
CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

1

CS473-Algorithms I

Lecture 12

Amortized Analysis

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

2

Amortized Analysis

Key point: The time required to perform a

sequence of data structure operations is

averaged over all operations performed

• Amortized analysis can be used to show that

– The average cost of an operation is small

• If one averages over a sequence of operations

 even though a single operation might be expensive

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

3

Amortized Analysis vs Average

Case Analysis

• Amortized analysis does not use any

probabilistic reasoning

• Amortized analysis guarantees

 the average performance of each operation

in the worst case

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

4

Amortized Analysis Techniques

The most common three techniques

– The aggregate method

– The accounting method

– The potential method

If there are several types of operations in a sequence

• The aggregate method assigns

– The same amortized cost to each operation

• The accounting method and the potential method may
assign

– Different amortized costs to different types of operations

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

5

The Aggregate Method

• Show that sequence of n operations takes

– Worst case time T(n) in total for all n

• The amortized cost (average cost in the worst

case) per operation is therefore T(n)n

• This amortized cost applies to each operation

– Even when there are several types of operations in

the sequence

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

6

Example: Stack Operations

PUSH(S, x): pushed object x onto stack

POP(S): pops the top of the stack S and returns the

 popped object

MULTIPOP(S, k): removes the k top objects of the stack S
 or pops the entire stack if | S |  k

• PUSH and POP runs in (1) time

– The total cost of a sequence of n PUSH and POP operations
is therefore (n)

• The running time of MULTIPOP(S, k) is

– (min(s, k)) where s  | S |

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

7

Stack Operations: Multipop

MULTIPOP(S, k)

 while not StackEmpty(S) and k  0 do

 t  POP(S)

 k  k 1

 return Running time:

(min(s, k)) where s  | S |

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

8

The Aggregate Method:

 Stack Operations
• Let us analyze a sequence of n POP, PUSH, and

MULTIPOP operations on an initially empty stack

• The worst case of a MULTIPOP operation in the
sequence is O(n), since the stack size is at most n

• Hence, a sequence of n operations costs O(n2)

– we may have n MULTIPOP operations each costing O(n)

• The analysis is correct, however,

– Considering worst-case cost of each operation, it is not tight

• We can obtain a better bound by using aggregate
method of amortized analysis

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

9

The Aggregate Method:

 Stack Operations
• Aggregate method considers the entire sequence of n

operations

– Although a single MULTIPOP can be expensive

– Any sequence of n POP, PUSH, and MULTIPOP operations on
an initially empty stack can cost at most O(n)

Proof: each object can be popped once for each time it is pushed.
Hence the number of times that POP can be called on a

nonempty stack including the calls within MULTIPOP is at most

the number of PUSH operations, which is at most n

The amortized cost of an operation is the average O(n)n  O(1)

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

10

Example: Incrementing a Binary

Counter

• Implementing a k-bit binary counter that counts

upward from 0

• Use array A[0k1] of bits as the counter

where length[A]k;

 A[0] is the least significant bit;

 A[k1] is the most significant bit;

i.e., x A[i]2i
k1

i 0

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

11

Binary Counter: Increment

INCREMENT(A, k)

 i  0

 while i  k and A[i]  1 do
 A[i]  0
 i  i +1

 if i  k then

 A[i]  1

 return

Initially x  0, i.e., A[i]  0 for i  0,1, , k1

To add 1 (mod 2k) to the counter
Essentially same as the one

implemented in hardware by a

ripple-carry counter

A single execution of increment

takes (k) in the worst case in

which array A contains all 1’s

Thus, n increment operations on

an initially zero counter takes

O(kn) time in the worst case.

NOT TIGHT

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

12

0

The Aggregate Method:

Incrementing a Binary Counter
Counter

value [7] [6] [5] [4] [3] [2] [1] [0]

Incre

cost

Total

cost

0 0 0 0 1 0 0 1

0 0 0 0 1 0 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

9

10

6

7

8

3

4

5

0

1

2

1

2

2

1

4

1

3

1

1

2

16

18

10

11

15

4

7

8

1

3

0 0 0 0 1 0 1 1 11 1 19

Bits that

flip to

achieve the

next value

are shaded

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

13

The Aggregate Method:

Incrementing a Binary Counter
• Note that, the running time of an increment operation

is proportional to the number of bits flipped

• However, all bits are not flipped at each INCREMENT

A[0] flips at each increment operation

A[1] flips at alternate increment operations

A[2] flips only once for 4 successive increment operations



• In general, bit A[i] flips n/2i times in a sequence of n

INCREMENTs

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

14

The Aggregate Method:

Incrementing a Binary Counter

• Therefore, the total number of flips in the

sequence is

• The amortized cost of each operation is

O(n)n  O(1)

lg n

i  0

n/2i 



i  0

1/2i   n  2n

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

15

The Accounting Method

We assign different charges to different operations with some

operations charged more or less than they actually cost

The amount we charge an operation is called its amortized cost

When the amortized cost of an operation exceeds its actual cost

the difference is assigned to specific objects in the data structure

as credit

Credit can be used later to help pay for operations

whose amortized cost is less than their actual cost

That is, amortized cost of an operation can be considered as being

split between its actual cost and credit (either deposited or used)

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

16

The Accounting Method

Key points in the accounting method:

• The total amortized cost of a sequence of operations

must be an upper bound on the total actual cost of the

sequence

• This relationship must hold for all sequences of operations

Thus, the total credit associated with the data structure must be

nonnegative at all times

Since it represents the amount by which the

total amortized cost incurred so far exceed the

total actual cost incurred so far

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

17

The Accounting Method: Stack Operations

Assign the following amortized costs:

 Push: 2 Pop: 0 Multipop: 0

Notes:

• Amortized cost of multipop is a constant (0),

whereas the actual cost is variable

• All amortized costs are O(1), however, in general,

amortized costs of different operations

may differ asymptotically

Suppose we use $1 bill top represent each unit of cost

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

18

The Accounting Method: Stack Operations

We start with an empty stack of plates

When we push a plate on the stack

• we use $1 to pay the actual cost of the push operation

• we put a credit of $1 on top of the pushed plate

At any time point, every plate on the stack has a $1 of credit on it

The $1 stored on the plate is a prepayment for the cost of

popping it

In order to pop a plate from the stack

• we take $1 of credit off the plate

• and use it to pay the actual cost of the pop operation

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

19

The Accounting Method: Stack Operations

Thus by charging the push operation a little bit more we

don’t need to charge anything from the pop & multipop

operations

We have ensured that the amount of credits is always nonnegative

• since each plate on the stack always has $1 of credit

• and the stack always has a nonnegative number of plates

Thus, for any sequence of n push, pop, multipop operations

the total amortized cost is an upper bound

on the total actual cost

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

20

The Accounting Method: Stack Operations

Incrementing a binary counter:

Recall that, the running time of an increment operation is

proportional to the number of bits flipped

Charge an amortized cost of $2 to set a bit to 1

When a bit is set

• we use $1 to pay for the actual setting of the bit and

• we place the other $1 on the bit as credit

At any time point, every 1 in the counter has a $1 of credit on it

Hence, we don’t need to charge anything to reset a bit to 0,

we just pay for the reset with the $1 on it

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

21

The Accounting Method: Stack Operations

The amortized cost of increment can now be determined

the cost of resetting bits within the while loop

is paid by the dollars on the bits that are reset

At most one bit is set to 1, in an increment operation

Therefore, the amortized cost of an increment operation

is at most 2 dollars

The number of 1’s in the counter is never negative, thus

the amount of credit is always nonnegative

Thus, for n increment operations, the total amortized cost

is O(n), which bounds the actual cost

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

22

The Potential Method

Accounting method represents prepaid work as credit stored

with specific objects in the data structure

Potential method represents the prepaid work as

potential energy or just potential

that can be released to pay for the future operations

The potential is associated with the data structure as a whole

rather than with specific objects within the data structure

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

23

The Potential Method

We start with an initial data structure D0 on which we perform n

operations

For each i 1, 2, …, n, let

Ci: the actual cost of the i-th operation

Di: data structure that results after applying i-th operation to Di1

 : potential function that maps each data structure Di to a real

number  (Di)

 (Di): the potential associated with data structure Di

 i: amortized cost of the i-th operation w.r.t. function  Ĉ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

24

The Potential Method

 actual increase in potential
 cost due to the operation

The total amortized cost of n operations is

)()(ˆ
1 iiii DDCC 



 





 





n

i

ni

i

n

i

n

i

iii

DDC

DDCC

1

0

1

1 1

)()(

))()((ˆ





CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

25

The Potential Method

If we can ensure that  (Di)   (D0) then

the total amortized cost is an upper bound on the

total actual cost

However,  (Dn)   (D0) should hold for all possible n

since, in practice, we do not always know n in advance

Hence, if we require that  (Di)   (D0), for all i, then

we ensure that we pay in advance (as in the accounting method)




n

i

iC
1

ˆ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

26

The Potential Method

If  (Di)  (Di1) > 0, then the amortized cost i represents

• an overcharge to the i-th operation and

• the potential of the data structure increases

If  (Di)   (Di1) < 0, then the amortized cost i represents

• an undercharge to the i-th operation and

• the actual cost of the operation is paid

by the decrease in potential

Different potential functions may yield different amortized costs

which are still upper bounds for the actual costs

The best potential fn. to use depends on the desired time bounds

Ĉ

Ĉ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

27

The Potential Method:

Stack Operations

• Define  (S)| S |, the number of objects in the stack

• For the initial empty stack, we have  (D0)  0

• Since |S|  0, stack Di that results after ith operation

has nonnegative potential for all i, that is

 (Di)  0   (D0) for all i

• total amortized cost is an upper bound on total actual cost

• Let us compute the amortized costs of stack operations where

ith operation is performed on a stack with s objects




n

i

iC
1

ˆ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

28

The Potential Method:

 Stack Operations
PUSH (S):  (Di)   (Di1)  (s 1)  (s)  1

MULTIPOP(S, k):  (Di)  (Di1)   k'   min{s, k}

POP (S):

• The amortized cost of each operation is O(1), and thus
the total amortized cost of a sequence of n operations
is O(n)

Ci  Ci   (Di)  (Di1)  1  1  2 ˆ

Ci  Ci   (Di)  (Di1)  k'  k'  0 ˆ

Ci  0, similarly ˆ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

29

The Potential Method:

Incrementing a Binary Counter
• Define  (Di) bi, number of 1s in the counter after the ith

operation

• Compute the amortized cost of an INCREMENT operation wrt 

• Suppose that ith INCREMENT resets ti bits then,

ti  Ci  ti 1

• The number of 1s in the counter after the ith operation is

bi1 ti  bi  bi1 ti 1  bi  bi1  1 ti

• The amortized cost is therefore

 Ci  Ci   (Di)  (Di1)  (ti 1)  (1 ti)  2 ˆ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

30

The Potential Method:

Incrementing a Binary Counter

• If the counter starts at zero, then  (D0)  0, the

number of 1s in the counter after the ith operation

• Since  (Di)  0 for all i the total amortized cost is an

upper bound on the total actual cost

• Hence, the worst-case cost of n operations is O(n)

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

31

The Potential Method:

Incrementing a Binary Counter

• Assume that the counter does not start at zero, i.,e., b00

• Then, after n INCREMENT operations the number of 1s is bn,

where 0  b0, bn  k

• Since b0 k, if we execute at least n  (k) INCREMENT

operations the total actual cost is O(n)

• No matter what initial value the counter contains

 Ci   Ci   (Dn)   (D0)   2bnb0

  2nbnb0

ˆ
i  1

n

i  1

n

i  1

n

