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Amortized Analysis 

 Consider a sequence of operations, where 
 some operations are expensive,  
 some others are cheap. 
 

 Key point: The time required to perform a sequence of 
operations is averaged over all operations performed. 
 

 Amortized analysis can be used to show that: 
 The average cost of an operation is small 
 even though a single operation might be expensive 
   (when we average over a sequence of operations). 
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Amortized Analysis vs Average 
Case Analysis 

• Amortized analysis does not use any 
probabilistic reasoning  

• Amortized analysis guarantees  
 the average performance of each operation 

in the worst case 
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Example: Stack Operations 

PUSH (S, x): push object x onto stack 
POP(S): pop the top of the stack S and return the popped object 
MULTIPOP(S, k):  
 pop and return the k top objects of the stack S if |S| ≥ k 
 or pop and return the entire stack if |S| < k 
 
Runtimes:  
 PUSH(S, x): Θ(1) 
 POP(S):  Θ(1) 
 MULTIPOP(S, k): Θ(min(|S|, k)) 
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Stack Operations: Multipop 
MULTIPOP(S, k) 

 while not StackEmpty(S) and k ≠ 0 do 
      t ← POP(S) 
    k ← k −1 
    return Running time: 

Θ(min(s, k)) where s = | S | 
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Runtime Analysis of Stack Operations 

 We want to analyze a sequence of n POP, PUSH, and MULTIPOP 
operations on an initially empty stack. 
 

 What is the worst-case runtime of a MULTIPOP operation? 
 O(n)  because the stack size is at most n 

 
 What is the worst-case runtime of a sequence of n operations? 
 O(n2)       because we may have O(n) MULTIPOPs, each costing O(n) 

 
 The analysis is correct, but it is not tight! 

We can obtain a tighter bound by using amortized analysis. 



CS473 – Lecture 12 Cevdet Aykanat - Bilkent University 
Computer Engineering Department 

7 

Amortized Analysis Techniques 
The most common three techniques 

– The aggregate method 
– The accounting method 
– The potential method 

 
If there are several types of operations in a sequence 
• The aggregate method assigns 

– The same amortized cost to each operation 
• The accounting method and the potential method may assign 

– Different amortized costs to different types of operations 
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The Aggregate Method 
• Show that sequence of n operations takes 

– Worst case time T(n) in total for all n 
 

• The amortized cost (average cost in the worst 
case) per operation is therefore T(n)/n 
 

• This amortized cost applies to each operation 
– Even when there are several types of operations in 

the sequence 
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The Aggregate Method: 
 Stack Operations 

• Aggregate method considers the entire sequence of n 
operations  
– Although a single MULTIPOP can be expensive 
– Any sequence of n POP, PUSH, and MULTIPOP operations on 

an initially empty stack can cost at most O(n) 
Proof: Each object can be popped once for each time it is pushed. 

Hence the number of times that POP can be called on a 
nonempty stack including the calls within MULTIPOP is at most 
the number of PUSH operations, which is at most n 

⇒The amortized cost of an operation is the average O(n)/n = O(1) 
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Example: Incrementing a Binary Counter 

 Implement k-bit binary counter that counts upward from 0 
 Store the bits of counter in array A[0..k-1], where  
  length(A) = k 
  A[0]: the least significant bit 
  A[k-1]: the most significant bit 

 
 The binary value stored is: 

010 011 100 101 110 111 000 001 
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Binary Counter Increment 

 
Same idea as the hardware 
implementation of a ripple-carry 
counter. 
 
e.g.  000010011111  ⟹ 
        000010100000 
 

INCREMENT(A, k) 
 i ← 0 
 while i < k and A[i] = 1 do 
       A[i] ← 0 
    i ← i +1 
 if i < k then 
      A[i] ← 1 
    return 

To add 1 (mod 2k) to the counter: 
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Binary Counter Increment 

Initially, x = 0 
     i.e. A[i] = 0 for all 0 ≤ i ≤ k 
  
What is the worst case runtime 
for INCREMENT(A,k) ? 
            Θ(k)   when A contains all 1s 

 
What is the worst case runtime of n 
INCREMENT operations starting 
from a zero counter? 
 O(kn) 

INCREMENT(A, k) 
 i ← 0 
 while i < k and A[i] = 1 do 
       A[i] ← 0 
    i ← i +1 
 if i < k then 
      A[i] ← 1 
    return 

To add 1 (mod 2k) to the counter: 

NOT TIGHT! 
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The Aggregate Method: 
Incrementing a Binary Counter 

Counter 
value [7] [6] [5] [4] [3] [2] [1] [0] 

Incre 
cost 

Total 
cost 

0 0 0 0 0 0 0 0 0     
0 0 0 0 0 0 0 1 1 1 1 
0 0 0 0 0 0 1 0 2 2 3 
0 0 0 0 0 0 1 1 3 1 4 
0 0 0 0 0 1 0 0 4 3 7 
0 0 0 0 0 1 0 1 5 1 8 
0 0 0 0 0 1 1 0 6 2 10 
0 0 0 0 0 1 1 1 7 1 11 
0 0 0 0 1 0 0 0 8 4 15 
0 0 0 0 1 0 0 1 9 1 16 

0 0 0 0 0 1 0 1 10 2 18 
0 0 0 0 1 0 1 1 11 1 19 

Bits that 
flip to 
achieve the 
next value 
are shaded 
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The Aggregate Method: 
Incrementing a Binary Counter 

• Note that, the running time of an increment operation 
is proportional to the number of bits flipped 

• However, all bits are not flipped at each INCREMENT 

A[0] flips at each increment operation 
A[1] flips at alternate increment operations 
A[2] flips only once for 4 successive increment operations 

 
• In general, bit A[i] flips n/2i times in a sequence of n 

INCREMENTs 
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The Aggregate Method: 
Incrementing a Binary Counter 

• Therefore, the total number of flips in the 
sequence is  
 
 
 

• The amortized cost of each operation is  
O(n)/n = O(1) 

 

k-1 

i = 0 
n/2i < 

∞ 

i = 0 
1/2i Σ Σ n = 2n 
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The Accounting Method 

 We assign different charges to different operations 
 Some operations are charged more than their real cost 
 Some are charged less than their real cost 

 The amount charged for an operation is called its 
amortized cost. 

 When the amortized cost of an operation exceeds its 
actual cost, the difference is assigned to specific 
objects in the data structure as credit. 

 Credit can be used later to help pay for operations of 
which amortized cost is less than their actual cost. 
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Example: Accounting Method for Stack Operations 

Suppose the unit cost of pushing or popping a stack element is $1 
 
Let’s assign the following amortized costs: 
 PUSH: $2 
 POP: $0 
 MULTIPOP: $0 
 
Notes: 

 Amortized cost of MULTIPOP is a constant (0), whereas the actual cost 
is variable 

 All amortized costs are O(1) in this example. In general, amortized costs 
of different operations may differ asymptotically. 
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Example: Accounting Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

$2 $1 

           Notes            .    
$1 credit stored 

$1 

PUSH(10)  $2 $1 $1 credit stored 

10 $1 
39 $1 

PUSH(39)  $2 $1 $1 credit stored 
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Example: Accounting Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

$2 $1 

           Notes            .    
$1 credit stored 

$1 

PUSH(10)  $2 $1 $1 credit stored 

10 $1 
39 $1 

PUSH(39)  $2 $1 $1 credit stored 

POP()  $0 $1 $1 credit used 
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Example: Accounting Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

$2 $1 

           Notes            .    
$1 credit stored 

$1 

PUSH(10)  $2 $1 $1 credit stored 

10 $1 
17 $1 

PUSH(39)  $2 $1 $1 credit stored 

POP()  $0 $1 $1 credit used 

PUSH(17)  $2 $1 $1 credit stored 

PUSH(23)  $2 $1 $1 credit stored 

23 $1 
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Example: Accounting Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

$2 $1 

           Notes            .    
$1 credit stored 

$1 

PUSH(10)  $2 $1 $1 credit stored 

10 $1 
17 $1 

PUSH(39)  $2 $1 $1 credit stored 

POP()  $0 $1 $1 credit used 

PUSH(17)  $2 $1 $1 credit stored 

PUSH(23)  $2 $1 $1 credit stored 

23 $1 

MULTIPOP(3)  $0 $3 $3 credit used 
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Example: Accounting Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

$2 $1 

           Notes            .    
$1 credit stored 

$1 

PUSH(10)  $2 $1 $1 credit stored 

PUSH(39)  $2 $1 $1 credit stored 

POP()  $0 $1 $1 credit used 

PUSH(17)  $2 $1 $1 credit stored 

PUSH(23)  $2 $1 $1 credit stored 

MULTIPOP(3)  $0 $3 $3 credit used 

sum of amortized costs ≥ sum of real costs 
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Accounting Method for Stack Operations - Notes 

 Intuitively: 
 For every PUSH operation, we pay $2: 
  $1 for the real cost of PUSH 
  $1 pre-payment for the future POP of this item 
      (stored as credit) 

 
 Each POP operation (stand-alone or within MULTI-POP): 
 pays for the real cost by using the credit stored for the 

corresponding item. 
 

 The total credit is always nonnegative in a sequence of n 
operations starting with an empty stack. 
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The Accounting Method: Stack Operations 
 
 
Thus by charging the push operation a little bit more                  we 

don’t need to charge anything from the pop & multipop 
operations  

We have ensured that the amount of credit is always nonnegative  
• since each item in the stack always has $1 of credit 
• and the stack always has a nonnegative number of items 

 
Thus, for any sequence of n push, pop, multipop operations       

the total amortized cost is an upper bound                                
on the total actual cost 
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The Accounting Method (cont’d) 

 The amortized cost of an operation can be considered as: 
 amortized cost = actual cost + credit 
where credit is either deposited (positive) or used (negative) 

 
 Key point in accounting method: 

• The total amortized cost of a sequence of operations           
must be an upper bound on the total actual cost. 

• This relationship must hold for all sequences of operations 

           ai: amortized cost of operation i 
           ci: real cost of operation i 
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The Accounting Method (cont’d) 

The total credit stored after n operations is: 

           ai: amortized cost of operation i 
           ci: real cost of operation i 

For any sequence of n operations, we must have: 

For the above inequality to hold, the total credit must be  
nonnegative at all times. 
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The Accounting Method - Summary 

 Assign an amortized cost for each operation. 
 For operation i, let ai and ci be the amortized and the real cost of i. 
 If ai > ci ⟹    store (ai-ci) as credit 
 If ai < ci ⟹  use (ci-ai) stored credit 
 If we never run out of credit in a sequence of n operations, we can 

say that: 
            ai: amortized cost of operation i 

           ci: real cost of operation i 

In other words, the sum of amortized costs for n operations is  
an upper bound for the sum of real costs. 
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Accounting Method Example: Binary Counter Increment 

 Reminder: The running time of an increment operation is 
proportional to the # of bits flipped. 
 

 Analyze using accounting method: 
 Charge an amortized cost of $2 to set a bit from 0 to 1, and 

$0 to set a bit from 1 to 0. 
 Intuition: When a bit is set to 1 
We use $1 to pay for the actual cost of setting the bit to 1 
We place the other $1 on the bit as credit. 
At any point, every 1-bit in the counter has $1 credit on it 
Hence, we don’t need to charge anything to reset a bit to 0 

We just pay for the reset with the $1 on it. 
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Accounting Method Example: Binary Counter Increment 

Binary 
Counter 

Amortized  
     Cost    .    

Real  
Cost            Notes            .    

$1 credit stored for bit 0 
0 0 0 0 0 

$2 $1 

0 0 0 0 1 
$1 

$1 credit used for bit 0 
$1 credit stored for bit 1 $0+$2 $1 + $1 

0 0 0 1 0 
$1 

$1 credit stored for bit 0 $2 $1 $1 
0 0 0 1 1 

$1 

0 0 1 0 0 
$1 

$1 credit used for bit 0 
$1 credit used for bit 1 
$1 credit stored for bit 2 

$0+$0+$2 $1+$1+$1 
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 The amortized cost of setting bits to 0 
in the first while loop: 

  $0 
     (the real cost is paid by the credits) 

 
 The amortized cost of setting a single 

bit to 1 at the end: 
  $2 
     ($1 is stored as credit for the bit) 

 
 Total amortized cost for an 

INCREMENT operation? 
  $2 

Accounting Method Example: Binary Counter Increment 

INCREMENT(A, k) 
 i ← 0 
 while i < k and A[i] = 1 do 
       A[i] ← 0 
    i ← i +1 
 if i < k then 
      A[i] ← 1 
    return 



31 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

 For any sequence of n INCREMENT operations 
starting from counter value 0: 
 The credit never goes negative 
  We have $1 stored as credit for each bit-1. 
  We can use the stored credit to flip each bit to 0. 
 So, we have: 
 

Accounting Method Example: Binary Counter Increment 

           ai: amortized cost of operation i 
           ci: real cost of operation i 

In other words, the sum of amortized costs for n operations is  
an upper bound for the sum of real costs. 
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 So, we have showed that: 
 For n increment operations:  
  the total amortized cost is O(n). 
 This amortized cost is an upper bound for the actual cost 

 

Accounting Method Example: Binary Counter Increment 
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The Potential Method 
  
Accounting method represents prepaid work as credit stored 

with specific objects in  the data structure 
 
Potential method represents the prepaid work as                

potential energy or just potential                                          
that can be released to pay for the future operations 

 
The potential is associated with the data structure as a whole 

rather than with specific objects within the data structure 
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The Potential Method 

We start with an initial data structure D0 and perform n operations. 
 
For 1 ≤ i ≤ n, let: 
    Ci: the actual cost of the ith operation  
    Di: data structure that results after applying ith operation to Di-1 

     ϕ: potential function that maps each data structure Di to a real 
 number ϕ(Di) 
     ϕ(Di): the potential associated with data structure Di 

     Ĉi: amortized cost of the ith operation w.r.t. function ϕ 
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The Potential Method 
  
 
 
 
                         actual   increase in potential 
                          cost     due to the operation 
 
The total amortized cost of n operations is 
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The Potential Method 
   

If we can ensure that φ (Dn) ≥ φ (D0) then                                       

the total amortized cost           is an upper bound on the          

total actual cost 
 
However, φ (Dn) ≥ φ (D0) should hold for all possible n            

since, in practice, we do not always know n in advance 
 
Hence, if we require that φ (Di) ≥ φ (D0), for all i, then we ensure 

that the total amortized cost is an upper bound for the total cost 
                         

∑
=

n

i
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1
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The Potential Method:  
Stack Operations 

• Define φ (S)=| S |, the number of objects in the stack 

• For the initially empty stack, we have φ (D0) = 0 
 

• Since |S| ≥ 0, stack Di that results after ith operation 
has nonnegative potential for all i, that is 

φ (Di) ≥ 0 = φ (D0) for all i 
 

• Hence, the total amortized cost is an upper bound on the total 
actual cost 
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The Potential Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

0 
   Potential   .    

PUSH(10)  
1 

10 
39 

PUSH(39)  
1 

1 2 
2 2 

1 3 2 
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The Potential Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

0 
   Potential   .    

PUSH(10)  
1 

10 
39 

PUSH(39)  
1 

1 2 
2 2 

1 3 2 
POP()  1 2 0 
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The Potential Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

0 
   Potential   .    

PUSH(10)  
1 

10 
17 

PUSH(39)  
1 

1 2 
2 2 

1 3 2 
POP()  1 2 0 
PUSH(17)  1 3 2 
PUSH(23)  1 4 2 

23 



41 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

The Potential Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

0 
   Potential   .    

PUSH(10)  
1 

10 
17 

PUSH(39)  
1 

1 2 
2 2 

1 3 2 
POP()  1 2 0 
PUSH(17)  1 3 2 
PUSH(23)  1 4 2 

23 

MULTIPOP(3)  3 1 0 
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The Potential Method for Stack Operations 

STACK 

47 

PUSH(47)  

Operation 
Amortized  

     Cost    .    
Real  
Cost 

0 
   Potential   .    

PUSH(10)  
1 

PUSH(39)  
1 

1 2 
2 2 

1 3 2 
POP()  1 2 0 
PUSH(17)  1 3 2 
PUSH(23)  1 4 2 
MULTIPOP(3)  3 1 0 

sum of amortized costs ≥ sum of real costs 
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The Potential Method for Stack Operations 

Reminder: ϕ(Di): The number of objects in stack after operation i 
 
PUSH(S, x):  
 ϕ(Di) – ϕ(Di-1) = 1 (because the stack size increases by 1) 
 Ĉi = Ci + ϕ(Di) – ϕ(Di-1) = 1 + 1 = 2 
   Amortized cost of PUSH operation is 2 
POP(S): 
 ϕ(Di) – ϕ(Di-1) = -1 (because the stack size decreases by 1) 
 Ĉi = Ci + ϕ(Di) – ϕ(Di-1) = 1 - 1 = 0 
   Amortized cost of POP operation is 0 
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The Potential Method for Stack Operations 

Reminder: ϕ(Di): The number of objects in stack after operation i 
 
MULTIPOP(S, k): 
 ϕ(Di) – ϕ(Di-1) = -kʹ, where kʹ = min{|S|, k} 
   because the stack size decreases by k  ́
 Ĉi = Ci + ϕ(Di) – ϕ(Di-1) = kʹ - kʹ = 0 
            Amortized cost of MULTIPOP operation is 0 
 
The amortized cost of each operation is O(1). 
Thus, the amortized cost of a sequence of n operations is O(n) 
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The Potential Method - Intuition 

If ϕ(Di) – ϕ(Di-1) > 0, then: 
 Amortized cost Ĉi is an overcharge for the ith operation. 
 The potential of the data structure increases. 
If ϕ(Di) – ϕ(Di-1) < 0, then: 
 Amortized cost Ĉi is an undercharge for the ith operation. 
 The actual cost of the operation is paid by the  
 decrease in potential. 
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The Potential Method - Intuition 

Different potential functions may yield different amortized costs. 
 
The best potential function to use depends on the desired time bounds. 
 
Choose a potential function such that  ϕ(Di) – ϕ(D0) ≥ 0 for all i 
values. This ensures that the amortized cost of any i operations is an 
upper bound for the actual cost. 
 
Practical guideline: 
 Choose a potential function that increases a little after every 
cheap operation, and decreases a lot after an expensive operation. 
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The Potential Method for Binary Counter Increment 

 Define ϕ(Di) = bi 

 where bi: number of 1s in the counter after the ith operation 
 

 The actual cost of INCREMENT operation: 
        Ci = (# bits changed 0⟹1)  + (# of bits changed 1⟹0) 
 The potential change after the ith INCREMENT operation: 
        ϕ(Di) – ϕ(Di-1) = (# of bits changed 0⟹1) − (# of bits changed 1⟹0) 
 Amortized cost of the ith INCREMENT operation: 
       Ĉi = Ci + ϕ(Di) – ϕ(Di-1) 
            = 2 . (# of bits changed from 0 ⟹ 1) 
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The Potential Method for Binary Counter Increment 

 Amortized cost of the ith INCREMENT operation: 
        Ĉi = 2  . (# of bits changed from 0 ⟹ 1) 

 
 In one INCREMENT operation, we change at most 1 bit 0 ⟹ 1 

 
 Hence, the amortized cost of an INCREMENT operation: 
 Ĉi ≤ 2 
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The Potential Method for Binary Counter Increment 

Binary 
Counter 

0 0 0 0 0 
0 0 0 0 1 
0 0 0 1 0 
0 0 0 1 1 
0 0 1 0 0 

Amortized  
     Cost    .    

Real  
Cost    Potential   .    

0 
1 1 2 
2 1 2 
1 2 2 
3 1 2 
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The Potential Method: 
Incrementing a Binary Counter 

• If the counter starts at zero, then φ (D0) = 0, the 
number of 1s in the counter after the ith operation 

• Since φ (Di) ≥ 0 for all i the total amortized cost is an 
upper bound on the total actual cost  

• Hence, the worst-case cost of n operations is O(n)  
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The Potential Method for Binary Counter Increment 

 What if the counter does not start from zero (i.e. b0 ≠ 0)? 
 

 For a sequence of n INCREMENT operations, can we say that 
the sum of the amortized costs is an upper bound for the sum 
of the actual costs? 
 No, because: 
   

   and ϕ(D0) = b0 ≠ 0. 
   So, ϕ(Dn) - ϕ(D0) is not necessarily ≥ 0 
 
Reminder: ϕ(Di) = bi 

where bi: number of 1s in the counter after the ith operation 
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The Potential Method for Binary Counter Increment 

 What if the counter does not start from zero (i.e. b0 ≠ 0)? 
 

 For a sequence of n INCREMENT operations we can write: 
 

≤ 2n − bn + b0 (because Ĉi ≤ 2 for all i) 

Note: b0 ≤ k, where k is the number of bits of the counter. 

If we execute at least n = Ω(k) INCREMENT operations, the total 
 actual cost will be O(n), no matter what the initial counter value is. 
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Amortized Analysis - Summary 

 With amortized analysis, we show that the average cost of an 
operation is small if we average over a sequence of operations 
  (even though some single operations may be expensive). 
 

 We studied 3 techniques for amortized analysis: 
 Aggregate Method 
 Accounting Method 
 Potential Method 
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Amortized Analysis - Summary 

 Aggregate Method:  
 Directly compute the sum of n operations.  
 Then, compute the average. 
 

 Accounting Method: 
 Pay a little extra for the cheap operations and  

         store the difference as credit on certain items 
 Pay for the expensive operations using the stored credit. 
 As long as we never run of out of credits: 
 The total amortized cost is guaranteed to be an upper 

bound for the total actual cost. 
 



55 CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal  
Computer Engineering Department, Bilkent University 

Amortized Analysis - Summary 

 Potential Method: 
 Similar to the accounting method, but a potential function is 

defined for the whole data structure instead of individual items. 
 The potential is 0 initially. 
 It increases slowly with every cheap operation. 
 Expensive operations are paid using the potential stored. 
 Amortized cost is the actual cost plus the change in potential. 
 As long as potential is always nonnegative: 

 The total amortized cost is guaranteed to be an upper bound for 
the  total actual cost. 

 
  


	Slide Number 1
	Amortized Analysis
	Amortized Analysis vs Average Case Analysis
	Example: Stack Operations
	Stack Operations: Multipop
	Runtime Analysis of Stack Operations
	Amortized Analysis Techniques
	The Aggregate Method
	The Aggregate Method:� Stack Operations
	Example: Incrementing a Binary Counter
	Binary Counter Increment
	Binary Counter Increment
	The Aggregate Method: Incrementing a Binary Counter
	The Aggregate Method: Incrementing a Binary Counter
	The Aggregate Method: Incrementing a Binary Counter
	The Accounting Method
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Example: Accounting Method for Stack Operations
	Accounting Method for Stack Operations - Notes
	Slide Number 24
	The Accounting Method (cont’d)
	The Accounting Method (cont’d)
	The Accounting Method - Summary
	Accounting Method Example: Binary Counter Increment
	Accounting Method Example: Binary Counter Increment
	Accounting Method Example: Binary Counter Increment
	Accounting Method Example: Binary Counter Increment
	Accounting Method Example: Binary Counter Increment
	Slide Number 33
	The Potential Method
	Slide Number 35
	Slide Number 36
	The Potential Method: �Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method for Stack Operations
	The Potential Method - Intuition
	The Potential Method - Intuition
	The Potential Method for Binary Counter Increment
	The Potential Method for Binary Counter Increment
	The Potential Method for Binary Counter Increment
	The Potential Method: Incrementing a Binary Counter
	The Potential Method for Binary Counter Increment
	The Potential Method for Binary Counter Increment
	Amortized Analysis - Summary
	Amortized Analysis - Summary
	Amortized Analysis - Summary

