k










Build-Heap: tighter running time analysis

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

23

The HEAPSORT algorithm

(1) Build a heap on array A[1…n] by calling BUILD-HEAP(A, n)

(2) The largest element is stored at the root A[1]

 Put it into its correct final position A[n] by A[1]  A[n]

(3) Discard node n from the heap

(4) Subtrees (S2 & S3) rooted at children of root remain as heaps

 but the new root element may violate the heap property

 Make A[1…n  1] a heap by calling HEAPIFY(A, 1, n  1)

(5) n  n  1

(6) Repeat steps 24 until n  2

Heapsort Algorithm

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

24

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1]  A[i]

HEAPIFY(A, 1, i 1)

Heapsort Algorithm

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

25

1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1

10

Heapsort: Example
1

2 3

4 5 6 7

8 9

14

8 10

4 7 9 3

2 1 16 i

1

2 3

4 5 6 7

8

10

8 9

4 7 1 3

2 14 16

i

1

2 3

4 5 6 7

9

8 3

4 7 1 2

10 14 16

i

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

26

1

2 3

4 5 6

8

7 3

4 2 1 9

10 14 16

i

Heapsort: Example
1

2 3

4 5

7

4 3

1 2 8 9

10 14 16

i

1

2 3

4

4

2 3

1 7 8 9

10 14 16

i

1

2 3
3

2 1

4 7 8 9

10 14 16

i

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

27

Heapsort: Example

1

2
2

1 3

4 7 8 9

10 14 16

i

1

1

2 3

4 7 8 9

10 14 16

i

1

2 3

4 7 8 9

10 14 16

i

1 2 3 4 7 8 9 10 14 16

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

28

• BUILD-HEAP takes O(n) time

• i-th iteration of for loop takes O(lg(n  i)) time

• Heapsort is a very good algorithm but, a good
implementation of quicksort always beats heapsort
in practice

• However, heap data structure has many popular
applications, and it can be efficiently used for
implementing priority queues

  






















1

1

1

1

1

1

lglg)(lg))(lg()(
n

k

n

k

n

i

nnkkinnT

Heapsort Run Time Analysis

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

29

Data structures for Dynamic Sets

• Consider sets of records having key and

satellite data

key

satellite data x

record

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

30

Operations on Dynamic Sets
• Queries: Simply return info; Modifying operations: Change the set

– INSERT(S, x): (Modifying) S S {x}

– DELETE(S, x): (Modifying) S  S  {x}

– MAX(S) / MIN(S): (Query) return xS with the largest/smallest key

– EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and
delete xS with the largest/smallest key

– SEARCH(S, k): (Query) return xS with key[x]= k

– SUCCESSOR(S, x) / PREDECESSOR(S, x) : (Query) return yS which
is the next larger/smaller element after x

• Different data structures support/optimize different operations

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

31

Priority Queues (PQ)

• Supports
– INSERT

– MAX / MIN

– EXTRACT-MAX / EXTRACT-MIN

• One application: Schedule jobs on a shared resource

– PQ keeps track of jobs and their relative priorities

– When a job is finished or interrupted, highest priority job is

selected from those pending using EXTRACT-MAX

– A new job can be added at any time using INSERT

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

32

Priority Queues

• Another application: Event-driven simulation

– Events to be simulated are the items in the PQ

– Each event is associated with a time of occurrence which serves

as a key

– Simulation of an event can cause other events to be simulated in

the future

– Use EXTRACT-MIN at each step to choose the next event to

simulate

– As new events are produced insert them into the PQ using
INSERT

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

33

Implementation of Priority Queue

• Sorted linked list: Simplest implementation

– INSERT

– O(n) time

– Scan the list to find place and splice in the new item

– EXTRACT-MAX

– O(1) time

– Take the first element

 Fast extraction but slow insertion.

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

34

Implementation of Priority Queue
• Unsorted linked list: Simplest implementation

– INSERT

– O(1) time

– Put the new item at front

– EXTRACT-MAX

– O(n) time

– Scan the whole list

 Fast insertion but slow extraction

 Sorted linked list is better on the average

– Sorted list: on the average, scans n/2 elem. per insertion

– Unsorted list: always scans n elem. at each extraction

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

35

Heap Implementation of PQ
• INSERT and EXTRACT-MAX are both O(lg n)

– good compromise between fast insertion but slow extraction and vice versa

• EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX

INSERT: Insertion is like that of Insertion-Sort.

HEAP-INSERT(A, key, n)

 n  n 1
 i  n

 while i 1 and A[i/2] < key do

 A[i]  A[i/2]

 i  i/2

 A[i]  key

Traverses O(lg n) nodes, as

HEAPIFY does but makes

fewer comparisons and

assignments

–HEAPIFY: compares parent
with both children

–HEAP-INSERT: with only one

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

36

1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1

10 11

HEAP-INSERT(A, 15)
1

2 3

4 5 6 7

8 9

16

14 10

8

7

9 3

2 4 1

10 11

1

2 3

4 5 6 7

8 9

16

14

10

8

7

9 3

2 4 1

10 11

1

2 3

4 5 6 7

8 9

16

14

10

8

7

9 3

2 4 1

10 11

15

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

37

Heap Increase Key

• Key value of i-th element of heap is

 increased from A[i] to key

 HEAP-INCREASE-KEY(A, i, key)

 if key < A[i] then

 return error

 while i 1 and A[i/2] < key do

 A[i]  A[i/2]

 i  i/2

 A[i]  key

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

38

HEAP-INCREASE-KEY(A, 9, 15)

 1

2 3

4 5 6 7

8 9

16

14 10

8 7 9 3

2 4 1

10

1

2 3

4 5 6 7

8 9

16

14 10

7 9 3

2 8 1

10

1

2 3

4 5 6 7

8 9

16

14

10

7 9 3

2 8 1

10

1

2 3

4 5 6 7

8 9

16

14

10

7 9 3

2 8 1

10

15

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

39

Heap Implementation of PQ
1

2 3

4 5 6 7

8 9

16

14

10

7 9 3

2 8 1

10

15

1

2 3

4 5 6 7

8 9

d

a

c

k f j

g m b

10

h

a 4 14
b 1 10
c 3 10
d 16 1
e ¬ *
f 9 6
g 2
h 2 15
i * ¬
j 7 3
k 7 5
l ¬ *

m 8 9
n *

8

¬
o * ¬

key data H-ptr

