
1

CS473 - Algorithms I

CS 473 – Lecture 3

Lecture 3
Solving Recurrences

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

2 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Solving Recurrences

 Reminder: Runtime (T(n)) of MergeSort was
expressed as a recurrence

 Solving recurrences is like solving differential
equations, integrals, etc.
Need to learn a few tricks

Θ(1) if n=1

2T(n/2) + Θ(n) otherwise

T(n) =

3 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Recurrences

 Recurrence: An equation or inequality that describes
a function in terms of its value on smaller inputs.

 



+
=

1)2/(
1

)(
nT

nT if n=1
if n >1

Example:

4 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Recurrence - Example

 Simplification: Assume n = 2k

 Claimed answer: T(n) = lgn + 1
 Substitute claimed answer in the recurrence:

 



+
=

1)2/(
1

)(
nT

nT

if n = 1

if n > 1
True when n = 2k

if n=1
if n >1

5 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Technicalities: Floor/Ceiling

 Technically, should be careful about the floor and
ceiling functions (as in the book).

 e.g. For merge sort, the recurrence should in fact be:

if n = 1

if n > 1

 But, it’s usually ok to:
 ignore floor/ceiling
 solve for exact powers of 2 (or another number)

6 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Technicalities: Boundary Conditions

 Usually assume: T(n) = Θ(1) for sufficiently small n
 Changes the exact solution, but usually the asymptotic

solution is not affected (e.g. if polynomially bounded)

 For convenience, the boundary conditions generally

implicitly stated in a recurrence
 T(n) = 2T(n/2) + Θ(n)
assuming that
 T(n) = Θ(1) for sufficiently small n

7 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: When Boundary Conditions Matter

 Exponential function: T(n) = (T(n/2))2

 Assume T(1) = c (where c is a positive constant).
 T(2) = (T(1))2 = c2

 T(4) = (T(2))2 = c4

 T(n) = Θ(cn)

 e.g.

)1()1()(1)1(Θ=Θ=⇒= nnTT
 Difference in solution more dramatic when:

8 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Solving Recurrences

 We will focus on 3 techniques in this lecture:

1. Substitution method

2. Recursion tree approach

3. Master method

9 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Substitution Method

 The most general method:
1. Guess
2. Prove by induction
3. Solve for constants

10 CS 473 – Lecture 3

Solve T(n) = 4T(n/2) + n (assume T(1) = Θ(1))

1. Guess T(n) = O(n3) (need to prove O and Ω separately)

2. Prove by induction that T(n) ≤ cn3 for large n (i.e. n ≥ n0)

 Inductive hypothesis: T(k) ≤ ck3 for any k < n

 Assuming ind. hyp. holds, prove T(n) ≤ cn3

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Substitution Method: Example

11 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Substitution Method: Example – cont’d

Original recurrence: T(n) = 4T(n/2) + n

From inductive hypothesis: T(n/2) ≤ c(n/2)3

Substitute this into the original recurrence:
 T(n) ≤ 4c (n/2)3 + n
 = (c/2) n3 + n
 = cn3 – ((c/2)n3 – n)

 ≤ cn3
 when ((c/2)n3 – n) ≥ 0

desired - residual

12 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Substitution Method: Example – cont’d

 So far, we have shown:
 T(n) ≤ cn3 when ((c/2)n3 – n) ≥ 0

 We can choose c ≥ 2 and n0 ≥ 1
 But, the proof is not complete yet.
 Reminder: Proof by induction:

1. Prove the base cases
2. Inductive hypothesis for smaller sizes
3. Prove the general case

haven’t proved
the base cases yet

13 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Substitution Method: Example – cont’d

 We need to prove the base cases
Base: T(n) = Θ(1) for small n (e.g. for n = n0)

 We should show that:
 “Θ(1)” ≤ cn3 for n = n0
 This holds if we pick c big enough

 So, the proof of T(n) = O(n3) is complete.
 But, is this a tight bound?

14 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: A tighter upper bound?

 Original recurrence: T(n) = 4T(n/2) + n
 Try to prove that T(n) = O(n2),

 i.e. T(n) ≤ cn2 for all n ≥ n0

 Ind. hyp: Assume that T(k) ≤ ck2 for k < n
 Prove the general case: T(n) ≤ cn2

15 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example (cont’d)

 Original recurrence: T(n) = 4T(n/2) + n
 Ind. hyp: Assume that T(k) ≤ ck2 for k < n
 Prove the general case: T(n) ≤ cn2

 T(n) = 4T(n/2) + n

 ≤ 4c(n/2)2 + n
 = cn2 + n
 = O(n2) Wrong! We must prove exactly

16 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example (cont’d)

 Original recurrence: T(n) = 4T(n/2) + n
 Ind. hyp: Assume that T(k) ≤ ck2 for k < n
 Prove the general case: T(n) ≤ cn2

 So far, we have:

 T(n) ≤ cn2 + n
 No matter which positive c value we choose,
 this does not show that T(n) ≤ cn2

 Proof failed?

17 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example (cont’d)

 What was the problem?
 The inductive hypothesis was not strong enough

 Idea: Start with a stronger inductive hypothesis
 Subtract a low-order term

 Inductive hypothesis: T(k) ≤ c1k2 – c2k for k < n

 Prove the general case: T(n) ≤ c1n2 - c2n

18 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example (cont’d)

 Original recurrence: T(n) = 4T(n/2) + n
 Ind. hyp: Assume that T(k) ≤ c1k2 - c2k for k < n
 Prove the general case: T(n) ≤ c1n2 – c2n

 T(n) = 4T(n/2) + n
 ≤ 4 (c1(n/2)2 – c2(n/2)) + n
 = c1n2 – 2c2n + n

 = c1n2 – c2n – (c2n – n)

 ≤ c1n2 – c2n for n(c2 – 1) ≥ 0
 choose c2 ≥ 1

19 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example (cont’d)

 We now need to prove
 T(n) ≤ c1n2 – c2n
 for the base cases.

 T(n) = Θ(1) for 1 ≤ n ≤ n0 (implicit assumption)
 “Θ(1)” ≤ c1n2 – c2n for n small enough (e.g. n = n0)

 We can choose c1 large enough to make this hold

 We have proved that T(n) = O(n2)

20 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Substitution Method: Example 2

 For the recurrence T(n) = 4T(n/2) + n,
prove that T(n) = Ω(n2)
 i.e. T(n) ≥ cn2 for any n ≥ n0

 Ind. hyp: T(k) ≥ ck2 for any k < n
 Prove general case: T(n) ≥ cn2

 T(n) = 4T(n/2) + n
 ≥ 4c (n/2)2 + n
 = cn2 + n
 ≥ cn2 since n > 0
 Proof succeeded – no need to strengthen the ind. hyp as
in the last example

21 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example 2 (cont’d)

 We now need to prove that
 T(n) ≥ cn2
for the base cases

 T(n) = Θ(1) for 1 ≤ n ≤ n0 (implicit assumption)
 “Θ(1)” ≥ cn2 for n = n0

 n0 is sufficiently small (i.e. constant)

 We can choose c small enough for this to hold

 We have proved that T(n) = Ω (n2)

22 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Substitution Method - Summary

1. Guess the asymptotic complexity

1. Prove your guess using induction

1. Assume inductive hypothesis holds for k < n
2. Try to prove the general case for n

 Note: MUST prove the EXACT inequality
 CANNOT ignore lower order terms
 If the proof fails, strengthen the ind. hyp. and try again

3. Prove the base cases (usually straightforward)

23 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Recursion Tree Method

 A recursion tree models the runtime costs of a
recursive execution of an algorithm.

 The recursion tree method is good for generating
guesses for the substitution method.

 The recursion-tree method can be unreliable.
 Not suitable for formal proofs

 The recursion-tree method promotes intuition,
however.

24 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

T(n/2) T(n/2)

25 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2) Θ(n/2)

2x

su
bp

ro
bs

ea
ch

 si
ze

ha

lv
ed

26 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2) Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

2lgn = n

lg
n

Θ(n)

Θ(n)

Θ(n)

Total: Θ(nlgn)

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

27

Example of Recursion Tree
Solve T(n) = T(n/4) + T(n/2) + n2:

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

28

Solve T(n) = T(n/4) + T(n/2) + n2:
 T(n)

Example of Recursion Tree

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

29

Solve T(n) = T(n/4) + T(n/2) + n2:
 n2

T(n/4) T(n/2)

Example of Recursion Tree

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

30

Solve T(n) = T(n/4) + T(n/2) + n2:
 n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

Example of Recursion Tree

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

31

Solve T(n) = T(n/4) + T(n/2) + n2:
 n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

Example of Recursion Tree

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

32

Solve T(n) = T(n/4) + T(n/2) + n2:
 n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2

Example of Recursion Tree

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

33

Solve T(n) = T(n/4) + T(n/2) + n2:
 n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2

5/16 n2

Example of Recursion Tree

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

34

Solve T(n) = T(n/4) + T(n/2) + n2:
 n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2

5/16 n2

25/256 n2

Example of Recursion Tree

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

35

Solve T(n) = T(n/4) + T(n/2) + n2:
 n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

Θ(1)

n2

5/16 n2

25/256 n2

Total = n2 (1 + 5/16 + (5/16)2 + (5/16)2 + ...)
 = Θ(n2) geometric series

Example of Recursion Tree

36 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Master Method

 A powerful black-box method to solve recurrences.

 The master method applies to recurrences of the form

 T(n) = aT(n/b) + f (n)

 where a ≥ 1, b > 1, and f is asymptotically positive.

37 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Master Method: 3 Cases

 Recurrence: T(n) = aT(n/b) + f (n)

 Compare f (n) with
 Intuitively:

Case 1: f (n) grows polynomially slower than

Case 2: f (n) grows at the same rate as

Case 3: f (n) grows polynomially faster than

abnlog

abnlog

38 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Master Method: Case 1

 Recurrence: T(n) = aT(n/b) + f (n)

Case 1: for some constant ε > 0

 i.e., f (n) grows polynomialy slower than
 (by an nε factor).

Solution: T(n) = Θ()

abnlog

abnlog

39 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Master Method: Case 2 (simple version)

 Recurrence: T(n) = aT(n/b) + f (n)

Case 2:

i.e., f (n) and grow at similar rates

Solution: T(n) = Θ(lgn)

abnlog

abnlog

40 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Master Method: Case 3

Case 3: for some constant ε > 0

i.e., f (n) grows polynomialy faster than (by an nε factor).

 and the following regularity condition holds:
 a f (n/b) ≤ c f (n) for some constant c < 1

Solution: T(n) = Θ(f(n))

abnlog

41 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: T(n) = 4T(n/2) + n

a = 4
b = 2

f(n) = n

f(n) grows polynomially slower than

CASE 1

T(n) = Θ() abnlog

T(n) = Θ(n2)

for ε = 1

42 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: T(n) = 4T(n/2) + n2

a = 4
b = 2

f(n) = n2

f(n) grows at similar rate as

CASE 2

T(n) = Θ(lgn) abnlog

T(n) = Θ(n2lgn)

f(n) = Θ() = n2

43 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: T(n) = 4T(n/2) + n3

a = 4
b = 2

f(n) = n3

f(n) grows polynomially faster than

seems like CASE 3, but need
to check the regularity condition

T(n) = Θ(f(n)) T(n) = Θ(n3)

for ε = 1

Regularity condition: a f (n/b) ≤ c f (n) for some constant c < 1

4 (n/2)3 ≤ cn3 for c = 1/2

CASE 3

44 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: T(n) = 4T(n/2) + n2/lgn

a = 4
b = 2

f(n) = n2/lgn

f(n) grows slower than

is not CASE 1

for any ε > 0

but is it polynomially slower?

Master method does not apply!

45 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Master Method: Case 2 (general version)

 Recurrence: T(n) = aT(n/b) + f (n)

Case 2: for some constant k ≥ 0

Solution: T(n) = Θ (lgk+1n)

abnlog

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

46

General Method (Akra-Bazzi)

Let p be the unique solution to

Then, the answers are the same as for the
master method, but with np instead of
(Akra and Bazzi also prove an even more general result.)

∑
=

+=
k

i
ii nfbnTanT

1
)()/()(

∑
=

=
k

i
i

p
i ba

1
1)/(

abnlog

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

47

Idea of Master Theorem
Recursion tree:

)1(log Tn ab

T(1)

 f (n/b)

 f (n) f (n)

 f (n/b) f (n/b)
a

a f (n/b)

 f (n/b2) f (n/b2) f (n/b2)
a h= logbn

a2 f (n/b2)

#leaves = a h

 =

 =

nba log

abnlog

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

48

Recursion tree:

)1(log Tn ab

T(1)

 f (n/b)

 f (n) f (n)

 f (n/b) f (n/b)
a

a f (n/b)

 f (n/b2) f (n/b2) f (n/b2)
a h= logbn

a2 f (n/b2)

CASE 1 : The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight. Θ () abnlog

Idea of Master Theorem

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

49

Recursion tree:

)1(log Tn ab

T(1)

 f (n/b)

 f (n) f (n)

 f (n/b) f (n/b)
a

a f (n/b)

 f (n/b2) f (n/b2) f (n/b2)
a h= logbn

a2 f (n/b2)

CASE 2 : (k = 0) The weight
is approximately the same on

each of the logbn levels. Θ (lgn) abnlog

Idea of Master Theorem

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

50

Recursion tree:

)1(log Tn ab

T(1)

 f (n/b)

 f (n) f (n)

 f (n/b) f (n/b)
a

a f (n/b)

 f (n/b2) f (n/b2) f (n/b2)
a h= logbn

a2 f (n/b2)

CASE 3 : The weight decreases
geometrically from the root to the
leaves. The root holds a constant

fraction of the total weight. Θ (f (n))

Idea of Master Theorem

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

51

Proof of Master Theorem:
Case 1 and Case 2

• Recall from the recursion tree (note h = lgbn=tree
height)

∑
−

=

+Θ=
1

0

log)/()()(
h

i

iia bnfannT b

 Leaf cost Non-leaf cost = g(n)

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

52

Proof of Case 1
 for some ε > 0







)(
)(

log
εn

nf
n ab

Ω=

)()()()()(
)(

log
log

log
εεε −− =⇒=⇒Ω= a

a

a
b

b

b

nOnfnO
n

nfn
nf

n

() 







== ∑∑

−

=

−
−

=

−
1

0

log
1

0

log)/()/()(
h

i

aii
h

i

aii bb bnaObnOang εε









= ∑

−

=

−
1

0

loglog /
h

i

aiiia bb bbanO εε

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

53

 = An increasing geometric series since b > 1

∑∑∑∑
−

=

−

=

−

=

===
1

0

1

0
log

1

0
log)(

)(
)(h

i

i
i

i
i

h

i
ia

i
i

h

i
ai

ii

b
a
ba

b
ba

b
ba

bb

ε
εεε

)(
1
1

1
1)(

1
1)(

1
1 log

ε
ε

ε

ε

ε

ε

ε

ε

ε

nO
b
n

b
b

b
b

b
b nhh b

=
−
−

=
−

−
=

−
−

=
−
−

=

Case 1 (cont’)

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

54

() 







== −)()()(

log
log ε

ε
εε nO

n
nOnOnOng

a
a

b
b

)()()()()(logloglog aaa bbb nOnngnnT +Θ=+Θ=

Case 1 (cont’)

)(log abnO=

)(log abnΘ=
 Q.E.D.

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

55

Proof of Case 2 (limited to k=0)









Θ=








Θ=








Θ= ∑∑∑

−

=

−

=

−

=

1

0

log
1

0
log

log
1

0
log

log 1
)(

1 h

i
i

ia
h

i
ia

ia
h

i
ai

a
i

a
an

b
an

b
na b

b

b

b

b







Θ=⇒Θ=⇒Θ=Θ= a

i
ia

a
bb

b b
nbnfnnfn

n
nf loglog0

log)()/()()()1()(lg)(

()∑
−

=

Θ=∴
1

0

log)/()(
h

i

aii bbnang

)lg()(loglog nnnnT aa bb Θ+=
()nn ab lglogΘ=

() ()nnnnn a
b

a
n

i

a bb
b

b lglog1 loglog
1log

0

log Θ=Θ=







Θ= ∑

−

=

 Q.E.D.

CS473 – Lecture 3 Cevdet Aykanat - Bilkent University
Computer Engineering Department

56

Conclusion

• Next time: applying the master method.

	Slide Number 1
	Solving Recurrences
	Recurrences
	Recurrence - Example
	Technicalities: Floor/Ceiling
	Technicalities: Boundary Conditions
	Example: When Boundary Conditions Matter
	Solving Recurrences
	Substitution Method
	Substitution Method: Example
	Substitution Method: Example – cont’d
	Substitution Method: Example – cont’d
	Substitution Method: Example – cont’d
	Example: A tighter upper bound?
	Example (cont’d)
	Example (cont’d)
	Example (cont’d)
	Example (cont’d)
	Example (cont’d)
	Substitution Method: Example 2
	Example 2 (cont’d)
	Substitution Method - Summary
	Recursion Tree Method
	�Solve Recurrence: T(n) = 2T (n/2) + Θ(n)�
	�Solve Recurrence: T(n) = 2T (n/2) + Θ(n)�
	�Solve Recurrence: T(n) = 2T (n/2) + Θ(n)�
	Example of Recursion Tree
	Example of Recursion Tree
	Example of Recursion Tree
	Example of Recursion Tree
	Example of Recursion Tree
	Example of Recursion Tree
	Example of Recursion Tree
	Example of Recursion Tree
	Example of Recursion Tree
	The Master Method
	The Master Method: 3 Cases
	The Master Method: Case 1
	The Master Method: Case 2 (simple version)
	The Master Method: Case 3
	Example: T(n) = 4T(n/2) + n
	Example: T(n) = 4T(n/2) + n2
	Example: T(n) = 4T(n/2) + n3
	Example: T(n) = 4T(n/2) + n2/lgn
	The Master Method: Case 2 (general version)
	General Method (Akra-Bazzi)
	Idea of Master Theorem
	Idea of Master Theorem
	Idea of Master Theorem
	Idea of Master Theorem
	Proof of Master Theorem:�Case 1 and Case 2
	Proof of Case 1
	Case 1 (cont’)
	Case 1 (cont’)
	Proof of Case 2 (limited to k=0)
	Conclusion

