
CS 473 Lecture 16 1

CS473-Algorithms I

Lecture 16

Strongly Connected Components

CS 473 Lecture 16 2

Strongly Connected Components

Definition: a strongly connected component (SCC) of a
directed graph G(V,E) is a maximal set of vertices U
V such that

– For each u,v U we have both u  v and v  u

i.e., u and v are mutually reachable from each other (u  v)

Let GT(V,ET) be the transpose of G(V,E) where

ET {(u,v): (v,u)  E}

– i.e., ET consists of edges of G with their directions reversed

Constructing GT from G takes O(V+E) time (adjacency list rep)

Note: G and GT have the same SCCs (u  v in G u  v in GT)

CS 473 Lecture 16 3

Strongly Connected Components

Algorithm

(1) Run DFS(G) to compute finishing times for all uV

(2) Compute GT

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] computed in Step (1)

(4) Output vertices of each DFT in DFF of Step (3) as a

separate SCC

CS 473 Lecture 16 4

Strongly Connected Components

Lemma 1: no path between a pair of vertices in

the same SCC, ever leaves the SCC

Proof: let u and v be in the same SCC  u  v

let w be on some path u w  v  u w

but v  u   a path w v  u  w u

therefore u and w are in the same SCC

QED

u

v

w
SCC

CS 473 Lecture 16 5

SCC: Example

a b c

e

d

f g h

CS 473 Lecture 16 6

SCC: Example

a b c

e

d

f g h

1

1

(1)Run DFS(G) to compute finishing times for all uV

CS 473 Lecture 16 7

SCC: Example

a b c

e

d

f g h

1

1

10

2 73 4 5 6

8 9

(1)Run DFS(G) to compute finishing times for all uV

CS 473 Lecture 16 8

SCC: Example

a b c

e

d

f g h

1

2

10

2 73 4 5 6

8 911

(1)Run DFS(G) to compute finishing times for all uV

CS 473 Lecture 16 9

SCC: Example

a b c

e

d

f g h

1

2

10

2 73 4 5 6

8 916111413

1512

1

Vertices sorted according to the finishing times:

b, e, a, c, d, g, h, f 

CS 473 Lecture 16 10

SCC: Example

a b c

e

d

f g h

(2)Compute GT

CS 473 Lecture 16 11

SCC: Example

a b c

e

d

f g h

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f 

CS 473 Lecture 16 12

SCC: Example

a b c

e

d

f g h

r
1
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f 

CS 473 Lecture 16 13

SCC: Example

a b c

e

d

f g h

r
1
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f 

CS 473 Lecture 16 14

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f 

CS 473 Lecture 16 15

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f 

CS 473 Lecture 16 16

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

r
3
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f 

CS 473 Lecture 16 17

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

r
3
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f 

CS 473 Lecture 16 18

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

r
3
= r

4
=

(3) Call DFS(GT) processing vertices in main loop in

decreasing f[u] order: b, e, a, c, d, g, h, f 

CS 473 Lecture 16 19

SCC: Example

a b c

e

d

f g h

r
1
= r

2
=

r
3
= r

4
=

(4) Output vertices of each DFT in DFF as a separate SCC

Cb{b,a,e}
Cg{g,f} Ch{h}

Cc{c,d}

CS 473 Lecture 16 20

SCC: Example

a b c

e

d

f g h

hf,g

c,d

a,b,e

Acyclic component

graph

Cb Cg

Cc

Ch

CS 473 Lecture 16 21

Strongly Connected Components

Thrm 1: in any DFS, all vertices in the same SCC

are placed in the same DFT

Proof: let r be the first vertex discovered in SCC Sr

because r is first, color[x]WHITE xSr{r} at time d[r]

So all vertices are WHITE on each r  x path xSr{r}

– since these paths never leave Sr

Hence each vertex in Sr{r}becomes a descendent of r

(White-path Thrm)

QED

r W

Sr

W

G

W
at time d[r]

CS 473 Lecture 16 22

Notation for the Rest of This

Lecture
• d[u] and f[u] refer to those values computed

by DFS(G) at step (1)

• u  v refers to G not GT

Definition: forefather (u) of vertex u

1. (u)  That vertex w such that u  w and f[u] is

maximized

2. (u)  u possible because u  u  f[u]  f[(u)]

CS 473 Lecture 16 23

Strongly Connected Components

Lemma 2: ((u))  (u)

Proof try to show that f[((u))]  f[(u)] :

For any u,v V; u  v  Rv  Ru  f[(v)]  f[(u)]

So, u  (u)  f[((u))]  f[(u)]

Due to definition of (u) we have f[((u))]  f[(u)]

Therefore f[((u))]  f[(u)] QED

u v
Rv {w: v w}


v (u)

Note:

f[x]  f[y] 

x  y

(same vertex)

CS 473 Lecture 16 24

Strongly Connected Components

Properties of forefather:

• Every vertex in an SCC has the same forefather which is in

the SCC

• Forefather of an SCC is the representative vertex of the SCC

• In the DFS of G, forefather of an SCC is the

 first vertex discovered in the SCC

 last vertex finished in the SCC

CS 473 Lecture 16 25

Strongly Connected Components

THM2: (u) of any u  V in any DFS of G is an ancestor of u

PROOF: Trivial if (u)  u.

If (u)  u, consider color of (u) at time d[u]

• (u) is GRAY: (u) is an ancestor of u  proving the theorem

• (u) is BLACK: f [(u)] < f [u]  contradiction to def. of (u)

• (u) is WHITE:  2 cases according to colors of intermediate
vertices on p(u, (u))

Path p(u, (u)) at time d[u]:

 u x1 x2 xr

G ? ? ?

w

(u)

.

CS 473 Lecture 16 26

Strongly Connected Components

Case 1: every intermediate vertex xi  p(u, (u)) is WHITE

 (u) becomes a descendant of u (WP-THM)

 f [(u)] < f [u]

 contradiction

Case 2:  some non-WHITE intermediate vertices on p(u, (u))

• Let xt be the last non-WHITE vertex on
p(u, (u))  u, x1, x2,…, xr, (u)

• Then, xt must be GRAY since BLACK-to-WHITE edge (xt,
xt+1) cannot exist

• But then, p(xt, (u))   xt+1, xt+2,…, xr, (u) is a white path

 (u) is a descendant of xt (by white-path theorem)

 f [xt] > f [(u)]

 contradicting our choice for (u) Q.E.D.

CS 473 Lecture 16 27

Strongly Connected Components

C1: in any DFS of G  (V, E) vertices u and (u) lie in the same
SCC, u  V

PROOF: u  (u) (by definition) and (u)  u since (u) is an
ancestor of u (by THM2)

THM3: two vertices u,v V lie in the same SCC  (u) = (v)
in a DFS of G  (V, E)

PROOF: let u and v be in the same SCC Cuv  u  v

CS 473 Lecture 16 28

Strongly Connected Components

w: v  w  u  w and w: u  w  v  w, i.e.,
every vertex reachable from u is reachable from v and vice-versa

So, w  (u)  w  (v) and w  (v)  w  (u) by definition of
forefather

PROOF: Let (u)  (v)  wCw uCw by C1 and vCw by C1

By THM3: SCCs are sets of vertices with the same forefather

By THM2 and parenthesis THM: A forefather is the first vertex
discovered and the last vertex finished in its SCC

w

u v

w

SCC Cuv

CS 473 Lecture 16 29

SCC: Why do we Run DFS on GT?

Consider r  V with largest finishing time computed by DFS on G

r must be a forefather by definition since r  r and f [r] is
maximum in V

Cr  ?: Cr  vertices in r’s SCC  {u in V: (u)  r}

 Cr  {u  V: u  r and f [x]  f [r] x  Ru}
where Ru {v  V: u  v}

 Cr  {u  V: u  r} since f [r] is maximum

 Cr  Rr
T  {u  V: r  u in GT}  reachability set of r in GT

i.e., Cr  those vertices reachable from r in GT

Thus DFS-VISIT(GT, r) identifies all vertices in Cr and

blackens them

CS 473 Lecture 16 30

SCC: Why do we Run DFS on GT?

BFS(GT, r) can also be used to identify Cr

Then, DFS on GT continues with DFS-VISIT(GT, r)
where f [r] > f [w] w  V Cr

r must be a forefather by definition since r r and
f [r] is maximum in V Cr

 r r

G
T
 G Cr

CS 473 Lecture 16 31

SCC: Why do we Run DFS on GT?

Hence by similar reasoning DFS-VISIT(GT, r) identifies Cr

Impossible since otherwise
r, w  Cr  r, w would have been blackened

Thus, each DFS-VISIT(GT, x) in DFS(GT)

identifies an SCC Cx with   x

 r

w

 r

w

