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Graphs

A directed graph (or digraph) G is a pair (V, E), where

V is a finite set, and 

E is a binary relation on V

The set V: Vertex set of G

The set E: Edge set of G

Note that, self-loops -edges from a vertex to itself- are possible

In an undirected graph G(V, E)

• the edge set E consists of unordered pairs of vertices
rather than ordered pairs,                                                 
that is, (u, v) & (v, u) denote the same edge

• self-loops are forbidden, so                                            
every edge consists of two distinct vertices
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Graphs
Many definitions for directed and undirected graphs are the same 

although certain terms have slightly different meanings

If (u, v)  E in a directed graph G(V, E), we say that                
(u, v) is incident from or leaves vertex u and                           
is incident to or enters vertex v

If (u, v)  E in an undirected graph G(V, E), we say that         
(u, v) is incident on vertices u and v

If (u, v) is an edge in a graph G(V, E), we say that              
vertex v is adjacent to vertex u

When the graph is undirected,                                                    
the adjacency relation is symmetric

When the graph is directed 
the adjacency relation is not necessarily symmetric
if v is adjacent to u, we sometimes write u  v
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Graphs

The degree of a vertex in an undirected graph is                        

the number of edges incident on it

In a directed graph, 

out-degree of a vertex: number of edges leaving it

in-degree of a vertex  : number of edges entering it

degree of a vertex       : its in-degree  its out-degree

A path of length k from a vertex u to a vertex u in a graph   

G(V, E) is a sequence v0, v1, v2, …, vk of vertices such that 

v0u, vku and (vi1, vi)  E, for i 1, 2, …, k

The length of a path is the number of edges in the path
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Graphs

If there is a path p from u to u, we say that                                  

u is reachable from u via p: u  u

A path is simple if all vertices in the path are distinct

A subpath of path p  v0, v1, v2, …, vk is a contiguous 

subsequence of its vertices

That is, for any 0  i  j  k, the subsequence of vertices          

vi, vi1, …, vj is a subpath of p

In a directed graph, a path v0, v1, …, vk forms a cycle

if v0vk and the path contains at least one edge

The cycle is simple if, in addition, v0, v1, …, vk are distinct

A self-loop is a cycle of length 1

p
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Graphs

Two paths v0,v1,v2,…,vk & v0,v1,v2,…,vk form the same cycle

if there is an integer j such that vi v(ij) mod k for i  0, 1,…, k1

The path p1  1, 2, 4, 1 forms the same cycles as the paths          

p2  2, 4, 1, 2 and p3  4, 1, 2, 4

A directed graph with no self-loops is simple

In an undirected graph a path v0,v1,…,vk forms a cycle
if v0vk and v1,v2,…,vk are distinct

A graph with no cycles is acyclic
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Graphs

An undirected graph is connected
if every pair of vertices is connected by a path

The connected components of a graph are the                     
equivalence classes of vertices under the                                 
“is reachable from” relation

An undirected graph is connected if it has exactly one component, 
i.e., if every vertex is reachable from every other vertex

A directed graph is strongly-connected                                          
if every two vertices are reachable from each other

The strongly-connected components of a digraph are the 
equivalence classes of vertices under the                               
“are mutually reachable” relation

A directed graph is strongly-connected
if it has only one strongly-connected component
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Graphs

Two graphs G(V, E) and G(V , E ) are isomorphic               
if there exists a bijection f : V  V  such that                             
(u, v)  E iff (f (u), f (v))  E 

That is, we can relabel the vertices of G to be vertices of G
maintaining the corresponding edges in G and G

G(V, E)                                     G(V , E ) 

V{1,2,3,4,5,6}                          V {u,v,w,x,y,z}

Map from VV : f (1)u, f (2)v, f (3)w, f (4)x, f (5)y, f (6)z
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 u   v w  x   y  z  
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Graphs

A graph G(V , E ) is a subgraph of G(V, E) if                          
V  V and E  E

Given a set V  V, the subgraph of G induced by V  is the graph 

G(V , E ) where E {(u,v)E: u,v  V }

G(V, E)                        G(V , E ), the subgraph of G

induced by the vertex set

V {1,2,3,6}       
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Graphs

Given an undirected graph G(V, E), the directed version of G is 

the directed graph G(V , E ), where                               

(u,v)E  and (v,u)E   (u,v)E 

That is, each undirected edge (u,v) in G is replaced in G

by two directed edges (u,v) and (v,u)

Given a directed graph G(V, E), the undirected version of G is 

the undirected graph G(V , E ), where                              

(u,v)E   uv and (u,v)E 

That is the undirected version contains the edges of G             

“with their directions removed” and with self-loops eliminated
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Graphs

Note:

G                       G

i.e., (u,v) and (v,u) in G are replaced in G by the same edge (u,v)

In a directed graph G(V, E), a neighbor of a vertex u is any 

vertex that is adjacent to u in the undirected version of G

That, is v is a neighbor of u iff either (u,v)E or (v,u)E

v is a neighbor of u in both cases

In an undirected graph, u and v are neighbors if they are adjacent

 

 v 

 u 

 v 

 u 

 

 v  u  v  u 
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Graphs

Several kinds of graphs are given special names

Complete graph: undirected graph in which every pair of vertices 

is adjacent

Bipartite graph: undirected graph G(V, E) in which V can be 

partitioned into two disjoint sets V1 and V2 such that          

(u,v)E implies either uV1 and vV2 or uV2 and vV1
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Graphs

Forest: acyclic, undirected graph

Tree: connected, acyclic, undirected graph

Dag: directed acyclic graph

Multigraph: undirected graph with multiple edges between 
vertices and self-loops

Hypergraph: like an undirected graph, but each hyperedge,     
rather than connecting two vertices,                                     
connects an arbitrary subset of vertices

 

v1 

v2 v3 

v4 

v5 v6 

h1 h2 h3 

h1  (v1, v2)

h2  (v2, v5, v6)

h3  (v2, v3, v4, v5)
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Free Trees

• A free tree is a connected, acyclic, undirected

graph

• We often omit the adjective “free” when we say 

that a graph is a tree

• If an undirected graph is acyclic but possibly 

disconnected it is a forest
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Theorem (Properties of Free Trees)

The following are equivalent for an undirected graph G(V,E)

1. G is a free tree

2. Any two vertices in G are connected by a unique simple-path

3. G is connected, but if any edge is removed from E the resulting 

graph is disconnected

4. G is connected, and |E|  |V|1

5. G is acyclic, and |E|  |V|  1

6. G is acyclic, but if any edge is added to E, the resulting graph 

contains a cycle
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Properties of Free Trees (12)

(1) G is a free tree

(2) Any two vertices in G are connected by a 

unique simple-path
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Properties of Free Trees (12)

Since a tree is connected, any two vertices in G are 
connected by a simple path

• Let two vertices u,vV are connected by two simple 
paths p1 and p2

• Let w and z be the first vertices at which p1 and p2

diverge and re-converge

• Let p1 be the subpath of p1 from w to z

• Let p2 be the subpath of p2 from w to z

• p1 and p2 share no vertices except their end points

• The path p1 || p2 is a cycle (contradiction)
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Properties of Free Trees (12)

• p1 and p2 share no vertices except their end points

• p1 || p2 is a cycle (contradiction)

• Thus, if G is a tree, there can be at most one path between two 
vertices

u v

w

x

y

z

p'
1

p'
2

cycle
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Properties of Free Trees (23)

(2) Any two vertices in G are connected by a

unique simple-path

(3) G is connected, but if any edge is removed

from E the resulting graph is disconnected
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Properties of Free Trees (23)

If any two vertices in G are connected by a 

unique simple path, then G is connected

• Let (u,v) be any edge in E. This edge is a path 

from u to v. So it must be the unique path 

from u to v

• Thus, if we remove (u,v) from G, there is no 

path from u to v

• Hence, its removal disconnects G
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Properties of Free Trees (34)

Before proving 34 consider the following

Lemma: any connected, undirected graph G(V,E) 

satisfies |E|  |V|1

Proof: Consider a graph G with |V| vertices and no 

edges. Thus initially there are |C||V| connected 

components

– Each isolated vertex is a connected component

Consider an edge (u,v) and let Cu and Cv denote the 

connected-components of u and v
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Properties of Free Trees (Lemma)

If Cu  Cv then (u,v) connects Cu and Cv into a 

connected component Cuv

Otherwise (u,v) adds an extra edge to the 

connected component Cu  Cv

Hence, each edge added to the graph reduces the 

number of connected components by at most 1

Thus, at least |V|1 edges are required to reduce 

the number of components to 1    Q.E.D
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Properties of Free Trees (34)

(3) G is connected, but if any edge is removed 

from E the resulting graph is disconnected

(4) G is connected, and |E|  |V|1
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Properties of Free Trees (34)

By assuming (3), the graph G is connected

We need to show both |E|  |V|1and |E|  |V|1 
in order to show that |E|  |V|1

|E|  |V|1: valid due previous lemma

|E|  |V|1: (proof by induction)

Basis: a connected graph with n 1 or n 2 
vertices has n1 edges

IH: suppose that all graphs G (V,E) 
satisfying (3) also satisfy |E|  |V|1
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Properties of Free Trees (34)

Consider G(V,E) that satisfies (3) with |V|  n 3

Removing an arbitrary edge (u,v) from G separates the 
graph into 2 connected graphs Gu(Vu,Eu) and 
Gv(Vv,Ev) such that V  Vu Vv and E  Eu  Ev

Hence, connected graphs Gu and Gv both satisfy (3) else 
G would not satisfy (3)

Note that |Vu| and |Vv|  n since |Vu|  |Vv|  n

Hence, |Eu|  |Vu|1 and |Ev|  |Vv|1                  (by IH)

Thus, |E|  |Eu|  |Ev|  1  (|Vu|1)  (|Vv|1)  1 

|E|  |V|1
Q.E.D
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Properties of Free Trees (45)

(4) G is connected, and |E|  |V|1 

(5) G is acyclic, and |E|  |V|  1
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Properties of Free Trees (45)

Suppose that G is connected, and |E|  |V|1, we must 

show that G is acyclic

• Suppose G has a cycle containing k vertices v1, v2,, vk

• Let Gk(Vk,Ek) be subgraph of G consisting of the cycle

If k  |V|, there must be a vertex vk1VVk that is 

adjacent to some vertex vi Vk, since G is connected

v
1

v
2

v
3

v
k

G
k Note: |Vk|  |Ek|  k
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Properties of Free Trees (45)

Define Gk1(Vk1,Ek1) to be subgraph of G with 

Vk1Vk vk1 and Ek1  Ek  (vk1,vi) 

If k 1  |V|, we can similarly define Gk2 (Vk2,Ek2) to 

be the subgraph of G with Vk2Vk 1 vk2 and Ek2 

Ek 1  (vk2,vj) for some vj Vk 1 where |Vk2||Ek2|

v
1

v
2

v
i

v
k

v
k+1

G
k+1 Note: |Vk1||Ek1|
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Properties of Free Trees (45)

We can continue defining Gkmwith |Vkm||Ekm| 

until we obtain Gn (Vn,En) where 

n |V| and Vn |V| and |Vn||En||V|

• Since Gn is a subgraph of G, we have

En  E  |E| |En||V| which contradicts the 

assumption |E| |V| 1

Hence G is acyclic

Q.E.D
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Properties of Free Trees (56)

(5) G is acyclic, and |E|  |V|  1

(6) G is acyclic, but if any edge is added to E, 

the resulting graph contains a cycle
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Properties of Free Trees (56)

Suppose that G is acyclic and |E|  |V|  1

• Let k be the number of connected components 

of G

G1(V1,E1), G2(V2,E2),, Gk(Vk,Ek) such that

 Vi  V;
i =1

k
Vi  Vj  ; 1 i, j  k and i  j

 Ei  E;
i =1

k
Ei  Ej  ; 1 i, j  k and i  j

Each connected component Gi is a tree by definition
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Properties of Free Trees (56)

Since (15) each component Gi is satisfies

|Ei|  |Vi| 1         for i =1,2, , k

• Thus

• Therefore, we must have k =1

 |Ei |   |Vi|  1
i =1

k

i =1

k

i =1

k

|E |  |V|  k
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Properties of Free Trees (56)

That is (5)  G is connected  G is a tree

Since (12)

any two vertices in G are connected by a unique 

simple path

Thus,

adding any edge to G creates a cycle
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Properties of Free Trees (61)

(6) G is acyclic, but if any edge is added to E, 

the resulting graph contains a cycle

(1) G is a free tree
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Properties of Free Trees (61)

Suppose that G is acyclic but if any edge is 

added to E a cycle is created

We must show that G is connected due to the 

definition

Let u and v be two arbitrary vertices in G

If u and v are not already adjacent

adding the edge (u,v) creates a cycle in 

which all edges but (u,v) belong to G
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Properties of Free Trees (61)

Thus there is a path from u to v, and since u and 

v are chosen arbitrarily G is connected

u

v

p(u,v)
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Representations of Graphs

• The standard two ways to represent a graph 

G(V,E)

– As a collection of adjacency-lists

– As an adjacency-matrix

• Adjacency-list representation is usually 

preferred

– Provides a compact way to represent sparse graphs

• Those graphs for which | E || V |2
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Representations of Graphs

• Adjacency-matrix representation may be 

preferred 

– for dense graphs for which |E| is close to |V|2

– when we need to be able to tell quickly if there is an 

edge connecting two given vertices
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Adjacency-List Representation

• An array Adj of |V| lists, one for each vertex 
uV

• For each uV the adjacency-list Adj[u] 
contains (pointers to) all vertices v such that 
(u,v) E

• That is, Adj[u] consists of all vertices adjacent 
to u in G

• The vertices in each adjacency-list are stored in 
an arbitrary order
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Adjacency-List Representation

• If G is a directed graph 

– The sum of the lengths of the adjacency lists  | E |

• If G is an undirected graph 

– The sum of the lengths of the adjacency lists  2| E |

since an edge (u,v) appears in both Adj[u] and Adj[v] 
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Representations of Graphs
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Representations of Graphs
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Adjacency List Representation (continued)

Adjacency list representation has the desirable property              

it requires O(max(V, E))  O(VE) memory                          

for both undirected and directed graphs

Adjacency lists can be adopted to represent weighted graphs

each edge has an associated weight typically given by a 

weight function w: E R

The weight w(u, v) of an edge (u, v)  E is simply stored with 

vertex v in Adj[u] or with                                                  

vertex u in Adj[v] or both
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Adjacency List Representation (continued)

A potential disadvantage of adjacency list representation       

there is no quicker way to determine if a given edge (u, v) is 

present in G than to search v in Adj[u] or u in Adj[v]

This disadvantage can be remedied by an adjacency matrix

representation at the cost of using asymptotically more 

memory



CS 473 Lecture 13 45

Adjacency Matrix Representation

Assume that, the vertices of G(V, E) are numbered as 1,2,…,|V| 

Adjacency matrix rep. consists of a |V||V| matrix A=(aij) 

Requires (V 2) memory independent of the number of edges |E|

We define the transpose of a matrix A(aij) to be the matrix            

AT  (aij)
T given by aij

T  aji

Since in an undirected graph, (u,v) and (v,u) represent the same 

edge A  AT for an undirected graph

That is, adjacency matrix of an undirected graph is symmetric

Hence, in some applications, only upper triangular part is stored



 


   otherwise0

),( if1 Eji
aij
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Adjacency Matrix Representation

Adjacency matrix representation can also be used for      

weighted graphs

Adjacency matrix may also be preferable for                     

reasonably small graphs

Moreover, if the graph  is unweighted                                    

rather than using one word of memory for each matrix entry 

adjacency matrix representation uses one bit per entry










otherwise or  0or  NIL

),( if         ),( Ejijiw
aij


