
CS 473 Lecture 14 1

CS473-Algorithms I

Lecture 14-A

Graph Searching: Breadth-First Search

CS 473 Lecture 14 2

Graph Searching: Breadth-First Search

Graph G (V, E), directed or undirected with adjacency list repres.

GOAL: Systematically explores edges of G to

• discover every vertex reachable from the source vertex s

• compute the shortest path distance of every vertex
from the source vertex s

• produce a breadth-first tree (BFT) G with root s

 BFT contains all vertices reachable from s

 the unique path from any vertex v to s in G

constitutes a shortest path from s to v in G

IDEA: Expanding frontier across the breadth -greedy-

• propagate a wave 1 edge-distance at a time

• using a FIFO queue: O(1) time to update pointers to both ends

CS 473 Lecture 14 3

Breadth-First Search Algorithm

Maintains the following fields for each u  V

• color[u]: color of u

 WHITE : not discovered yet

 GRAY : discovered and to be or being processed

 BLACK: discovered and processed

• [u]: parent of u (NIL of u  s or u is not discovered yet)

• d[u]: distance of u from s

Processing a vertex  scanning its adjacency list

CS 473 Lecture 14 4

Breadth-First Search Algorithm

BFS(G, s)
for each u  V {s} do

color[u]  WHITE
[u]  NIL; d [u] 

color[s]  GRAY
[s]  NIL; d [s]  0
Q  {s}
while Q   do

u  head[Q]
for each v in Adj[u] do

if color[v]  WHITE then
color[v]  GRAY
[v]  u
d [v]  d [u]  1
ENQUEUE(Q, v)

DEQUEUE(Q)
color[u]  BLACK

CS 473 Lecture 14 5

Breadth-First Search

Sample Graph:

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 s
FIFO just after

queue Q processing vertex

a -

CS 473 Lecture 14 6

Breadth-First Search

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 s
FIFO just after

queue Q processing vertex

a -

a,b,c a

CS 473 Lecture 14 7

Breadth-First Search

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 s
FIFO just after

queue Q processing vertex

a -

a,b,c a

a,b,c,f b

CS 473 Lecture 14 8

Breadth-First Search

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 2

 s
FIFO just after

queue Q processing vertex

a -

a,b,c a

a,b,c,f b

a,b,c,f,e c

CS 473 Lecture 14 9

Breadth-First Search

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 2

 s

 3 3

FIFO just after

queue Q processing vertex

a -

a,b,c a

a,b,c,f b

a,b,c,f,e c

a,b,c,f,e,g,h f

CS 473 Lecture 14 10

Breadth-First Search

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 2

 s

 3 3

 3

 3

FIFO just after

queue Q processing vertex

a -

a,b,c a

a,b,c,f b

a,b,c,f,e c

a,b,c,f,e,g,h f

a,b,c,f,e,g,h,d,i e

all distances are filled in after processing e

CS 473 Lecture 14 11

Breadth-First Search

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 2

 s

 3 3

 3

 3

FIFO just after

queue Q processing vertex

a -

a,b,c a

a,b,c,f b

a,b,c,f,e c

a,b,c,f,e,g,h f

a,b,c,f,e,g,h,d,i g

CS 473 Lecture 14 12

Breadth-First Search

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 2

 s

 3 3

 3

 3

FIFO just after

queue Q processing vertex

a -

a,b,c a

a,b,c,f b

a,b,c,f,e c

a,b,c,f,e,g,h f

a,b,c,f,e,g,h,d,i h

CS 473 Lecture 14 13

Breadth-First Search

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 2

 s

 3 3

 3

 3

FIFO just after

queue Q processing vertex

a -

a,b,c a

a,b,c,f b

a,b,c,f,e c

a,b,c,f,e,g,h f

a,b,c,f,e,g,h,d,i d

CS 473 Lecture 14 14

Breadth-First Search

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 2

 s

 3 3

 3

 3

FIFO just after

queue Q processing vertex

a -

a,b,c a

a,b,c,f b

a,b,c,f,e c

a,b,c,f,e,g,h f

a,b,c,f,e,g,h,d,i i

algorithm terminates: all vertices are processed

CS 473 Lecture 14 15

Breadth-First Search Algorithm

Running time: O(VE)  considered linear time in graphs

• initialization: (V)

• queue operations: O(V)

 each vertex enqueued and dequeued at most once

 both enqueue and dequeue operations take O(1) time

• processing gray vertices: O(E)

 each vertex is processed at most once and





Vu

EuAdj)(|][|

CS 473 Lecture 14 16

Theorems Related to BFS

DEF: (s, v)  shortest path distance from s to v

LEMMA 1: for any s  V & (u, v)  E; (s, v)  (s, u)  1

For any BFS(G, s) run on G(V,E)

LEMMA 2: d [v]  (s, v) v  V

LEMMA 3: at any time of BFS, the queue Qv1, v2, …, vr satisfies

• d [vr]  d [v1]  1

• d [vi]  d [vi1], for i  1, 2, …, r  1

THM1: BFS(G, s) achieves the following

• discovers every v  V where s  v (i.e., v is reachable from s)

• upon termination, d [v]  (s, v) v  V

• for any v  s & s  v; sp(s, [v])  ([v], v) is a sp(s, v)

CS 473 Lecture 14 17

Proofs of BFS Theorems

DEF: shortest path distance (s, v) from s to v

(s, v)  minimum number of edges in any path from s to v

  if no such path exists (i.e., v is not reachable from s)

L1: for any s  V & (u, v)  E; (s, v)  (s, u)  1

PROOF: s  u  s  v. Then,

consider the path p(s, v)  sp(s, u)  (u, v)

• |p(s, v)|  | sp(s, u) |  1  (s, u)  1

• therefore, (s, v)  |p(s, v)|  (s, u)  1

 s

u v

sp(s, u)

p(s, v)

CS 473 Lecture 14 18

Proofs of BFS Theorems

DEF: shortest path distance (s, v) from s to v

(s, v)  minimum number of edges in any path from s to v

L1: for any s  V & (u, v)  E; (s, v)  (s, u)  1

C1 of L1: if G(V,E) is undirected then (u, v)  E  (v, u)  E
• (s, v)  (s, u)  1 and (s, u)  (s, v)  1
•  (s, u)  1  (s, v)  (s, u)  1 and

(s, v)  1  (s, u)  (s, v)  1
•  (s, u) & (s, v) differ by at most 1

 s

u v

sp(s, u)

sp(s, v)

CS 473 Lecture 14 19

Proofs of BFS Theorems

L2: upon termination of BFS(G, s) on G(V,E);

d [v]  (s, v) v  V

PROOF: by induction on the number of ENQUEUE operations

• basis: immediately after 1st enqueue operation
ENQ(Q, s): d [s]  (s, s)

• hypothesis: d [v]  (s, v) for all v inserted into Q

• induction: consider a white vertex v discovered during
scanning Adj[u]

• d [v]  d [u]  1 due to the assignment statement

 (s, u)  1 due to the inductive hypothesis since u  Q

 (s, v) due to L1

• vertex v is then enqueued and it is never enqueued again

d [v] never changes again, maintaining inductive hypothesis

CS 473 Lecture 14 20

Proofs of BFS Theorems

L3: Let Q  v1, v2, …, vr during the execution of BFS(G, s), then,

d [vr]  d [v1]  1 and d [vi]  d [vi1] for i  1, 2, …, r1

PROOF: by induction on the number of QUEUE operations

• basis: lemma holds when Q  {s}

• hypothesis: lemma holds for a particular Q (i.e., after a
certain # of QUEUE operations)

• induction: must prove lemma holds after both DEQUEUE &
ENQUEUE operations

• DEQUEUE(Q): Q  v1, v2, …, vr  Q  v2, v3, …, vr

 d [vr]  d [v1]  1 & d [v1]  d [v2] in Q 

d [vr]  d [v2]  1 in Q

 d [vi]  d [vi1] for i  1, 2, …, r1 in Q 

d [vi]  d [vi1] for i  2, …, r1 in Q

CS 473 Lecture 14 21

Proofs of BFS Theorems

• ENQUEUE(Q, v): Q  v1, v2, …, vr 

Q  v1, v2, …, vr , vr1  v

 v was encountered during scanning Adj[u] where u  v1

 thus, d [vr1]  d [v]  d [u]  1  d [v1]  1 

d [vr1]  d [v1]  1 in Q

 but d [vr]  d [v1]  1  d [vr1]

 d [vr1]  d [v1]  1 and d [vr]  d [vr1] in Q

C3 of L3 (monotonicity property):

if: the vertices are enqueued in the order v1, v2, …, vn

then: the sequence of distances is monotonically increasing,

i.e., d [v1]  d [v2]  ……….  d [vn]

CS 473 Lecture 14 22

Proofs of BFS Theorems

THM (correctness of BFS): BFS(G, s) achieves the following on
G(V,E)

• discovers every v  V where s  v

• upon termination: d [v]  (s, v) v  V

• for any v  s & s  v; sp(s, [v])  ([v], v)  sp(s, v)

PROOF: by induction on k, where Vk  {v  V: (s, v)  k}

• hypothesis: for each v  Vk,  exactly one point during

execution of BFS at which color[v]  GRAY, d [v]  k,

[v]  u  Vk1, and then ENQUEUE(Q, v)

• basis: for k  0 since V0  {s}; color[s]  GRAY, d [s]  0

and ENQUEUE(Q, s)

• induction: must prove hypothesis holds for each v  Vk1

CS 473 Lecture 14 23

Proofs of BFS Theorems

Consider an arbitrary vertex v  Vk1, where k  0

• monotonicity (L3)  d [v]  k  1 (L2) + inductive hypothesis

 v must be discovered after all vertices in Vk were enqueued
• since (s, v)  k  1, u  Vk such that (u, v)  E
• let uVk be the first such vertex grayed (must happen due to hyp.)

• u  head(Q) will be ultimately executed since BFS enqueues
every grayed vertex

 v will be discovered during scanning Adj[u]

color[v]WHITE since v isn’t adjacent to any vertex in Vj for j<k

 color[v]  GRAY, d [v]  d [u]  1, [v]  u

 then, ENQUEUE(Q, v) thus proving the inductive hypothesis

To conclude the proof
• if v  Vk1 then due to above inductive proof [v]  Vk

 thus sp(s, [v])  ([v], v) is a shortest path from s to v

CS 473 Lecture 14 24

Theorems Related to BFS

DEF: (s, v)  shortest path distance from s to v

LEMMA 1: for any s  V & (u, v)  E; (s, v)  (s, u)  1

For any BFS(G, s) run on G(V,E)

LEMMA 2: d [v]  (s, v) v  V

LEMMA 3: at any time of BFS, the queue Qv1, v2, …, vr satisfies

• d [vr]  d [v1]  1

• d [vi]  d [vi1], for i  1, 2, …, r  1

THM1: BFS(G, s) achieves the following

• discovers every v  V where s  v (i.e., v is reachable from s)

• upon termination, d [v]  (s, v) v  V

• for any v  s & s  v; sp(s, [v])  ([v], v) is a sp(s, v)

CS 473 Lecture 14 25

Breadth-First Tree Generated by BFS

LEMMA 4: predecessor subgraph G(V, E) generated by
BFS(G, s) , where V{v  V: [v]  NIL}{s} and

E{([v],v)  E: v  V {s}}
is a breadth-first tree such that

 V consists of all vertices in V that are reachable from s

 v  V , unique path p(v, s) in G constitutes a sp(s, v) in G

PRINT-PATH(G, s, v)

if v  s then print s

else if [v]  NIL then
print no “sv path”

else

PRINT-PATH(G, s, [v])
print v

Prints out vertices on a

sv shortest path

CS 473 Lecture 14 26

Breadth-First Tree Generated by BFS

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 2

 s

 3 3

 3

 3

 a

 b

 g

 c

 f

 d

 e

 h

 i

 0

 1

 1

 2

 2

 s

 3 3

 3

 3

BFS(G,a) terminated BFT generated by BFS(G,a)

