
CS 473 Lecture 13 1

CS473-Algorithms I

Lecture 13-A

Graphs

CS 473 Lecture 13 2

Graphs

A directed graph (or digraph) G is a pair (V, E), where

V is a finite set, and

E is a binary relation on V

The set V: Vertex set of G

The set E: Edge set of G

Note that, self-loops -edges from a vertex to itself- are possible

In an undirected graph G(V, E)

• the edge set E consists of unordered pairs of vertices
rather than ordered pairs,
that is, (u, v) & (v, u) denote the same edge

• self-loops are forbidden, so
every edge consists of two distinct vertices

CS 473 Lecture 13 3

Graphs
Many definitions for directed and undirected graphs are the same

although certain terms have slightly different meanings

If (u, v)  E in a directed graph G(V, E), we say that
(u, v) is incident from or leaves vertex u and
is incident to or enters vertex v

If (u, v)  E in an undirected graph G(V, E), we say that
(u, v) is incident on vertices u and v

If (u, v) is an edge in a graph G(V, E), we say that
vertex v is adjacent to vertex u

When the graph is undirected,
the adjacency relation is symmetric

When the graph is directed
the adjacency relation is not necessarily symmetric
if v is adjacent to u, we sometimes write u  v

CS 473 Lecture 13 4

Graphs

The degree of a vertex in an undirected graph is

the number of edges incident on it

In a directed graph,

out-degree of a vertex: number of edges leaving it

in-degree of a vertex : number of edges entering it

degree of a vertex : its in-degree  its out-degree

A path of length k from a vertex u to a vertex u in a graph

G(V, E) is a sequence v0, v1, v2, …, vk of vertices such that

v0u, vku and (vi1, vi)  E, for i 1, 2, …, k

The length of a path is the number of edges in the path

CS 473 Lecture 13 5

Graphs

If there is a path p from u to u, we say that

u is reachable from u via p: u  u

A path is simple if all vertices in the path are distinct

A subpath of path p  v0, v1, v2, …, vk is a contiguous

subsequence of its vertices

That is, for any 0  i  j  k, the subsequence of vertices

vi, vi1, …, vj is a subpath of p

In a directed graph, a path v0, v1, …, vk forms a cycle

if v0vk and the path contains at least one edge

The cycle is simple if, in addition, v0, v1, …, vk are distinct

A self-loop is a cycle of length 1

p

CS 473 Lecture 13 6

Graphs

Two paths v0,v1,v2,…,vk & v0,v1,v2,…,vk form the same cycle

if there is an integer j such that vi v(ij) mod k for i  0, 1,…, k1

The path p1  1, 2, 4, 1 forms the same cycles as the paths

p2  2, 4, 1, 2 and p3  4, 1, 2, 4

A directed graph with no self-loops is simple

In an undirected graph a path v0,v1,…,vk forms a cycle
if v0vk and v1,v2,…,vk are distinct

A graph with no cycles is acyclic

1 2

4 5

3

6

CS 473 Lecture 13 7

Graphs

An undirected graph is connected
if every pair of vertices is connected by a path

The connected components of a graph are the
equivalence classes of vertices under the
“is reachable from” relation

An undirected graph is connected if it has exactly one component,
i.e., if every vertex is reachable from every other vertex

A directed graph is strongly-connected
if every two vertices are reachable from each other

The strongly-connected components of a digraph are the
equivalence classes of vertices under the
“are mutually reachable” relation

A directed graph is strongly-connected
if it has only one strongly-connected component

CS 473 Lecture 13 8

Graphs

Two graphs G(V, E) and G(V , E ) are isomorphic
if there exists a bijection f : V  V  such that
(u, v)  E iff (f (u), f (v))  E 

That is, we can relabel the vertices of G to be vertices of G
maintaining the corresponding edges in G and G

G(V, E) G(V , E )

V{1,2,3,4,5,6} V {u,v,w,x,y,z}

Map from VV : f (1)u, f (2)v, f (3)w, f (4)x, f (5)y, f (6)z

1 2

4 5

3 6

 u v w x y z

CS 473 Lecture 13 9

Graphs

A graph G(V , E ) is a subgraph of G(V, E) if
V  V and E  E

Given a set V  V, the subgraph of G induced by V  is the graph

G(V , E ) where E {(u,v)E: u,v  V }

G(V, E) G(V , E ), the subgraph of G

induced by the vertex set

V {1,2,3,6}

1 2

4 5

3

6

1 2 3

6

CS 473 Lecture 13 10

Graphs

Given an undirected graph G(V, E), the directed version of G is

the directed graph G(V , E ), where

(u,v)E  and (v,u)E   (u,v)E

That is, each undirected edge (u,v) in G is replaced in G

by two directed edges (u,v) and (v,u)

Given a directed graph G(V, E), the undirected version of G is

the undirected graph G(V , E ), where

(u,v)E   uv and (u,v)E

That is the undirected version contains the edges of G

“with their directions removed” and with self-loops eliminated

CS 473 Lecture 13 11

Graphs

Note:

G G

i.e., (u,v) and (v,u) in G are replaced in G by the same edge (u,v)

In a directed graph G(V, E), a neighbor of a vertex u is any

vertex that is adjacent to u in the undirected version of G

That, is v is a neighbor of u iff either (u,v)E or (v,u)E

v is a neighbor of u in both cases

In an undirected graph, u and v are neighbors if they are adjacent

 v

 u

 v

 u

 v u v u

CS 473 Lecture 13 12

Graphs

Several kinds of graphs are given special names

Complete graph: undirected graph in which every pair of vertices

is adjacent

Bipartite graph: undirected graph G(V, E) in which V can be

partitioned into two disjoint sets V1 and V2 such that

(u,v)E implies either uV1 and vV2 or uV2 and vV1

CS 473 Lecture 13 13

Graphs

Forest: acyclic, undirected graph

Tree: connected, acyclic, undirected graph

Dag: directed acyclic graph

Multigraph: undirected graph with multiple edges between
vertices and self-loops

Hypergraph: like an undirected graph, but each hyperedge,
rather than connecting two vertices,
connects an arbitrary subset of vertices

v1

v2 v3

v4

v5 v6

h1 h2 h3

h1  (v1, v2)

h2  (v2, v5, v6)

h3  (v2, v3, v4, v5)

CS 473 Lecture 13 14

Free Trees

• A free tree is a connected, acyclic, undirected

graph

• We often omit the adjective “free” when we say

that a graph is a tree

• If an undirected graph is acyclic but possibly

disconnected it is a forest

CS 473 Lecture 13 15

Theorem (Properties of Free Trees)

The following are equivalent for an undirected graph G(V,E)

1. G is a free tree

2. Any two vertices in G are connected by a unique simple-path

3. G is connected, but if any edge is removed from E the resulting

graph is disconnected

4. G is connected, and |E|  |V|1

5. G is acyclic, and |E|  |V|  1

6. G is acyclic, but if any edge is added to E, the resulting graph

contains a cycle

CS 473 Lecture 13 16

Properties of Free Trees (12)

(1) G is a free tree

(2) Any two vertices in G are connected by a

unique simple-path

CS 473 Lecture 13 17

Properties of Free Trees (12)

Since a tree is connected, any two vertices in G are
connected by a simple path

• Let two vertices u,vV are connected by two simple
paths p1 and p2

• Let w and z be the first vertices at which p1 and p2

diverge and re-converge

• Let p1 be the subpath of p1 from w to z

• Let p2 be the subpath of p2 from w to z

• p1 and p2 share no vertices except their end points

• The path p1 || p2 is a cycle (contradiction)

CS 473 Lecture 13 18

Properties of Free Trees (12)

• p1 and p2 share no vertices except their end points

• p1 || p2 is a cycle (contradiction)

• Thus, if G is a tree, there can be at most one path between two
vertices

u v

w

x

y

z

p'
1

p'
2

cycle

CS 473 Lecture 13 19

Properties of Free Trees (23)

(2) Any two vertices in G are connected by a

unique simple-path

(3) G is connected, but if any edge is removed

from E the resulting graph is disconnected

CS 473 Lecture 13 20

Properties of Free Trees (23)

If any two vertices in G are connected by a

unique simple path, then G is connected

• Let (u,v) be any edge in E. This edge is a path

from u to v. So it must be the unique path

from u to v

• Thus, if we remove (u,v) from G, there is no

path from u to v

• Hence, its removal disconnects G

CS 473 Lecture 13 21

Properties of Free Trees (34)

Before proving 34 consider the following

Lemma: any connected, undirected graph G(V,E)

satisfies |E|  |V|1

Proof: Consider a graph G with |V| vertices and no

edges. Thus initially there are |C||V| connected

components

– Each isolated vertex is a connected component

Consider an edge (u,v) and let Cu and Cv denote the

connected-components of u and v

CS 473 Lecture 13 22

Properties of Free Trees (Lemma)

If Cu  Cv then (u,v) connects Cu and Cv into a

connected component Cuv

Otherwise (u,v) adds an extra edge to the

connected component Cu  Cv

Hence, each edge added to the graph reduces the

number of connected components by at most 1

Thus, at least |V|1 edges are required to reduce

the number of components to 1 Q.E.D

CS 473 Lecture 13 23

Properties of Free Trees (34)

(3) G is connected, but if any edge is removed

from E the resulting graph is disconnected

(4) G is connected, and |E|  |V|1

CS 473 Lecture 13 24

Properties of Free Trees (34)

By assuming (3), the graph G is connected

We need to show both |E|  |V|1and |E|  |V|1
in order to show that |E|  |V|1

|E|  |V|1: valid due previous lemma

|E|  |V|1: (proof by induction)

Basis: a connected graph with n 1 or n 2
vertices has n1 edges

IH: suppose that all graphs G (V,E)
satisfying (3) also satisfy |E|  |V|1

CS 473 Lecture 13 25

Properties of Free Trees (34)

Consider G(V,E) that satisfies (3) with |V|  n 3

Removing an arbitrary edge (u,v) from G separates the
graph into 2 connected graphs Gu(Vu,Eu) and
Gv(Vv,Ev) such that V  Vu Vv and E  Eu  Ev

Hence, connected graphs Gu and Gv both satisfy (3) else
G would not satisfy (3)

Note that |Vu| and |Vv|  n since |Vu|  |Vv|  n

Hence, |Eu|  |Vu|1 and |Ev|  |Vv|1 (by IH)

Thus, |E|  |Eu|  |Ev|  1  (|Vu|1)  (|Vv|1)  1

|E|  |V|1
Q.E.D

CS 473 Lecture 13 26

Properties of Free Trees (45)

(4) G is connected, and |E|  |V|1

(5) G is acyclic, and |E|  |V|  1

CS 473 Lecture 13 27

Properties of Free Trees (45)

Suppose that G is connected, and |E|  |V|1, we must

show that G is acyclic

• Suppose G has a cycle containing k vertices v1, v2,, vk

• Let Gk(Vk,Ek) be subgraph of G consisting of the cycle

If k  |V|, there must be a vertex vk1VVk that is

adjacent to some vertex vi Vk, since G is connected

v
1

v
2

v
3

v
k

G
k Note: |Vk|  |Ek|  k

CS 473 Lecture 13 28

Properties of Free Trees (45)

Define Gk1(Vk1,Ek1) to be subgraph of G with

Vk1Vk vk1 and Ek1  Ek  (vk1,vi)

If k 1  |V|, we can similarly define Gk2 (Vk2,Ek2) to

be the subgraph of G with Vk2Vk 1 vk2 and Ek2 

Ek 1  (vk2,vj) for some vj Vk 1 where |Vk2||Ek2|

v
1

v
2

v
i

v
k

v
k+1

G
k+1 Note: |Vk1||Ek1|

CS 473 Lecture 13 29

Properties of Free Trees (45)

We can continue defining Gkmwith |Vkm||Ekm|

until we obtain Gn (Vn,En) where

n |V| and Vn |V| and |Vn||En||V|

• Since Gn is a subgraph of G, we have

En  E  |E| |En||V| which contradicts the

assumption |E| |V| 1

Hence G is acyclic

Q.E.D

CS 473 Lecture 13 30

Properties of Free Trees (56)

(5) G is acyclic, and |E|  |V|  1

(6) G is acyclic, but if any edge is added to E,

the resulting graph contains a cycle

CS 473 Lecture 13 31

Properties of Free Trees (56)

Suppose that G is acyclic and |E|  |V|  1

• Let k be the number of connected components

of G

G1(V1,E1), G2(V2,E2),, Gk(Vk,Ek) such that

 Vi  V;
i =1

k
Vi  Vj  ; 1 i, j  k and i  j

 Ei  E;
i =1

k
Ei  Ej  ; 1 i, j  k and i  j

Each connected component Gi is a tree by definition

CS 473 Lecture 13 32

Properties of Free Trees (56)

Since (15) each component Gi is satisfies

|Ei|  |Vi| 1 for i =1,2, , k

• Thus

• Therefore, we must have k =1

 |Ei |   |Vi|  1
i =1

k

i =1

k

i =1

k

|E |  |V|  k

CS 473 Lecture 13 33

Properties of Free Trees (56)

That is (5)  G is connected  G is a tree

Since (12)

any two vertices in G are connected by a unique

simple path

Thus,

adding any edge to G creates a cycle

CS 473 Lecture 13 34

Properties of Free Trees (61)

(6) G is acyclic, but if any edge is added to E,

the resulting graph contains a cycle

(1) G is a free tree

CS 473 Lecture 13 35

Properties of Free Trees (61)

Suppose that G is acyclic but if any edge is

added to E a cycle is created

We must show that G is connected due to the

definition

Let u and v be two arbitrary vertices in G

If u and v are not already adjacent

adding the edge (u,v) creates a cycle in

which all edges but (u,v) belong to G

CS 473 Lecture 13 36

Properties of Free Trees (61)

Thus there is a path from u to v, and since u and

v are chosen arbitrarily G is connected

u

v

p(u,v)

CS 473 Lecture 13 37

Representations of Graphs

• The standard two ways to represent a graph

G(V,E)

– As a collection of adjacency-lists

– As an adjacency-matrix

• Adjacency-list representation is usually

preferred

– Provides a compact way to represent sparse graphs

• Those graphs for which | E || V |2

CS 473 Lecture 13 38

Representations of Graphs

• Adjacency-matrix representation may be

preferred

– for dense graphs for which |E| is close to |V|2

– when we need to be able to tell quickly if there is an

edge connecting two given vertices

CS 473 Lecture 13 39

Adjacency-List Representation

• An array Adj of |V| lists, one for each vertex
uV

• For each uV the adjacency-list Adj[u]
contains (pointers to) all vertices v such that
(u,v) E

• That is, Adj[u] consists of all vertices adjacent
to u in G

• The vertices in each adjacency-list are stored in
an arbitrary order

CS 473 Lecture 13 40

Adjacency-List Representation

• If G is a directed graph

– The sum of the lengths of the adjacency lists  | E |

• If G is an undirected graph

– The sum of the lengths of the adjacency lists  2| E |

since an edge (u,v) appears in both Adj[u] and Adj[v]

CS 473 Lecture 13 41

Representations of Graphs

1 2

3

45

1

2

3

4

5

3

2

2

4

2

4

4

3

1

5

5

5

2

1

0

1

0

0

1

1

0

1

1

1

0

1

0

1

0

0

1

1

0

1

1

1

0

1

0

1

2

3

4

5

2 5 1 3 4 5 2 4 2 3 5 1 2 4

1 2 3 4 5 6

Undirected Graphs

CS 473 Lecture 13 42

Representations of Graphs

1 2 3

54

1

2

3

4

5

5

5

2

4

2

6

4

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

1

1

0

0

1

2

3

4

5

2 4 5 5 6 2 4 6

1 2 3 4 5 6

6

6 6

0 0 0 0 06

0

0

1

0

0

1
7

Directed Graphs

CS 473 Lecture 13 43

Adjacency List Representation (continued)

Adjacency list representation has the desirable property

it requires O(max(V, E))  O(VE) memory

for both undirected and directed graphs

Adjacency lists can be adopted to represent weighted graphs

each edge has an associated weight typically given by a

weight function w: E R

The weight w(u, v) of an edge (u, v)  E is simply stored with

vertex v in Adj[u] or with

vertex u in Adj[v] or both

CS 473 Lecture 13 44

Adjacency List Representation (continued)

A potential disadvantage of adjacency list representation

there is no quicker way to determine if a given edge (u, v) is

present in G than to search v in Adj[u] or u in Adj[v]

This disadvantage can be remedied by an adjacency matrix

representation at the cost of using asymptotically more

memory

CS 473 Lecture 13 45

Adjacency Matrix Representation

Assume that, the vertices of G(V, E) are numbered as 1,2,…,|V|

Adjacency matrix rep. consists of a |V||V| matrix A=(aij) 

Requires (V 2) memory independent of the number of edges |E|

We define the transpose of a matrix A(aij) to be the matrix

AT  (aij)
T given by aij

T  aji

Since in an undirected graph, (u,v) and (v,u) represent the same

edge A  AT for an undirected graph

That is, adjacency matrix of an undirected graph is symmetric

Hence, in some applications, only upper triangular part is stored



 


 otherwise0

),(if1 Eji
aij

CS 473 Lecture 13 46

Adjacency Matrix Representation

Adjacency matrix representation can also be used for

weighted graphs

Adjacency matrix may also be preferable for

reasonably small graphs

Moreover, if the graph is unweighted

rather than using one word of memory for each matrix entry

adjacency matrix representation uses one bit per entry










otherwise or 0or NIL

),(if),(Ejijiw
aij

