CS473-Algorithms |

Lecture 16

Strongly Connected Components

CS 473 Lecture 16

Strongly Connected Components

Definition: a strongly connected component (SCC) of a

directed graph G=(V,E) Is a maximal set of vertices Uc
V such that

— For each u,v €U we have bothu+ vandvi—u
l.e., u and v are mutually reachable from each other (u %i v)
Let G'=(V,ET) be the transpose of G=(V,E) where
ET={(u,v): (v,u) € E}
— i.e., ET consists of edges of G with their directions reversed

Constructing G from G takes O(VV+E) time (adjacency list rep)
Note: G and G have the same SCCs (Ui vin G u%ivin GT)

CS 473 Lecture 16

Strongly Connected Components

Algorithm

(1) Run DFS(G) to compute finishing times for all ueV

(2) Compute G

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] computed in Step (1)

(4) Output vertices of each DFT In DFF of Step (3) as a
separate SCC

CS 473 Lecture 16 3

Strongly Connected Components

Lemma 1: no path between a pair of vertices in
the same SCC, ever leaves the SCC

Proof: let u and v be in the same SCC = u % v
let w be on some pathu—w - v =| ur—>w
butvibu=3Japathwi—vi>u=|wmeu
therefore u and w are in the same SCC

QED

Lecture 16

SCC: Example

CS 473 Lecture 16

SCC: Example

(1) Run DFS(G) to compute finishing times for all ueV

1
a b C 4 d

CS 473 Lecture 16 6

SCC: Example

(1) Run DFS(G) to compute finishing times for all ueV

a

b

CS 473 Lecture 16 7

SCC: Example

(1) Run DFS(G) to compute finishing times for all ueV

2
a b C d

11

CS 473 Lecture 16 8

SCC: Example

Vertices sorted according to the finishing times:

(b,e,a,c,d g nf)

CS 473 Lecture 16

SCC: Example

(2) Compute GT
a b C
e f 9

CS 473

Lecture 16

10

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e, a,c, d, g, h, f)

a b » C d

CS 473 Lecture 16 11

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: (b, e, a,c, d, g, h, f)

CS 473 Lecture 16

12

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e, a,c, d, g, h, f)

CS 473 Lecture 16

13

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e, a,c, d, g, h, f)

CS 473 Lecture 16

14

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e, a,c, d, g, h, f)

CS 473 Lecture 16

15

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e, a,c, d, g, h, f)

CS 473 Lecture 16

16

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e, a,c, d, g, h, f)

CS 473 Lecture 16

17

SCC: Example

(3) Call DFS(GT) processing vertices in main loop in
decreasing f[u] order: (b, e, a,c, d, g, h, f)

CS 473 Lecture 16

18

SCC: Example

(4) Output vertices of each DFT In DFF as a separate SCC

Co=10.1} <‘ Cr=th}

CS 473 Lecture 16 19

SCC: Example

Acyclic component
graph ' CC
f,g ‘D
Ch C C

g h

CS 473

20

Strongly Connected Components

Thrm 1: inany DFES, all vertices in the same SCC
are placed in the same DFT

Proof: let r be the first vertex discovered in SCC S,

because r is first, color[x]J=wHITE VXxeS,—{r} at time d[r]

So all vertices are wHITE on each r — x path VxeS,—{r}
— since these paths never leave S,

Hence each vertex in S,—{r}becomes a descendent of r

(White-path Thrm) | ™.

QED S,

CS 473 Lecture 16 21

Notation for the Rest of This
_ecture

« d[u] and f[u] refer to those values computed
by DFS(G) at step (1)
e upP>vreferstoGnotG'

Definition: forefather ¢(u) of vertex u

1. ¢(u) = That vertex w such that u — w and f[u] is
maximized

2. ¢(u) = u possible because u— u = flu] < f[g(u)]

CS 473 Lecture 16 22

Strongly Connected Components

Lemma 2: ¢(¢(u)) = ¢(u)

Proof try to show that f[¢(#(u))] = f[4(u)] :
Foranyuyv eV;u—>v=R,c R, = f[g(V)] < f[¢(u)]
S0, U ¢(u) = Tlg(4(u))] < Tlg(u)]

Due to definition of ¢(u) we have f[#(4(u))] = f[#(u)]

Therefore f[¢(p(u))] = f[4(U)] QED
Note:
fix] =1yl =

X=Y
(same vertex)

CS 473 Lecture 16 23

Strongly Connected Components

Properties of forefather:

« Every vertex in an SCC has the same forefather which is in
the SCC

« Forefather of an SCC is the representative vertex of the SCC
 In the DFS of G, forefather of an SCC is the

— first vertex discovered in the SCC

— last vertex finished in the SCC

CS 473 Lecture 16 24

Strongly Connected Components
THMZ2: ¢(u) of any u € V in any DFS of G Is an ancestor of u

PROOF: Trivial if ¢(u) = u.
If #(U) = u, consider color of ¢(u) at time d[u]
* #(u) Is GRAY: ¢#(u) Is an ancestor of u = proving the theorem

* #U)is BLACK: f[#(u)] < f[u] = contradiction to def. of @(u)

« #(U) ISWHITE: 3 2 cases according to colors of intermediate
vertices on p(u, @(u))

Path p(u, @(u)) at time d[u]:
G ? ? ? Au)

@—»@—»@—» _>®_>@

CS 473 Lecture 16 25

Strongly Connected Components

Case 1: every Intermediate vertex x; € p(u, ¢(u)) iIs WHITE
= @(u) becomes a descendant of u (WP-THM)
= T[(u)] <T[u]
—> contradiction
Case 2: 9 some non-WHITE intermediate vertices on p(u, ¢(u))
* Let x, be the last non-WHITE vertex on

p(u1 ¢(U)) — <u1 X]_1 X29° *9 Xr1 ¢(U)>
 Then, x,must be GRAY since BLACK-to-WHITE edge (x;,
Xi,1) Cannot exist

« But then, p(X, #U)) = { Xei1y Xpso»---» X, HU)) IS @ White path
= ¢(u) Is a descendant of x, (by white-path theorem)

= T[x] > T [g(u)]

—> contradicting our choice for ¢(u) Q.E.D.

CS 473 Lecture 16 26

Strongly Connected Components

Cl:inany DFS of G = (V, E) vertices u and #(u) lie in the same
SCC,Vu eV

PROOF: u— ¢(u) (by definition) and @(u) — u since ¢(u) Is an
ancestor of u (by THM2)

THM3: two vertices u,ve V lie in the same SCC < @(u) = @(v)
Ina DFS of G = (V, E)

PROOF: let u and v be in the same SCC C, = uSiv

CS 473 Lecture 16 27

Strongly Connected Components

VW: VB W=U—wand VW U= W= Ve W, L.e.,
every vertex reachable from u is reachable from v and vice-versa
So,w=¢(u) =>w=¢g(v) and w = ¢(v) = w = ¢(u) by definition of
forefather
PROOF: Let (u) = #(v) =weC,= ueC, by ClandveC, by C1
By THM3: SCCs are sets of vertices with the same forefather

By THMZ2 and parenthesis THM: A forefather is the first vertex
discovered and the last vertex finished in its SCC

CS 473 Lecture 16 28

SCC: Why do we Run DFS on GT?

Consider r € V with largest finishing time computed by DFS on G
r must be a forefather by definition since r — r and f [r] IS
maximum in 'V
C,=7:C,=verticesinr’s SCC={uinV: g(u) =r}
= C,={ueViurrandf[x]<f[r] ¥x € R }
where R,={v e ViU v}
= C,={u € V: u> r}since f [r] Is maximum
= C,=R."={ueV:r—>uinG'} =reachability set of r in G’
l.e., C, = those vertices reachable from r in G’
Thus DFS-VISIT(GT, r) identifies all vertices in C, and
blackens them

CS 473 Lecture 16 29

SCC: Why do we Run DFS on GT?

BFS(G', r) can also be used to identify C,

G

Then, DFS on G' continues with DFS-VISIT(G', r”)
where f [r’] > f[w] Yw € V-C,

r must be a forefather by definition since r "= r” and
f [r’] is maximum in V- C,

CS 473 Lecture 16

30

SCC: Why do we Run DFS on GT?

Hence by similar reasoning DFS-VISIT(G', r”) identifies C,.,

Impossible since otherwise
r'we C.= r’ wwould have been blackened
Thus, each DFS-VISIT(G', x) in DFS(GT)
Identifies an SCC C, with ¢ = x

CS 473 Lecture 16 31

