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Quicksort

 One of the most-used algorithms in practice
 Proposed by C.A.R. Hoare in 1962.
 Divide-and-conquer algorithm
 In-place algorithm

 The additional space needed is O(1)
 The sorted array is returned in the input array
 Reminder: Insertion-sort is also an in-place algorithm, but 

Merge-Sort is not in-place.
 Very practical
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Quicksort
1. Divide: Partition the array into 2 subarrays such 

that elements in the lower part ≤ elements in the 
higher part

2. Conquer: Recursively sort 2 subarrays
3. Combine: Trivial (because in-place)

• Key: Linear-time (Θ(n)) partitioning algorithm

≥ x≤ x
p q r
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Divide: Partition the array around a pivot element

1. Choose a pivot element x
2. Rearrange the array such that:

Left subarray: All elements ≤ x
Right subarray: All elements ≥ x

Input: 5 3 2 6 4 1 3 7 e.g. x = 5

After partitioning: 3 3 2 1 4 6 5 7

≤ 5 ≥ 5
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Conquer: Recursively Sort the Subarrays

Note: Everything in the left subarray ≤ everything in the right subarray

3 3 2 1 4 6 5 7

sort recursively sort recursively

1 2 3 3 4 5 6 7After conquer:

Note: Combine is trivial after conquer. Array already sorted.
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Two partitioning algorithms

1. Hoare’s algorithm: Partitions around the first 
element of subarray (pivot = x = A[p])

2. Lomuto’s algorithm: Partitions around the last 
element of subarray (pivot = x =A[r])

≥ x?≤ x
p i j r

x> x ?≤ x
p i j r
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Hoare’s Partitioning Algorithm

1. Choose a pivot element: pivot = x = A[p]
2. Grow two regions:

from left to right: A[p..i]
from right to left: A[j..r]

such that:
every element in A[p…i] ≤ pivot
every element in A[j…r] ≥ pivot

array A
p r
x
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Hoare’s Partitioning Algorithm

?

1. Choose a pivot element: pivot = x = A[p]
2. Grow two regions:

from left to right: A[p..i]
from right to left: A[j..r]

such that:
every element in A[p…i] ≤ pivot
every element in A[j…r] ≥ pivot

array A
p r

i j
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Hoare’s Partitioning Algorithm

?

1. Choose a pivot element: pivot = x = A[p]
2. Grow two regions:

from left to right: A[p..i]
from right to left: A[j..r]

such that:
every element in A[p…i] ≤ pivot
every element in A[j…r] ≥ pivot

array A
p r

i j

≤ x ≥ x
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Hoare’s Partitioning Algorithm

?

1. Choose a pivot element: pivot = x = A[p]
2. Grow two regions:

from left to right: A[p..i]
from right to left: A[j..r]

such that:
every element in A[p…i] ≤ pivot
every element in A[j…r] ≥ pivot

array A
p r

i j

≤ x ≥ x
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Hoare’s Partitioning Algorithm

?

1. Choose a pivot element: pivot = x = A[p]
2. Grow two regions:

from left to right: A[p..i]
from right to left: A[j..r]

such that:
every element in A[p…i] ≤ pivot
every element in A[j…r] ≥ pivot

array A
p r

i j

≤ x ≥ x
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Hoare’s Partitioning Algorithm

1. Choose a pivot element: pivot = x = A[p]
2. Grow two regions:

from left to right: A[p..i]
from right to left: A[j..r]

such that:
every element in A[p…i] ≤ pivot
every element in A[j…r] ≥ pivot

array A
p r

≤ x ≥ x



13CS 473 – Lecture 5 Cevdet Aykanat and Mustafa Ozdal 
Computer Engineering Department, Bilkent University

Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

5 3 2 6 4 1 3 7
p r

array A pivot = 5
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

5 3 2 6 4 1 3 7
p r

array A pivot = 5
i j
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

5 3 2 6 4 1 3 7
p r

array A pivot = 5
i j
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

5 3 2 6 4 1 3 7
p r

array A pivot = 5
i j
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

3 2 6 4 1
p r

array A pivot = 5
i j

35 7
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

3 2 6 4 1 5
p r

array A pivot = 5
i j

73
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

3 2 6 4 1 5
p r

array A pivot = 5
i j

73
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

3 2 4 5
p r

array A pivot = 5
i j

73 6 1
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

3 2 4 5
p r

array A pivot = 5
i j

73 1 6
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

3 2 4 5
p r

array A pivot = 5
i j

73 1 6
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

3 2 4 5
p r

array A pivot = 5
ij

73 1 6
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Hoare’s Partitioning Algorithm - Notes

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

The two regions A[p..i] and A[j..r] grow until 
A[i] ≥ pivot ≥ A[j]

Elements are exchanged when

o A[i] is too large to 
belong to the left region

o A[j] is too small to 
belong to the right region

assuming that the inequality
is strict
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Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

What is the asymptotic runtime of Hoare’s partitioning algorithm?
Θ(n)
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QUICKSORT (A, p, r)
if p < r then

q ← H-PARTITION(A, p, r)
QUICKSORT(A, p, q)
QUICKSORT(A, q +1, r)

Initial invocation: QUICKSORT(A, 1, n)

≥ x≤ x
p q r
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Question

Q: What happens if we select 
pivot to be A[r] instead of 
A[p] in H-PARTITION?

H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

QUICKSORT (A, p, r)
if p < r then

q ← H-PARTITION(A, p, r)
QUICKSORT(A, p, q)
QUICKSORT(A, q +1, r)

a) QUICKSORT will still 
work correctly.

b) QUICKSORT may return 
incorrect results for some 
inputs.

c) QUICKSORT may not 
terminate for some inputs.

✔

✖

✖
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Hoare’s Partitioning Algorithm: Pivot Selection

If A[r] is chosen as the pivot:H-PARTITION (A, p, r)
pivot ←A[p]
i ← p − 1
j ← r + 1

while true do
repeat j ← j − 1 until A[j] ≤ pivot
repeat i ← i + 1 until A[i] ≥ pivot
if i < j then exchange A[i] ↔A[j]
else return j

QUICKSORT (A, p, r)
if p < r then

q ← H-PARTITION(A, p, r)
QUICKSORT(A, p, q)
QUICKSORT(A, q +1, r)

5 3 6 4 3 7

Consider the example where
A[r] is the largest element in
the array:

End of H-PARTITION: i = j = r
In QUICKSORT: q = r

So, recursive call to: 
QUICKSORT (A, p, q=r)
 infinite loop
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5        3        2       6         5        1        3        7
i j

5        3        2       6         5        1        3        7
i j

3        3        2       6         5        1        5        7
i j

Hoare’s Algorithm: Example 2 (pivot = 5)
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3        3        2        6        5        1        5        7
ji

3        3        2        1        5        6        5        7
ji

3        3        2        1        5        6        5        7
j
i

Hoare’s Algorithm: Example 2 (pivot = 5)

Termination: i = j = 5

p q r
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Correctness of Hoare’s Algorithm 

We need to prove 3 claims to show correctness:
a) Indices i & j never reference A outside the interval A[p..r]

b) Split is always non-trivial; i.e., j ≠ r at termination

c) Every element in A[p..j] ≤ every element in A[j+1..r] at 
termination

array A
p r

≤ x ≥ x
j
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Correctness of Hoare’s Algorithm

Notations: 
k: # of times the while-loop iterates until termination
im: the value of index i at the end of iteration m
jm: the value of index j at the end of iteration m

x: the value of the pivot element

Note: We always have i1= p and  p ≤ j1 ≤ r
because x = A[p]
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Correctness of Hoare’s Algorithm

Lemma 1: Either ik = jk or ik = jk +1 at termination

array A
p r

ik jkor

array A
p r

ikjk
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Correctness of Hoare’s Algorithm

Proof of Lemma 1:
The algorithm terminates when i ≥ j (the else condition). 
So, it is sufficient to prove that ik – jk ≤ 1

There are 2 cases to consider:
Case 1: k = 1, i.e. the algorithm terminates in a single iteration

array A
p r

i1 j1 The proof of case 1 is trivial
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Correctness of Hoare’s Algorithm

Proof of Lemma 1 (cont’d):
Case 2: k > 1, i.e. the alg. does not terminate in a single iter.

By contradiction, assume there is a run with ik – jk > 1

array A
p r

ik-1

jk jk-1

ik

> x due to the 1st

repeat-until loop

< x due to the 2nd

repeat-until loop
CONTRADICTION!
The proof of Lemma 1 is complete!
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Correctness of Hoare’s Algorithm

Original correctness claims:
(a) Indices i & j never reference A outside the interval A[p…r]
(b) Split is always non-trivial; i.e., j ≠ r at termination

Proof:
For k = 1: Trivial because i1 = j1 = p (see Case 1 in proof of Lemma 2)

For k > 1: 
ik > p and jk < r (due to the repeat-until loops moving indices)
ik ≤ r   and jk ≥ p (due to Lemma 1 and the statement above)
 The proof of claims (a) and (b) complete
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Correctness of Hoare’s Algorithm

Lemma 2: At the end of iteration m, where m < k (i.e. 
m is not the last iteration), we must have:

A[p..im] ≤ x   and A[jm .. r] ≥ x

array A
p r

im jm

≤ x ≥ x
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Correctness of Hoare’s Algorithm

Proof of Lemma 2:
Base case: m=1 and k > 1 (i.e. the alg. does not terminate in the first iter.) 

array A
p r

i1 j1

exchanged

≤ x due to
exchange

= x due to
exchange

> x due to the 1st

repeat-until loop

Proof of base case complete!
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Correctness of Hoare’s Algorithm

Proof of Lemma 2(cont’d):

Inductive hypothesis: At the end of iteration m-1, where m < k 
(i.e. m is not the last iteration), we must have: 

A[p..im-1] ≤ x   and A[jm-1 .. r] ≥ x

General case: The lemma holds for m, where m < k
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Correctness of Hoare’s Algorithm

For 1 < m < k, at the end of iteration m, we have:

array A
p r

im-1 jm-1

exchanged

≤ x due to
exchange

> x due to the 1st

repeat-until loop

≤ x due to
ind. hyp.

im jm

≥ x due to
ind. hyp.

< x due to the 2nd

repeat-until loop

≥ x due to
exchange

Proof of Lemma 2 complete!
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Correctness of Hoare’s Algorithm

Original correctness claim:
(c) Every element in A[p…j] ≤ every element in A[ j +1…r ] at 

termination

Proof of claim (c)
There are 3 cases to consider:

Case 1: k = 1, i.e. the algorithm terminates in a single iteration
Case 2: k > 1 and ik = jk

Case 3: k > 1 and ik = jk + 1
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Correctness of Hoare’s Algorithm

Proof of claim (c):
Case 1: k = 1, i.e. the algorithm terminates in a single iteration

array A
p r

i1 j1
> x due to the 1st

repeat-until loop

= x since x = A[p]
and no exchange occurs

Proof of case 1 complete!
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Correctness of Hoare’s Algorithm

Proof of claim (c) (cont’d): Case 2: k > 1 and ik = jk

array A
p r

ik-1

jk-1

> x due to the 1st

repeat-until loop

≤ x due to
Lemma 2

ik

jk

≥ x due to
Lemma 2

< x due to the 2nd

repeat-until loop

Proof of Case 2 complete!

= x due to
termination
condition
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Correctness of Hoare’s Algorithm

Proof of claim (c) (cont’d): Case 3: k > 1 and ik = jk+1 

array A
p r

ik-1

jk-1

> x due to the 1st

repeat-until loop

≤ x due to
Lemma 2

ik

jk

≥ x due to
Lemma 2

< x due to the 2nd

repeat-until loop

Proof of Case 3 complete! Correctness proof complete!
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Lomuto’s Partitioning Algorithm

1. Choose a pivot element: pivot = x = A[r]
2. Grow two regions:

from left to right: A[p..i]
from left to right: A[i+1..j]

such that:
every element in A[p…i] ≤ pivot
every element in A[i+1…j] > pivot

array A
p r

x
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Lomuto’s Partitioning Algorithm

1. Choose a pivot element: pivot = x = A[r]
2. Grow two regions:

from left to right: A[p..i]
from left to right: A[i+1..j]

such that:
every element in A[p…i] ≤ pivot
every element in A[i+1…j] > pivot

array A
p r

i j

≤ x > x x?
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Lomuto’s Partitioning Algorithm

1. Choose a pivot element: pivot = x = A[r]
2. Grow two regions:

from left to right: A[p..i]
from left to right: A[i+1..j]

such that:
every element in A[p…i] ≤ pivot
every element in A[i+1…j] > pivot

array A
p r

i j

≤ x > x x?
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Lomuto’s Partitioning Algorithm

1. Choose a pivot element: pivot = x = A[r]
2. Grow two regions:

from left to right: A[p..i]
from left to right: A[i+1..j]

such that:
every element in A[p…i] ≤ pivot
every element in A[i+1…j] > pivot

array A
p r

i j

≤ x > x x?
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Lomuto’s Partitioning Algorithm

1. Choose a pivot element: pivot = x = A[r]
2. Grow two regions:

from left to right: A[p..i]
from left to right: A[i+1..j]

such that:
every element in A[p…i] ≤ pivot
every element in A[i+1…j] > pivot

array A
p r

i j

≤ x > x x
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Lomuto’s Partitioning Algorithm

1. Choose a pivot element: pivot = x = A[r]
2. Grow two regions:

from left to right: A[p..i]
from left to right: A[i+1..j]

such that:
every element in A[p…i] ≤ pivot
every element in A[i+1…j] > pivot

array A
p r

i j

≤ x > x x
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

7 8 2 6 5 1 3 4
p r

array A pivot = 44
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

7 8 2 6 5 1 3 4
p r

array A pivot = 4
i j
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

7 8 2 6 5 1 3 4
p r

array A pivot = 4
i j
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

7 8 2 6 5 1 3 4
p r

array A pivot = 4
i j
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

8 6 5 1 3 4
p r

array A pivot = 4
i j

27
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 8 7 6 5 1 3 4
p r

array A pivot = 4
i j
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 8 7 6 5 1 3 4
p r

array A pivot = 4
i j
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 7 6 5 3 4
p r

array A pivot = 4
i j
8 1
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 7 6 5 3 4
p r

array A pivot = 4
i j
1 8
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 7 6 5 3 4
p r

array A pivot = 4
i j
1 8
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 6 5 4
p r

array A pivot = 4
i j

1 8 37
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 6 5 4
p r

array A pivot = 4
i j

1 8 73
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 5
p r

array A pivot = 4
i j

1 8 73 6 4
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 5
p r

array A pivot = 4
i j

1 8 73 4 6
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

2 5
p r

array A pivot = 41 8 73 4 6
q
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Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)
pivot ←A[r]
i ← p − 1
for j ← p to r − 1 do

if A[j] ≤ pivot then
i ← i + 1
exchange A[i] ↔A[j]

exchange A[i + 1] ↔A[r]
return i + 1

What is the runtime of L-PARTITION? Θ(n)
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QUICKSORT (A, p, r)
if p < r then

q ← L-PARTITION(A, p, r)
QUICKSORT(A, p, q − 1)
QUICKSORT(A, q +1, r)

Initial invocation: QUICKSORT(A, 1, n)

> x≤ x
p q r

x
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Quicksort Animation

from Wikimedia Commons
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Comparison of Hoare’s & Lomuto’s Algorithms
Notation: n = r−p+1 & pivot =A[p] (Hoare)

& pivot =A[r] (Lomuto)

 # of element exchanges: e(n)
• Hoare: 0 ≤ e(n) ≤

− Best: k =1 with i1=j1=p (i.e., A[ p+1…r ] > pivot)

− Worst: A[ p+1…p+       −1] ≥ pivot ≥A[ p+      …r ]

• Lomuto: 1 ≤ e(n) ≤ n
− Best: A[ p…r −1 ] > pivot
− Worst: A[ p…r −1 ] ≤ pivot






2
n






2
n






2
n
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Comparison of Hoare’s & Lomuto’s Algorithms

 # of element comparisons: ce(n)
• Hoare: n + 1 ≤ ce(n) ≤ n + 2

− Best: ik = jk

− Worst: ik = jk + 1
• Lomuto: ce(n) = n − 1

 # of index comparisons: ci(n)
• Hoare: 1 ≤ ci(n) ≤ + 1     (ci(n) = e(n) + 1)

• Lomuto: ci(n) = n − 1





2
n
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Comparison of Hoare’s & Lomuto’s Algorithms

 # of index increment/decrement operations: a(n)
• Hoare: n + 1 ≤ a(n) ≤ n + 2    (a(n) = ce(n))

• Lomuto: n ≤ a(n) ≤ 2n − 1    (a(n) = e(n) + (n − 1))

• Hoare’s algorithm is in general faster 

• Hoare behaves better when pivot is repeated in A[p…r]
− Hoare: Evenly distributes them between left & right 

regions
− Lomuto: Puts all of them to the left region
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