
1

CS473 - Algorithms I

CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Lecture 12
Amortized Analysis

View in slide-show mode

2 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis

 Consider a sequence of operations, where
 some operations are expensive,
 some others are cheap.

 Key point: The time required to perform a sequence of
operations is averaged over all operations performed.

 Amortized analysis can be used to show that:
 The average cost of an operation is small
 even though a single operation might be expensive
 (when we average over a sequence of operations).

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

3

Amortized Analysis vs Average
Case Analysis

• Amortized analysis does not use any
probabilistic reasoning

• Amortized analysis guarantees
 the average performance of each operation

in the worst case

4 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Stack Operations

PUSH (S, x): push object x onto stack
POP(S): pop the top of the stack S and return the popped object
MULTIPOP(S, k):
 pop and return the k top objects of the stack S if |S| ≥ k
 or pop and return the entire stack if |S| < k

Runtimes:
 PUSH(S, x): Θ(1)
 POP(S): Θ(1)
 MULTIPOP(S, k): Θ(min(|S|, k))

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

5

Stack Operations: Multipop
MULTIPOP(S, k)

 while not StackEmpty(S) and k ≠ 0 do
 t ← POP(S)
 k ← k −1
 return Running time:

Θ(min(s, k)) where s = | S |

6 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Runtime Analysis of Stack Operations

 We want to analyze a sequence of n POP, PUSH, and MULTIPOP
operations on an initially empty stack.

 What is the worst-case runtime of a MULTIPOP operation?
 O(n) because the stack size is at most n

 What is the worst-case runtime of a sequence of n operations?
 O(n2) because we may have O(n) MULTIPOPs, each costing O(n)

 The analysis is correct, but it is not tight!

We can obtain a tighter bound by using amortized analysis.

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

7

Amortized Analysis Techniques
The most common three techniques

– The aggregate method
– The accounting method
– The potential method

If there are several types of operations in a sequence
• The aggregate method assigns

– The same amortized cost to each operation
• The accounting method and the potential method may assign

– Different amortized costs to different types of operations

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

8

The Aggregate Method
• Show that sequence of n operations takes

– Worst case time T(n) in total for all n

• The amortized cost (average cost in the worst
case) per operation is therefore T(n)/n

• This amortized cost applies to each operation
– Even when there are several types of operations in

the sequence

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

9

The Aggregate Method:
 Stack Operations

• Aggregate method considers the entire sequence of n
operations
– Although a single MULTIPOP can be expensive
– Any sequence of n POP, PUSH, and MULTIPOP operations on

an initially empty stack can cost at most O(n)
Proof: Each object can be popped once for each time it is pushed.

Hence the number of times that POP can be called on a
nonempty stack including the calls within MULTIPOP is at most
the number of PUSH operations, which is at most n

⇒The amortized cost of an operation is the average O(n)/n = O(1)

10 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Incrementing a Binary Counter

 Implement k-bit binary counter that counts upward from 0
 Store the bits of counter in array A[0..k-1], where
 length(A) = k
 A[0]: the least significant bit
 A[k-1]: the most significant bit

 The binary value stored is:

010 011 100 101 110 111 000 001

11 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Counter Increment

Same idea as the hardware
implementation of a ripple-carry
counter.

e.g. 000010011111 ⟹
 000010100000

INCREMENT(A, k)
 i ← 0
 while i < k and A[i] = 1 do
 A[i] ← 0
 i ← i +1
 if i < k then
 A[i] ← 1
 return

To add 1 (mod 2k) to the counter:

12 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Binary Counter Increment

Initially, x = 0
 i.e. A[i] = 0 for all 0 ≤ i ≤ k

What is the worst case runtime
for INCREMENT(A,k) ?
 Θ(k) when A contains all 1s

What is the worst case runtime of n
INCREMENT operations starting
from a zero counter?
 O(kn)

INCREMENT(A, k)
 i ← 0
 while i < k and A[i] = 1 do
 A[i] ← 0
 i ← i +1
 if i < k then
 A[i] ← 1
 return

To add 1 (mod 2k) to the counter:

NOT TIGHT!

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

13

The Aggregate Method:
Incrementing a Binary Counter

Counter
value [7] [6] [5] [4] [3] [2] [1] [0]

Incre
cost

Total
cost

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 0 2 2 3
0 0 0 0 0 0 1 1 3 1 4
0 0 0 0 0 1 0 0 4 3 7
0 0 0 0 0 1 0 1 5 1 8
0 0 0 0 0 1 1 0 6 2 10
0 0 0 0 0 1 1 1 7 1 11
0 0 0 0 1 0 0 0 8 4 15
0 0 0 0 1 0 0 1 9 1 16

0 0 0 0 0 1 0 1 10 2 18
0 0 0 0 1 0 1 1 11 1 19

Bits that
flip to
achieve the
next value
are shaded

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

14

The Aggregate Method:
Incrementing a Binary Counter

• Note that, the running time of an increment operation
is proportional to the number of bits flipped

• However, all bits are not flipped at each INCREMENT

A[0] flips at each increment operation
A[1] flips at alternate increment operations
A[2] flips only once for 4 successive increment operations


• In general, bit A[i] flips n/2i times in a sequence of n

INCREMENTs

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

15

The Aggregate Method:
Incrementing a Binary Counter

• Therefore, the total number of flips in the
sequence is

• The amortized cost of each operation is
O(n)/n = O(1)

k-1

i = 0
n/2i <

∞

i = 0
1/2i Σ Σ n = 2n

16 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Accounting Method

 We assign different charges to different operations
 Some operations are charged more than their real cost
 Some are charged less than their real cost

 The amount charged for an operation is called its
amortized cost.

 When the amortized cost of an operation exceeds its
actual cost, the difference is assigned to specific
objects in the data structure as credit.

 Credit can be used later to help pay for operations of
which amortized cost is less than their actual cost.

17 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

Suppose the unit cost of pushing or popping a stack element is $1

Let’s assign the following amortized costs:
 PUSH: $2
 POP: $0
 MULTIPOP: $0

Notes:

 Amortized cost of MULTIPOP is a constant (0), whereas the actual cost
is variable

 All amortized costs are O(1) in this example. In general, amortized costs
of different operations may differ asymptotically.

18 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

$2 $1

 Notes .
$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

10 $1
39 $1

PUSH(39) $2 $1 $1 credit stored

19 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

$2 $1

 Notes .
$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

10 $1
39 $1

PUSH(39) $2 $1 $1 credit stored

POP() $0 $1 $1 credit used

20 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

$2 $1

 Notes .
$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

10 $1
17 $1

PUSH(39) $2 $1 $1 credit stored

POP() $0 $1 $1 credit used

PUSH(17) $2 $1 $1 credit stored

PUSH(23) $2 $1 $1 credit stored

23 $1

21 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

$2 $1

 Notes .
$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

10 $1
17 $1

PUSH(39) $2 $1 $1 credit stored

POP() $0 $1 $1 credit used

PUSH(17) $2 $1 $1 credit stored

PUSH(23) $2 $1 $1 credit stored

23 $1

MULTIPOP(3) $0 $3 $3 credit used

22 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

$2 $1

 Notes .
$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

PUSH(39) $2 $1 $1 credit stored

POP() $0 $1 $1 credit used

PUSH(17) $2 $1 $1 credit stored

PUSH(23) $2 $1 $1 credit stored

MULTIPOP(3) $0 $3 $3 credit used

sum of amortized costs ≥ sum of real costs

23 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method for Stack Operations - Notes

 Intuitively:
 For every PUSH operation, we pay $2:
 $1 for the real cost of PUSH
 $1 pre-payment for the future POP of this item
 (stored as credit)

 Each POP operation (stand-alone or within MULTI-POP):
 pays for the real cost by using the credit stored for the

corresponding item.

 The total credit is always nonnegative in a sequence of n
operations starting with an empty stack.

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

24

The Accounting Method: Stack Operations

Thus by charging the push operation a little bit more we

don’t need to charge anything from the pop & multipop
operations

We have ensured that the amount of credit is always nonnegative
• since each item in the stack always has $1 of credit
• and the stack always has a nonnegative number of items

Thus, for any sequence of n push, pop, multipop operations

the total amortized cost is an upper bound
on the total actual cost

25 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Accounting Method (cont’d)

 The amortized cost of an operation can be considered as:
 amortized cost = actual cost + credit
where credit is either deposited (positive) or used (negative)

 Key point in accounting method:

• The total amortized cost of a sequence of operations
must be an upper bound on the total actual cost.

• This relationship must hold for all sequences of operations

 ai: amortized cost of operation i
 ci: real cost of operation i

26 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Accounting Method (cont’d)

The total credit stored after n operations is:

 ai: amortized cost of operation i
 ci: real cost of operation i

For any sequence of n operations, we must have:

For the above inequality to hold, the total credit must be
nonnegative at all times.

27 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Accounting Method - Summary

 Assign an amortized cost for each operation.
 For operation i, let ai and ci be the amortized and the real cost of i.
 If ai > ci ⟹ store (ai-ci) as credit
 If ai < ci ⟹ use (ci-ai) stored credit
 If we never run out of credit in a sequence of n operations, we can

say that:
 ai: amortized cost of operation i

 ci: real cost of operation i

In other words, the sum of amortized costs for n operations is
an upper bound for the sum of real costs.

28 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method Example: Binary Counter Increment

 Reminder: The running time of an increment operation is
proportional to the # of bits flipped.

 Analyze using accounting method:
 Charge an amortized cost of $2 to set a bit from 0 to 1, and

$0 to set a bit from 1 to 0.
 Intuition: When a bit is set to 1
We use $1 to pay for the actual cost of setting the bit to 1
We place the other $1 on the bit as credit.
At any point, every 1-bit in the counter has $1 credit on it
Hence, we don’t need to charge anything to reset a bit to 0

We just pay for the reset with the $1 on it.

29 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method Example: Binary Counter Increment

Binary
Counter

Amortized
 Cost .

Real
Cost Notes .

$1 credit stored for bit 0
0 0 0 0 0

$2 $1

0 0 0 0 1
$1

$1 credit used for bit 0
$1 credit stored for bit 1 $0+$2 $1 + $1

0 0 0 1 0
$1

$1 credit stored for bit 0 $2 $1 $1
0 0 0 1 1

$1

0 0 1 0 0
$1

$1 credit used for bit 0
$1 credit used for bit 1
$1 credit stored for bit 2

$0+$0+$2 $1+$1+$1

30 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

 The amortized cost of setting bits to 0
in the first while loop:

 $0
 (the real cost is paid by the credits)

 The amortized cost of setting a single

bit to 1 at the end:
 $2
 ($1 is stored as credit for the bit)

 Total amortized cost for an

INCREMENT operation?
 $2

Accounting Method Example: Binary Counter Increment

INCREMENT(A, k)
 i ← 0
 while i < k and A[i] = 1 do
 A[i] ← 0
 i ← i +1
 if i < k then
 A[i] ← 1
 return

31 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

 For any sequence of n INCREMENT operations
starting from counter value 0:
 The credit never goes negative
 We have $1 stored as credit for each bit-1.
 We can use the stored credit to flip each bit to 0.
 So, we have:

Accounting Method Example: Binary Counter Increment

 ai: amortized cost of operation i
 ci: real cost of operation i

In other words, the sum of amortized costs for n operations is
an upper bound for the sum of real costs.

32 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

 So, we have showed that:
 For n increment operations:
 the total amortized cost is O(n).
 This amortized cost is an upper bound for the actual cost

Accounting Method Example: Binary Counter Increment

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

33

The Potential Method

Accounting method represents prepaid work as credit stored

with specific objects in the data structure

Potential method represents the prepaid work as

potential energy or just potential
that can be released to pay for the future operations

The potential is associated with the data structure as a whole

rather than with specific objects within the data structure

34 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method

We start with an initial data structure D0 and perform n operations.

For 1 ≤ i ≤ n, let:
 Ci: the actual cost of the ith operation
 Di: data structure that results after applying ith operation to Di-1

 ϕ: potential function that maps each data structure Di to a real
 number ϕ(Di)
 ϕ(Di): the potential associated with data structure Di

 Ĉi: amortized cost of the ith operation w.r.t. function ϕ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

35

The Potential Method

 actual increase in potential
 cost due to the operation

The total amortized cost of n operations is

)()(ˆ
1−−+= iiii DDCC φφ

∑

∑ ∑

=

−
= =

−+=

−+=

n

i
ni

i

n

i

n

i
iii

DDC

DDCC

1
0

1
1 1

)()(

))()((ˆ

φφ

φφ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

36

The Potential Method

If we can ensure that φ (Dn) ≥ φ (D0) then

the total amortized cost is an upper bound on the

total actual cost

However, φ (Dn) ≥ φ (D0) should hold for all possible n

since, in practice, we do not always know n in advance

Hence, if we require that φ (Di) ≥ φ (D0), for all i, then we ensure

that the total amortized cost is an upper bound for the total cost

∑
=

n

i
iC

1

ˆ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

37

The Potential Method:
Stack Operations

• Define φ (S)=| S |, the number of objects in the stack

• For the initially empty stack, we have φ (D0) = 0

• Since |S| ≥ 0, stack Di that results after ith operation
has nonnegative potential for all i, that is

φ (Di) ≥ 0 = φ (D0) for all i

• Hence, the total amortized cost is an upper bound on the total
actual cost

38 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

0
 Potential .

PUSH(10)
1

10
39

PUSH(39)
1

1 2
2 2

1 3 2

39 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

0
 Potential .

PUSH(10)
1

10
39

PUSH(39)
1

1 2
2 2

1 3 2
POP() 1 2 0

40 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

0
 Potential .

PUSH(10)
1

10
17

PUSH(39)
1

1 2
2 2

1 3 2
POP() 1 2 0
PUSH(17) 1 3 2
PUSH(23) 1 4 2

23

41 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

0
 Potential .

PUSH(10)
1

10
17

PUSH(39)
1

1 2
2 2

1 3 2
POP() 1 2 0
PUSH(17) 1 3 2
PUSH(23) 1 4 2

23

MULTIPOP(3) 3 1 0

42 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation
Amortized

 Cost .
Real
Cost

0
 Potential .

PUSH(10)
1

PUSH(39)
1

1 2
2 2

1 3 2
POP() 1 2 0
PUSH(17) 1 3 2
PUSH(23) 1 4 2
MULTIPOP(3) 3 1 0

sum of amortized costs ≥ sum of real costs

43 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

Reminder: ϕ(Di): The number of objects in stack after operation i

PUSH(S, x):
 ϕ(Di) – ϕ(Di-1) = 1 (because the stack size increases by 1)
 Ĉi = Ci + ϕ(Di) – ϕ(Di-1) = 1 + 1 = 2
 Amortized cost of PUSH operation is 2
POP(S):
 ϕ(Di) – ϕ(Di-1) = -1 (because the stack size decreases by 1)
 Ĉi = Ci + ϕ(Di) – ϕ(Di-1) = 1 - 1 = 0
 Amortized cost of POP operation is 0

44 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

Reminder: ϕ(Di): The number of objects in stack after operation i

MULTIPOP(S, k):
 ϕ(Di) – ϕ(Di-1) = -kʹ, where kʹ = min{|S|, k}
 because the stack size decreases by k ́
 Ĉi = Ci + ϕ(Di) – ϕ(Di-1) = kʹ - kʹ = 0
 Amortized cost of MULTIPOP operation is 0

The amortized cost of each operation is O(1).
Thus, the amortized cost of a sequence of n operations is O(n)

45 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method - Intuition

If ϕ(Di) – ϕ(Di-1) > 0, then:
 Amortized cost Ĉi is an overcharge for the ith operation.
 The potential of the data structure increases.
If ϕ(Di) – ϕ(Di-1) < 0, then:
 Amortized cost Ĉi is an undercharge for the ith operation.
 The actual cost of the operation is paid by the
 decrease in potential.

46 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method - Intuition

Different potential functions may yield different amortized costs.

The best potential function to use depends on the desired time bounds.

Choose a potential function such that ϕ(Di) – ϕ(D0) ≥ 0 for all i
values. This ensures that the amortized cost of any i operations is an
upper bound for the actual cost.

Practical guideline:
 Choose a potential function that increases a little after every
cheap operation, and decreases a lot after an expensive operation.

47 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

 Define ϕ(Di) = bi

 where bi: number of 1s in the counter after the ith operation

 The actual cost of INCREMENT operation:
 Ci = (# bits changed 0⟹1) + (# of bits changed 1⟹0)
 The potential change after the ith INCREMENT operation:
 ϕ(Di) – ϕ(Di-1) = (# of bits changed 0⟹1) − (# of bits changed 1⟹0)
 Amortized cost of the ith INCREMENT operation:
 Ĉi = Ci + ϕ(Di) – ϕ(Di-1)
 = 2 . (# of bits changed from 0 ⟹ 1)

48 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

 Amortized cost of the ith INCREMENT operation:
 Ĉi = 2 . (# of bits changed from 0 ⟹ 1)

 In one INCREMENT operation, we change at most 1 bit 0 ⟹ 1

 Hence, the amortized cost of an INCREMENT operation:
 Ĉi ≤ 2

49 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

Binary
Counter

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0

Amortized
 Cost .

Real
Cost Potential .

0
1 1 2
2 1 2
1 2 2
3 1 2

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University
Computer Engineering Department

50

The Potential Method:
Incrementing a Binary Counter

• If the counter starts at zero, then φ (D0) = 0, the
number of 1s in the counter after the ith operation

• Since φ (Di) ≥ 0 for all i the total amortized cost is an
upper bound on the total actual cost

• Hence, the worst-case cost of n operations is O(n)

51 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

 What if the counter does not start from zero (i.e. b0 ≠ 0)?

 For a sequence of n INCREMENT operations, can we say that
the sum of the amortized costs is an upper bound for the sum
of the actual costs?
 No, because:

 and ϕ(D0) = b0 ≠ 0.
 So, ϕ(Dn) - ϕ(D0) is not necessarily ≥ 0

Reminder: ϕ(Di) = bi

where bi: number of 1s in the counter after the ith operation

52 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

 What if the counter does not start from zero (i.e. b0 ≠ 0)?

 For a sequence of n INCREMENT operations we can write:

≤ 2n − bn + b0 (because Ĉi ≤ 2 for all i)

Note: b0 ≤ k, where k is the number of bits of the counter.

If we execute at least n = Ω(k) INCREMENT operations, the total
 actual cost will be O(n), no matter what the initial counter value is.

53 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis - Summary

 With amortized analysis, we show that the average cost of an
operation is small if we average over a sequence of operations
 (even though some single operations may be expensive).

 We studied 3 techniques for amortized analysis:
 Aggregate Method
 Accounting Method
 Potential Method

54 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis - Summary

 Aggregate Method:
 Directly compute the sum of n operations.
 Then, compute the average.

 Accounting Method:
 Pay a little extra for the cheap operations and

 store the difference as credit on certain items
 Pay for the expensive operations using the stored credit.
 As long as we never run of out of credits:
 The total amortized cost is guaranteed to be an upper

bound for the total actual cost.

55 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis - Summary

 Potential Method:
 Similar to the accounting method, but a potential function is

defined for the whole data structure instead of individual items.
 The potential is 0 initially.
 It increases slowly with every cheap operation.
 Expensive operations are paid using the potential stored.
 Amortized cost is the actual cost plus the change in potential.
 As long as potential is always nonnegative:

 The total amortized cost is guaranteed to be an upper bound for
the total actual cost.

	Slide Number 1
	Amortized Analysis
	Amortized Analysis vs Average Case Analysis
	Example: Stack Operations
	Stack Operations: Multipop
	Runtime Analysis of Stack Operations
	Amortized Analysis Techniques
	The Aggregate Method
	The Aggregate Method:� Stack Operations
	Example: Incrementing a Binary Counter
	Binary Counter Increment
	Binary Counter Increment
	The Aggregate Method: Incrementing a Binary Counter
	The Aggregate Method: Incrementing a Binary Counter
	The Aggregate Method: Incrementing a Binary Counter
	The Accounting Method
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Accounting Method for Stack Operations - Notes
	Slide Number 24
	The Accounting Method (cont’d)
	The Accounting Method (cont’d)
	The Accounting Method - Summary
	Accounting Method Example: Binary Counter Increment
	Accounting Method Example: Binary Counter Increment
	Accounting Method Example: Binary Counter Increment
	Accounting Method Example: Binary Counter Increment
	Accounting Method Example: Binary Counter Increment
	Slide Number 33
	The Potential Method
	Slide Number 35
	Slide Number 36
	The Potential Method: �Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method - Intuition
	The Potential Method - Intuition
	The Potential Method for Binary Counter Increment
	The Potential Method for Binary Counter Increment
	The Potential Method for Binary Counter Increment
	The Potential Method: Incrementing a Binary Counter
	The Potential Method for Binary Counter Increment
	The Potential Method for Binary Counter Increment
	Amortized Analysis - Summary
	Amortized Analysis - Summary
	Amortized Analysis - Summary

