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Solving Recurrences 

 Reminder: Runtime (T(n)) of MergeSort was 
expressed as a recurrence 
 
 

 
 

 Solving recurrences is like solving differential 
equations, integrals, etc.  
Need to learn a few tricks 

 

Θ(1)    if n=1 
 
2T(n/2) + Θ(n)   otherwise 

T(n) =  
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Recurrences 

 Recurrence: An equation or inequality that describes 
a function in terms of its value on smaller inputs. 

 



+
=

1)2/(
1

)(
nT

nT if  n=1 
if  n >1 

Example: 
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Recurrence - Example 

 Simplification: Assume n = 2k 

 Claimed answer: T(n) = lgn + 1 
 Substitute claimed answer in the recurrence: 
  

 
 

 



+
=

1)2/(
1

)(
nT

nT

if n = 1 

if n > 1 
True when n = 2k 

if  n=1 
if  n >1 
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Technicalities: Floor/Ceiling 

 Technically, should be careful about the floor and 
ceiling functions (as in the book). 

 e.g. For merge sort, the recurrence should in fact be: 

if n = 1 

if n > 1 

  But, it’s usually ok to: 
 ignore floor/ceiling 
 solve for exact powers of 2 (or another number) 
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Technicalities: Boundary Conditions 

 Usually assume: T(n) = Θ(1) for sufficiently small n 
 Changes the exact solution, but usually the asymptotic 

solution is not affected (e.g. if polynomially bounded) 

 
 For convenience, the boundary conditions generally 

implicitly stated in a recurrence 
 T(n) = 2T(n/2) + Θ(n) 
assuming that 
 T(n) = Θ(1) for sufficiently small n 
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Example: When Boundary Conditions Matter 

 Exponential function: T(n) = (T(n/2))2 

 Assume T(1) = c  (where c is a positive constant). 
  T(2) = (T(1))2 = c2 

  T(4) = (T(2))2 = c4 

  T(n) = Θ(cn) 

 e.g. 
 

)1()1()(1)1( Θ=Θ=⇒= nnTT
 Difference in solution more dramatic when: 
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Solving Recurrences 

 We will focus on 3 techniques in this lecture: 
 

1. Substitution method 
 

2. Recursion tree approach 
 

3. Master method  
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Substitution Method 

 The most general method: 
1. Guess 
2. Prove by induction 
3. Solve for constants 

 
 



10 CS 473 – Lecture 3 

Solve T(n) = 4T(n/2) + n (assume T(1) = Θ(1)) 
 
1. Guess T(n) = O(n3)  (need to prove O and Ω separately) 
 
2. Prove by induction that T(n) ≤ cn3 for large n (i.e. n ≥ n0) 

 
 Inductive hypothesis: T(k) ≤ ck3 for any k < n 
 
 Assuming ind. hyp. holds, prove T(n) ≤ cn3  

Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

Substitution Method: Example 
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Substitution Method: Example – cont’d 

Original recurrence: T(n) = 4T(n/2) + n  
 
From inductive hypothesis:  T(n/2) ≤ c(n/2)3 

Substitute this into the original recurrence: 
 T(n)   ≤  4c (n/2)3 + n 
  =  (c/2) n3 + n 
           = cn3 – ((c/2)n3 – n) 

  ≤ cn3 
   when ((c/2)n3 – n) ≥ 0 

desired - residual 
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Substitution Method: Example – cont’d 

 So far, we have shown: 
 T(n) ≤ cn3  when ((c/2)n3 – n) ≥ 0 

 
 We can choose c ≥ 2 and n0 ≥ 1 
 But, the proof is not complete yet. 
 Reminder: Proof by induction: 

1. Prove the base cases 
2. Inductive hypothesis for smaller sizes 
3. Prove the general case 

 

haven’t proved  
the base cases yet 
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Substitution Method: Example – cont’d 

 We need to prove the base cases 
Base: T(n) = Θ(1) for small n (e.g. for n = n0) 

 
 We should show that: 
 “Θ(1)” ≤ cn3    for n = n0 
   This holds if we pick c big enough 

 

 So, the proof of T(n) = O(n3) is complete. 
 But, is this a tight bound? 
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Example: A tighter upper bound? 

 Original recurrence: T(n) = 4T(n/2) + n 
 Try to prove that T(n) = O(n2), 

 i.e. T(n) ≤ cn2 for all n ≥ n0 

 
 Ind. hyp: Assume that T(k) ≤ ck2  for k < n 
 Prove the general case: T(n) ≤ cn2 
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Example (cont’d) 

 Original recurrence: T(n) = 4T(n/2) + n 
 Ind. hyp: Assume that T(k) ≤ ck2  for k < n 
 Prove the general case: T(n) ≤ cn2 

 
 T(n)  = 4T(n/2) + n 

  ≤ 4c(n/2)2 + n 
   = cn2 + n  
  = O(n2)    Wrong! We must prove exactly 
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Example (cont’d) 

 Original recurrence: T(n) = 4T(n/2) + n 
 Ind. hyp: Assume that T(k) ≤ ck2  for k < n 
 Prove the general case: T(n) ≤ cn2 

 
 So far, we have: 

 T(n) ≤ cn2 + n 
      No matter which positive c value we choose,  
       this does not show that T(n) ≤ cn2 

 Proof failed? 
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Example (cont’d) 

 What was the problem? 
 The inductive hypothesis was not strong enough 
 

 Idea: Start with a stronger inductive hypothesis 
 Subtract a low-order term  
 

 Inductive hypothesis: T(k) ≤ c1k2 – c2k  for k < n 
 

 Prove the general case: T(n) ≤ c1n2 - c2n 

   



18 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

Example (cont’d) 

 Original recurrence: T(n) = 4T(n/2) + n 
 Ind. hyp: Assume that T(k) ≤ c1k2 - c2k  for k < n 
 Prove the general case: T(n) ≤ c1n2 – c2n 

  T(n) = 4T(n/2) + n 
    ≤ 4 (c1(n/2)2 – c2(n/2)) + n 
   = c1n2 – 2c2n + n 

   = c1n2 – c2n – (c2n – n) 

   ≤  c1n2 – c2n  for n(c2 – 1) ≥ 0 
      choose c2 ≥ 1 
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Example (cont’d) 

 We now need to prove 
  T(n) ≤ c1n2 – c2n 
    for the base cases. 

 
 T(n) = Θ(1)  for  1 ≤ n ≤ n0  (implicit assumption) 
 “Θ(1)” ≤ c1n2 – c2n for n small enough (e.g. n = n0) 

  We can choose c1 large enough to make this hold 
 

 We have proved that T(n) = O(n2) 
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Substitution Method: Example 2 

 For the recurrence T(n) = 4T(n/2) + n,  
prove that T(n) = Ω(n2) 
 i.e. T(n) ≥ cn2    for any n ≥ n0 

 Ind. hyp:  T(k) ≥ ck2  for any k < n 
 Prove general case: T(n) ≥ cn2 

  T(n)  = 4T(n/2) + n 
   ≥ 4c (n/2)2 + n  
   = cn2 + n 
   ≥ cn2   since n > 0 
 Proof succeeded – no need to strengthen the ind. hyp as 
in the last example 
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Example 2 (cont’d) 

 We now need to prove that 
 T(n) ≥ cn2  
for the base cases 

 
 T(n) = Θ(1)  for  1 ≤ n ≤ n0  (implicit assumption) 
 “Θ(1)” ≥ cn2    for n = n0 

   n0 is sufficiently small (i.e. constant) 

  We can choose c small enough for this to hold 
 

 We have proved that T(n) = Ω (n2) 
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Substitution Method - Summary 

1. Guess the asymptotic complexity 
 
1. Prove your guess using induction 

1. Assume inductive hypothesis holds for k < n 
2. Try to prove the general case for n 

  Note: MUST prove the EXACT inequality 
            CANNOT ignore lower order terms  
  If the proof fails, strengthen the ind. hyp. and try again 

3. Prove the base cases (usually straightforward) 
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Recursion Tree Method 

 A recursion tree models the runtime costs of a 
recursive execution of an algorithm. 

 The recursion tree method is good for generating 
guesses for the substitution method. 

 The recursion-tree method can be unreliable. 
 Not suitable for formal proofs 

 The recursion-tree method promotes intuition, 
however. 
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n) 

 

Θ(n) 

T(n/2) T(n/2) 
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n) 

 

Θ(n) 

Θ(n/2) 

T(n/4) T(n/4) T(n/4) T(n/4) 

T(n/2) Θ(n/2) 

2x
 

su
bp

ro
bs

 

ea
ch

 si
ze

 
ha

lv
ed
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n) 

 

Θ(n) 

Θ(n/2) Θ(n/2) 

T(n/4) T(n/4) T(n/4) T(n/4) 

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) 

2lgn = n 

lg
n 

Θ(n) 

Θ(n) 

Θ(n) 

Total: Θ(nlgn)  



CS473 – Lecture 3 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

27 

Example of Recursion Tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 
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Solve T(n) = T(n/4) + T(n/2) + n2: 
                            T(n) 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 
                             n2 

T(n/4) T(n/2) 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 
                               n2 

 
(n/4)2 (n/2)2 

T(n/16) T(n/8) T(n/8) T(n/4) 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 
                             n2 

 
(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

Θ(1) 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 
                             n2 

 
(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

Θ(1) 

n2 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 
                             n2 

 
(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

Θ(1) 

n2 

5/16 n2 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 
                             n2 

 
(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

Θ(1) 

n2 

5/16 n2 

25/256 n2 

Example of Recursion Tree 



CS473 – Lecture 3 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

35 

Solve T(n) = T(n/4) + T(n/2) + n2: 
                             n2 

 
(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

Θ(1) 

n2 

5/16 n2 

25/256 n2 

Total = n2 (1 + 5/16 + (5/16)2 + (5/16)2 + ...) 
         = Θ(n2)     geometric series 

Example of Recursion Tree 
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The Master Method 

 A powerful black-box method to solve recurrences. 
 

 The master method applies to recurrences of the form 

                T(n) = aT(n/b) + f (n)  

    where a ≥ 1, b > 1, and f is asymptotically positive. 
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The Master Method: 3 Cases 

 Recurrence: T(n) = aT(n/b) + f (n)  
 

 Compare f (n) with               
 Intuitively: 

Case 1: f (n) grows polynomially slower than  

Case 2: f (n) grows at the same rate as  

Case 3: f (n) grows polynomially faster than  

abnlog

abnlog
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The Master Method: Case 1 

 Recurrence: T(n) = aT(n/b) + f (n)  
 

Case 1:     for some constant ε > 0 
 

 i.e., f (n) grows polynomialy slower than                               
      (by an nε factor). 

    
Solution:  T(n) = Θ(            ) 

 

abnlog

abnlog
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The Master Method: Case 2 (simple version) 

 Recurrence: T(n) = aT(n/b) + f (n)  
 

Case 2:  
  
i.e., f (n) and               grow at similar rates 
 
Solution:  T(n) = Θ(             lgn) 

 

abnlog

abnlog
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The Master Method: Case 3 

 
Case 3:       for some constant ε > 0 
   
 
i.e., f (n) grows polynomialy faster than                (by an nε factor). 
 
 and the following regularity condition holds: 
    a f (n/b) ≤ c f (n) for some constant  c < 1 
 
    
Solution:  T(n) = Θ( f(n) ) 

abnlog
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Example: T(n) = 4T(n/2) + n 

a = 4 
b = 2 

f(n) = n 

f(n) grows polynomially slower than 

CASE 1 

T(n) = Θ(           ) abnlog

T(n) = Θ(n2) 

for ε = 1 
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Example: T(n) = 4T(n/2) + n2 

a = 4 
b = 2 

f(n) = n2 

f(n) grows at similar rate as  

CASE 2 

T(n) = Θ(            lgn) abnlog

T(n) = Θ(n2lgn) 

f(n) = Θ(           ) = n2 
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Example: T(n) = 4T(n/2) + n3 

a = 4 
b = 2 

f(n) = n3 

f(n) grows polynomially faster than 

seems like CASE 3, but need 
to check the regularity condition 

T(n) = Θ(f(n)) T(n) = Θ(n3) 

for ε = 1 

Regularity condition: a f (n/b) ≤ c f (n) for some constant  c < 1 

4 (n/2)3 ≤ cn3 for c = 1/2 

CASE 3 



44 CS 473 – Lecture 3 Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

Example: T(n) = 4T(n/2) + n2/lgn 

a = 4 
b = 2 

f(n) = n2/lgn 

f(n) grows slower than 

is not CASE 1 

for any ε > 0 

but is it polynomially slower? 

Master method does not apply! 
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The Master Method: Case 2 (general version) 

 Recurrence: T(n) = aT(n/b) + f (n)  
 

Case 2:     for some constant k ≥ 0 
  
 
 
Solution:  T(n) = Θ (                lgk+1n) 

 

abnlog
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General Method (Akra-Bazzi) 

Let p be the unique solution to 
 
 
 
Then, the answers are the same as for the 
master method, but with np instead of  
(Akra and Bazzi also prove an even more general result.) 

∑
=

+=
k

i
ii nfbnTanT

1
)()/()(

∑
=

=
k

i
i

p
i ba

1
1)/(

abnlog
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Idea of Master Theorem 
Recursion tree: 

)1(log Tn ab

T(1) 

 f (n/b) 

 f (n)  f (n) 

 f (n/b)  f (n/b) 
a 

a f (n/b) 

 f (n/b2)  f (n/b2)  f (n/b2) 
a h= logbn 

a2 f (n/b2) 
 
#leaves = a h 

             =  

             =  

 

nba log

abnlog
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Recursion tree: 

)1(log Tn ab

T(1) 

 f (n/b) 

 f (n)  f (n) 

 f (n/b)  f (n/b) 
a 

a f (n/b) 

 f (n/b2)  f (n/b2)  f (n/b2) 
a h= logbn 

a2 f (n/b2) 

CASE 1 : The weight increases 
geometrically from the root to the 
leaves. The leaves hold a constant 
fraction of the total weight. Θ (               ) abnlog

Idea of Master Theorem 
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Recursion tree: 

)1(log Tn ab

T(1) 

 f (n/b) 

 f (n)  f (n) 

 f (n/b)  f (n/b) 
a 

a f (n/b) 

 f (n/b2)  f (n/b2)  f (n/b2) 
a h= logbn 

a2 f (n/b2) 

CASE 2 : (k = 0) The weight 
is approximately the same on 

each of the logbn levels. Θ (             lgn) abnlog

Idea of Master Theorem 
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Recursion tree: 

)1(log Tn ab

T(1) 

 f (n/b) 

 f (n)  f (n) 

 f (n/b)  f (n/b) 
a 

a f (n/b) 

 f (n/b2)  f (n/b2)  f (n/b2) 
a h= logbn 

a2 f (n/b2) 

CASE 3 : The weight decreases 
geometrically from the root to the 
leaves. The root holds a constant 

fraction of the total weight.     Θ (  f (n) ) 

Idea of Master Theorem 
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Proof of Master Theorem: 
Case 1 and Case 2 

• Recall from the recursion tree (note h = lgbn=tree 
height) 

 

∑
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=

+Θ=
1

0

log )/()()(
h

i

iia bnfannT b

    Leaf cost     Non-leaf cost = g(n) 
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Proof of Case 1 
                                       for some ε > 0 

 

   

 

   

 

   
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 = An increasing geometric series since b > 1 
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Case 1 (cont’) 
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( ) 



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


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log
log ε

ε
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)()()()()( logloglog aaa bbb nOnngnnT +Θ=+Θ=

Case 1 (cont’) 

)( log abnO=

)( log abnΘ=
 Q.E.D. 
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Proof of Case 2 (limited to k=0) 
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Conclusion 

• Next time: applying the master method. 
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