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Amortized Analysis 
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Amortized Analysis 

Key point: The time required to perform a 

sequence of data structure operations is 

averaged over all operations performed 

• Amortized analysis can be used to show that 

– The average cost of an operation is small 

• If one averages over a sequence of operations 

 even though a single operation might be expensive 
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Amortized Analysis vs Average 

Case Analysis 

• Amortized analysis does not use any 

probabilistic reasoning  

• Amortized analysis guarantees  

 the average performance of each operation 

in the worst case 
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Amortized Analysis Techniques 

The most common three techniques 

– The aggregate method 

– The accounting method 

– The potential method 

If there are several types of operations in a sequence 

• The aggregate method assigns 

– The same amortized cost to each operation 

• The accounting method and the potential method may 
assign 

– Different amortized costs to different types of operations 
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The Aggregate Method 

• Show that sequence of n operations takes 

– Worst case time T(n) in total for all n 

• The amortized cost (average cost in the worst 

case) per operation is therefore T(n)n 

• This amortized cost applies to each operation 

– Even when there are several types of operations in 

the sequence 
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Example: Stack Operations 

PUSH(S, x): pushed object x onto stack 

POP(S): pops the top of the stack S and returns the 

    popped object 

MULTIPOP(S, k): removes the k top objects of the stack S 
   or pops the entire stack if | S |  k 

• PUSH and POP runs in (1) time 

– The total cost of a sequence of n PUSH and POP operations 
is therefore (n)  

• The running time of MULTIPOP(S, k) is 

– (min(s, k)) where s  | S | 
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Stack Operations: Multipop 

MULTIPOP(S, k) 

 while not StackEmpty(S) and k  0 do 

      t  POP(S) 

    k  k 1 

    return Running time: 

(min(s, k)) where s  | S | 
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The Aggregate Method: 

 Stack Operations 
• Let us analyze a sequence of n POP, PUSH, and 

MULTIPOP operations on an initially empty stack 

• The worst case of a MULTIPOP operation in the 
sequence is O(n), since the stack size is at most n 

• Hence, a sequence of n operations costs O(n2) 

– we may have n MULTIPOP operations each costing O(n) 

• The analysis is correct, however,  

– Considering worst-case cost of each operation, it is not tight 

• We can obtain a better bound by using aggregate 
method of amortized analysis 
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The Aggregate Method: 

 Stack Operations 
• Aggregate method considers the entire sequence of n 

operations  

– Although a single MULTIPOP can be expensive 

– Any sequence of n POP, PUSH, and MULTIPOP operations on 
an initially empty stack can cost at most O(n) 

Proof: each object can be popped once for each time it is pushed. 
Hence the number of times that POP can be called on a 

nonempty stack including the calls within MULTIPOP is at most 

the number of PUSH operations, which is at most n 

The amortized cost of an operation is the average O(n)n  O(1) 
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Example: Incrementing a Binary 

Counter 

• Implementing a k-bit binary counter that counts 

upward from 0 

• Use array A[0k1] of bits as the counter 

where length[A]k;  

 A[0] is the least significant bit;  

 A[k1] is the most significant bit;   

i.e., x A[i]2i 
k1 

i 0 
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Binary Counter: Increment 

INCREMENT(A, k) 

 i  0 

 while i  k and A[i]  1 do 
      A[i]  0 
    i  i +1 

 if i  k then 

   A[i]  1 

    return 

Initially x  0, i.e., A[i]  0 for i  0,1, , k1 

To add 1 (mod 2k) to the counter  
Essentially same as the one 

implemented in hardware by a 

ripple-carry counter 

A single execution of increment 

takes (k) in the worst case in 

which array A contains all 1’s 

Thus, n increment operations on 

an initially zero counter takes 

O(kn) time in the worst case. 

NOT TIGHT 
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0 

The Aggregate Method: 

Incrementing a Binary Counter 
Counter 

value [7] [6] [5] [4] [3] [2] [1] [0] 

Incre 

cost 

Total 

cost 

0 0 0 0 1 0 0 1 

0 0 0 0 1 0 1 

0 0 0 0 0 1 1 0 

0 0 0 0 0 1 1 1 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 1 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 1 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 

9 

10 

6 

7 

8 

3 

4 

5 

0 

1 

2 

1 

2 

2 

1 

4 

1 

3 

1 

  

1 

2 

16 

18 

10 

11 

15 

4 

7 

8 

  

1 

3 

0 0 0 0 1 0 1 1 11 1 19 

Bits that 

flip to 

achieve the 

next value 

are shaded 
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The Aggregate Method: 

Incrementing a Binary Counter 
• Note that, the running time of an increment operation 

is proportional to the number of bits flipped 

• However, all bits are not flipped at each INCREMENT 

A[0] flips at each increment operation 

A[1] flips at alternate increment operations 

A[2] flips only once for 4 successive increment operations 

 

• In general, bit A[i] flips n/2i times in a sequence of n 

INCREMENTs 
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The Aggregate Method: 

Incrementing a Binary Counter 

• Therefore, the total number of flips in the 

sequence is  

 

 

 

• The amortized cost of each operation is  

O(n)n  O(1) 

 

lg n 

i  0 

n/2i  

 

i  0 

1/2i   n  2n 
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The Accounting Method 
 

We assign different charges to different operations with some 

operations charged more or less than they actually cost 

The amount we charge an operation is called its amortized cost 

When the amortized cost of an operation exceeds its actual cost   

the difference is assigned to specific objects in the data structure 

as credit 

Credit can be used later to help pay for operations                   

whose amortized cost is less than their actual cost 

That is, amortized cost of an operation can be considered as being 

split between its actual cost and credit (either deposited or used) 
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The Accounting Method 
 

Key points in the accounting method: 

• The total amortized cost of a sequence of operations           

must be an upper bound on the total actual cost of the 

sequence 

• This relationship must hold for all sequences of operations 
 

Thus, the total credit associated with the data structure must be 

nonnegative at all times 

Since it represents the amount by which the                                

total amortized cost incurred so far exceed the                        

total actual cost incurred so far 
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The Accounting Method: Stack Operations 
 

Assign the following amortized costs: 

         Push: 2          Pop: 0   Multipop: 0 
 

Notes:  

• Amortized cost of multipop is a constant (0),           

whereas the actual cost is variable 

• All amortized costs are O(1), however, in general, 

amortized costs of different operations                           

may differ asymptotically 
 

Suppose we use $1 bill top represent each unit of cost 



CS473 – Lecture 12 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

18 

The Accounting Method: Stack Operations 
 

We start with an empty stack of plates 

When we push a plate on the stack 

• we use $1 to pay the actual cost of the push operation 

• we put a credit of $1 on top of the pushed plate 

At any time point, every plate on the stack has a $1 of credit on it 

The $1 stored on the plate is a prepayment for the cost of 

popping it 

In order to pop a plate from  the stack 

• we take $1 of credit off the plate 

• and use it to pay the actual cost of the pop operation 
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The Accounting Method: Stack Operations 
 
 

Thus by charging the push operation a little bit more                  we 

don’t need to charge anything from the pop & multipop 

operations 
 

We have ensured that the amount of credits is always nonnegative  

• since each plate on the stack always has $1 of credit 

• and the stack always has a nonnegative number of plates 
 

Thus, for any sequence of n push, pop, multipop operations       

the total amortized cost is an upper bound                                

on the total actual cost 
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The Accounting Method: Stack Operations 
 
 

Incrementing a binary counter: 

Recall that, the running time of an increment operation is 

proportional to the number of bits flipped 

Charge an amortized cost of $2 to set a bit to 1 

When a bit is set 

• we use $1 to pay for the actual setting of the bit and 

• we place the other $1 on the bit as credit 

At any time point, every 1 in the counter has a $1 of credit on it 

Hence, we don’t need to charge anything to reset a bit to 0,          

we just pay for the reset with the $1 on it 
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The Accounting Method: Stack Operations 
 
 

The amortized cost of increment can now be determined            

the cost of resetting bits within the while loop                           

is paid by the dollars on the bits that are reset 

At most one bit is set to 1, in an increment operation 

Therefore, the amortized cost of an increment operation               

is at most 2 dollars 

The number of 1’s in the counter is never negative, thus          

the amount of credit is always nonnegative 

Thus, for n increment operations, the total amortized cost          

is O(n), which bounds the actual cost 
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The Potential Method 
 
 

Accounting method represents prepaid work as credit stored 

with specific objects in  the data structure 

 

Potential method represents the prepaid work as                

potential energy or just potential                                          

that can be released to pay for the future operations 

 

The potential is associated with the data structure as a whole 

rather than with specific objects within the data structure 
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The Potential Method 
 
 

We start with an initial data structure D0 on which we perform n 

operations 

For each i 1, 2, …, n, let 

Ci: the actual cost of the i-th operation 

Di: data structure that results after applying i-th operation to Di1 

 : potential function that maps each data structure Di to a real 

number  (Di) 

 (Di): the potential associated with data structure Di 

   i: amortized cost of the i-th operation w.r.t. function   Ĉ
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The Potential Method 
 
 
 
 
 

                         actual   increase in potential 
                          cost     due to the operation 
 
The total amortized cost of n operations is 
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The Potential Method 
 
  

If we can ensure that  (Di)   (D0) then                                       

the total amortized cost           is an upper bound on the          

total actual cost 

 

However,  (Dn)   (D0) should hold for all possible n            

since, in practice, we do not always know n in advance 
 

Hence, if we require that  (Di)   (D0), for all i, then                   

we ensure that we pay in advance (as in the accounting method) 

                         




n

i

iC
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The Potential Method 
 
  

If  (Di)  (Di1) > 0, then the amortized cost    i represents 

• an overcharge to the i-th operation and 

• the potential of the data structure increases 

If  (Di)   (Di1) < 0, then the amortized cost    i represents  

• an undercharge to the i-th operation and 

• the actual cost of the operation is paid                              

by the decrease  in potential 

Different potential functions may yield different amortized costs 

which are still upper bounds for the actual costs 

The best potential fn. to use depends on the desired time bounds 

Ĉ

Ĉ
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The Potential Method:  

Stack Operations 

• Define  (S)| S |, the number of objects in the stack 

• For the initial empty stack, we have  (D0)  0 

• Since |S|  0, stack Di that results after ith operation 

has nonnegative potential for all i, that is 

 (Di)  0   (D0) for all i 

• total amortized cost is an upper bound on total actual cost 

• Let us compute the amortized costs of stack operations where 

ith operation is performed on a stack with s objects 




n

i

iC
1

ˆ
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The Potential Method: 

 Stack Operations 
PUSH (S):  (Di)   (Di1)  (s 1)  (s)  1  

  

 

MULTIPOP(S, k):  (Di)  (Di1)   k'   min{s, k}  

  

POP (S): 

• The amortized cost of each operation is O(1), and thus 
the total amortized cost of a sequence of n operations 
is O(n) 

Ci  Ci   (Di)  (Di1)  1  1  2 ˆ 

Ci  Ci   (Di)  (Di1)  k'  k'  0 ˆ 

Ci  0, similarly ˆ 
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The Potential Method: 

Incrementing a Binary Counter 
• Define  (Di) bi, number of 1s in the counter after the ith 

operation 

• Compute the amortized cost of an INCREMENT operation wrt   

• Suppose that ith INCREMENT resets ti bits then,  

ti  Ci  ti 1  

• The number of 1s in the counter after the ith operation is 

bi1 ti    bi   bi1 ti 1   bi  bi1  1 ti  

• The amortized cost is therefore  

 Ci  Ci   (Di)  (Di1)  (ti 1)  (1 ti)  2 ˆ 
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The Potential Method: 

Incrementing a Binary Counter 

• If the counter starts at zero, then  (D0)  0, the 

number of 1s in the counter after the ith operation 

• Since  (Di)  0 for all i the total amortized cost is an 

upper bound on the total actual cost  

• Hence, the worst-case cost of n operations is O(n)  
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The Potential Method: 

Incrementing a Binary Counter 

• Assume that the counter does not start at zero, i.,e., b00  

• Then, after n INCREMENT operations the number of 1s is bn, 

where 0  b0, bn  k 

 

 

 

• Since b0 k, if we execute at least n  (k) INCREMENT 

operations the total actual cost is O(n)  

• No matter what initial value the counter contains 

 Ci   Ci   (Dn)   (D0)   2bnb0 

             2nbnb0 

ˆ 
i  1 

n 

i  1 

n 

i  1 

n 


