
CS 473 Lecture 15 1

CS473-Algorithms I

Lecture 15

Graph Searching:

Depth-First Search and Topological Sort

CS 473 Lecture 15 2

DFS: Parenthesis Theorem

Thm: In any DFS of G(V,E), let int[v]  [d[v], f[v]]

then exactly one of the following holds

for any u and v V

• int[u] and int[v] are entirely disjoint

• int[v] is entirely contained in int[u] and
v is a descendant of u in a DFT

• int[u] is entirely contained in int[v] and
u is a descendant of v in a DFT

CS 473 Lecture 15 3

Parenthesis Thm
(proof for the case d[u]  d[v])

Subcase d[v]  f[u] (int[u] and int[v] are overlapping)

– v was discovered while u was still GRAY

– This implies that v is a descendant of u

– So search returns back to u and finishes u after
finishing v

– i.e., d[v] f[u] int[v] is entirely contained in int[u]

Subcase d[v] f[u] int[v] and int[u] are entirely disjoint

Proof for the case d[v]  d[u] is similar (dual)
QED

CS 473 Lecture 15 4

Nesting of Descendents’ Intervals

Corollary 1 (Nesting of Descendents’ Intervals):

v is a descendant of u if and only if

d[u]  d[v]  f[v]  f[u]

Proof: immediate from the Parenthesis Thrm

QED

CS 473 Lecture 15 5

Parenthesis

Theorem

x y z

s t

w v u

2

3 4 5 6

7 9 10

8 111 12

14 15

13 16

1 2 3 4 5 6 7 8 9

x z

s y u

w v t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10 11 12 13 14 15 16

(x (s (w w) (v v) s) (y (t t) y) x) (z (u u) z)

CS 473 Lecture 15 6

Edge Classification in a DFF

Tree Edge: discover a new (WHITE) vertex
GRAY to WHITE

Back Edge: from a descendent to an ancestor in DFT
GRAY to GRAY

Forward Edge: from ancestor to descendent in DFT
GRAY to BLACK

Cross Edge: remaining edges (btwn trees and subtrees)
GRAY to BLACK

Note: ancestor/descendent is wrt Tree Edges

CS 473 Lecture 15 7

Edge Classification in a DFF

• How to decide which GRAY to BLACK edges
are forward, which are cross

Let BLACK vertex v Adj[u] is encountered
while processing GRAY vertex u

– (u,v) is a forward edge if d[u]  d[v]

– (u,v) is a cross edge if d[u]  d[v]

CS 473 Lecture 15 8

Depth-First Search: Example

x y z

s t

w v u

1

CS 473 Lecture 15 9

Depth-First Search: Example

x y z

s t

w v u

1

2

T

CS 473 Lecture 15 10

Depth-First Search: Example

x y z

s t

w v u

1

2

3

T

T

CS 473 Lecture 15 11

Depth-First Search: Example

x y z

s t

w v u

1

2

3

T

T

B

CS 473 Lecture 15 12

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4

T

T

B

CS 473 Lecture 15 13

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5

T

T

T

B

CS 473 Lecture 15 14

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5

T

T

T

B

C

CS 473 Lecture 15 15

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5 6

T

T

T

B

C

CS 473 Lecture 15 16

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5 6

7

T

T

T

B

C

CS 473 Lecture 15 17

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5 6

7

8
T

T

T
T

B

C

CS 473 Lecture 15 18

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5 6

7

8
T

T

T

T

B

C

C

CS 473 Lecture 15 19

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5 6

7

8

9

T

T

T

T

T
B

C

C

CS 473 Lecture 15 20

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5 6

7

8

9

T

T

T
T

T

C

B C

C

CS 473 Lecture 15 21

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5 6

7

8

9 10

T

T

T

T
T

B

C

C
C

CS 473 Lecture 15 22

Depth-First Search: Example

x y z

s t

w v u

1

2

3 4 5 6

7 9 10

8 11

T

T

T

T

T

B

C

C
C

F

CS 473 Lecture 15 23

Depth-First Search: Example

x y z

s t

w v u

2

3 4 5 6

7 9 10

8 111 12
T

T

T
T

T

B
F

C

C

C

CS 473 Lecture 15 24

Depth-First Search: Example

x y z

s t

w v u

2

3 4 5 6

7 9 10

8 111 12 13

T

T

T

T

T

B C

F

C

C

CS 473 Lecture 15 25

Depth-First Search: Example

x y z

s t

w v u

2

3 4 5 6

7 9 10

8 111 12 13

T

T

T
T

T

C

B
F

C

C

C

CS 473 Lecture 15 26

Depth-First Search: Example

x y z

s t

w v u

2

3 4 5 6

7 9 10

8 111 12 13

T

T

T

T
T

B

C

F
C

C

C

C

CS 473 Lecture 15 27

Depth-First Search: Example

x y z

s t

w v u

2

3 4 5 6

7 9 10

8 111 12 13

14

T

T

T

T

T

B
F

C

C
C

C

C

T

CS 473 Lecture 15 28

Depth-First Search: Example

x y z

s t

w v u

2

3 4 5 6

7 9 10

8 111 12 13

14

C

T

T

T

T

T
T

B

F

C

C
C

C

C

CS 473 Lecture 15 29

Depth-First Search: Example

x y z

s t

w v u

2

3 4 5 6

7 9 10

8 111 12

14 15

13 16
T

T

T

T
T

T

C

F

B C
C

C

C

C

CS 473 Lecture 15 30

DFS on Undirected Graphs

• Ambiguity in edge classification, since (u,v)
and (v,u) are the same edge

– First classification is valid (whichever of
(u,v) or (v,u) is explored first)

Lemma 1: any DFS on an undirected graph
produces only Tree and Back edges

CS 473 Lecture 15 31

Lemma 1: Proof

x

y

z

T

T F?

x

y

u v

T

T T

C?

x

y

u v

T

T B

T

x

y

u v

T

B T

T

OR

Assume (x,z) is a F (F?)

But (x,z) must be a B,
since DFS must finish z
before resuming x

Assume (u,v) is a C (C?) btw subtrees

But (y,u) & (y,v) cannot be both T; one
must be a B and (u,v) must be a T

If (u,v) is first explored while processing
u/v, (y,v) / (y,u) must be a B

CS 473 Lecture 15 32

DFS on Undirected Graphs

Lemma 2: an undirected graph is acyclic (i.e. a
forest) iff DFS yields no Back edges

Proof

(acyclic  no Back edges; by contradiction):

Let (u,v) be a B then color[u]  color[v]  GRAY

 there exists a path between u and v

So, (u,v) will complete a cycle (Back edge  cycle)

(no Back edges  acyclic):

If there are no Back edges then there are only T edges
by Lemma 1  forest  acyclic QED

CS 473 Lecture 15 33

DFS on Undirected Graphs

How to determine whether an undirected
graph G(V,E) is acyclic

• Run a DFS on G: if a Back edge is found
then there is a cycle

• Running time: O(V), not O(V  E)

– If ever seen |V| distinct edges, must have seen
a back edge (|E| |V| 1 in a forest)

CS 473 Lecture 15 34

DFS: White Path Theorem

WPT: In a DFS of G, v is a descendent of u iff at
time d[u], v can be reached from u along a WHITE

path

Proof (): assume v is a descendent of u

Let w be any vertex on the path from u to v in the
DFT

So, w is a descendent of u  d[u]  d[w]

(by Corollary 1 nesting of descendents’ intervals)

Hence, w is white at time d[u]

CS 473 Lecture 15 35

DFS: White Path Theorem

Proof () assume a white path p(u,v) at time d[u]
but v does not become a descendent of u in the
DFT (contradiction):

Assume every other vertex along p becomes a
descendent of u in the DFT

u v

W W WG

D D D?

p(u,v)
at time

d[u]

CS 473 Lecture 15 36

DFS: White Path Theorem

otherwise let v be the closest vertex to u along p that does
not become a descendent

Let w be predecessor of v along p(u,v):

d[u]  d[w]  f[w]  f[u] by Corollary 1

Since, v was WHITE at time d[u] (u was GRAY) d[u]  d[v]

Since, w is a descendent of u but v is not

d[w]  d[v]  d[v]  f[w]

By (1)–(3): d[u]  d[v]  f[w]  f[u]  d[u]  d[v]  f[w]

So by Parenthesis Thm int[v] is within int[u], v is
descendent of u

(1)

(2)

(3)

QED

CS 473 Lecture 15 37

Directed Acyclic Graphs (DAG)

No directed cycles

Example:

CS 473 Lecture 15 38

Directed Acyclic Graphs (DAG)

Theorem: a directed graph G is acyclic iff DFS on G

yields no Back edges

Proof (acyclic  no Back edges; by contradiction):

Let (v,u) be a Back edge visited during scanning Adj[v]

 color[v]  color[u]  GRAY and d[u]  d[v]

 int[v] is contained in int[u]  v is descendent of u

  a path from u to v in a DFT and hence in G

 edge (v,u) will create a cycle (Back edge  cycle)

u v path from u to v in a DFT and hence in G

CS 473 Lecture 15 39

acyclic iff no Back edges

Proof (no Back edges  acyclic):

Suppose G contains a cycle C (Show that a DFS on G
yields a Back edge; proof by contradiction)

Let v be the first vertex discovered in C and let (u,v) be

proceeding edge in C

v

u

C

W W W

W

WWW

G

At time d[v]:  a white path

from v to u along C

By White Path Thrm u becomes

a descendent of v in a DFT

Therefore (u,v) is a Back edge

(descendent to ancestor)

CS 473 Lecture 15 40

Topological Sort of a DAG

• Linear ordering ‘’ of V such that

(u,v) E  u  v in ordering

– Ordering may not be unique

– i.e., mapping the partial ordering to total ordering

may yield more than one orderings

CS 473 Lecture 15 41

Topological Sort of a DAG

Example: Getting dressed

under

short
socks pants shoes watch shirt belt tie jacket

under

short

pants

belt

shirt

tiejacket

shoes

socks watch
11/16

12/15

6/7

1/8

2/5

3/4

13/14

17/18 9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

CS 473 Lecture 15 42

Topological Sort of a DAG

Algorithm

run DFS(G)

when a vertex finished, output it

vertices output in reverse topologically sorted order

Runs in O(V+E) time

CS 473 Lecture 15 43

Correctness of the Algorithm

Claim: (u,v) E  f[u]  f[v]

Proof: consider any edge (u,v) explored by DFS

when (u,v) is explored, u is GRAY

– if v is GRAY, (u,v) is a Back edge (contradicting acyclic

theorem)

– if v is WHITE, v becomes a descendent of u (b WPT)

 f[v]  f[u]

– if v is BLACK, f[v]  d[u] f[v]  f[u]

Topological Sort of a DAG

QED

