CS473-Algorithms I

Lecture ?

Minimum Spanning Tree

Minimum Spanning Tree

- One of the most famous greedy algorithms.
- Undirected Graph G = (V, E)
- Connected
- Weight Function $\omega : E \rightarrow R$
- Spanning Tree : Tree that connects all vertices

Minimum Spanning Tree

- MST: $\omega(T) = \sum_{(u,v) \in T} \omega(u,v)$
- Note : MST is not unique.
- Sample :

Optimal Structure

- Optimal Structure : Optimal tree has optimal subtrees.
 - Let T be an MST of G = (V, E)
 - Removing any edge (u, v) of T partitions T into two subtrees : $T_1 \& T_2$

Where
$$T_1 = (V_1, E_{T_1}) \& T_2 = (V_2, E_{T_2})$$

Optimal Structure

- Let $G_1 = (V_1, E_1) \& G_2 = (V_2, E_2)$ be subgraphs induced by $V_1 \& V_2$

i.e. $E_i = \{ (x, y) \in E : x, y \in V_i \}$

- Claim : T₁ & T₂ are MSTs of G₁ & G₂ respectively
- Proof : ω (T) = $\omega(u, v)$ + $\omega(T_1)$ + $\omega(T_2)$
- There can't be better trees than $T_1 \& T_2$ for $G_1 \& G_2$
- Otherwise, T would be suboptimal for G

Generic MST Algorithm

GENERIC-MST (G, ω)

 $\mathbf{A} \leftarrow \boldsymbol{\emptyset}$

while A does not form a spanning tree do find a safe edge (u,v) for A $A \leftarrow A \cup \{ (u,v) \}$ return A

- A is always a subset of some MST(*s*)

- (u,v) is a safe edge for A if A \cup { (u,v) } is also a subtree of some MST

Generic MST Algorithm

- One safe edge must exist at each step since :
- $-A \subset T$ where T is an MST
- Let $(u,v) \in T$ \ni $(u,v) \notin$ A \Rightarrow (u,v) is safe for A
- A cut (S, V S) of G = (V, E) is a Partition of V
- An edge $(u,v) \in E$ crosses the cut (S, V S)if $u \in S \& v \in V-S$ or vice versa
- A cut respects the set A of edges if no edge in A crosses the cut
- An edge is a light edge crossing a cut
 - If its weight is the minimum of any edges crossing the cut
 - There can be more than one light edge crossing the cut in the case of ties.

THM1 :

- Let $A \subset E$ be a subset of some MST T of G (i.e. $A \subset T$)
- Let (S, V S) be any cut of G that respects A
- Let $(u,v) \in E$ be a light edge crossing (S, V S)

- $S = \{a, b, c\}$
- $V S = \{ d, e, f, g, h \}$
- Edge (c,g) \in E is the light edge crossing the cut
- A = { (a,c), (b,c), (e,f), (g,h) } \bullet Edge (c,g) is a safe edge for A CUT (S, V - S) repects A

Example : Consider another cut respecting the same A

• Edge (g,f) is the light edge

THM1 displays the greedy-choice property Proof of THM1 :

- Consider an MST $T \ni A \subset T$ and $(u,v) \notin T$
- Try to construct another MST T' \ni AU {(u,v)} \subset T', (u,v) is a light edge

- Consider the unique path P between *u* & *v* in T
- Since *u* & *v* are on opposite sides of the cut
 - \exists at least one edge on P that crosses the cut
 - Let (x,y) be any such edge
- Removing (x,y) breaks T into two components $T_1 \& T_2$
 - T₁ & T₂ are MST's of G₁ & G₂ (Optimal Substructure Prop.)

- Therefore, $T' = T \{(x,y)\} \cup \{(u,v)\}$ is also a spanning tree of G
- Since (*u*,*v*) is a light edge crossing the cut and (*x*,*y*) also crosses the cut

$$-\omega(u,v) \leq \omega(x,y)$$

- $-\omega(T') = \omega(T) \omega(x,y) + \omega(u,v) \le \omega(T)$
- Since T is an MST, T' is also an MST □

- Lemma: At any point in the execution of the generic algorithm C reach C (VA) is a former
 - Graph $G_A = (V,A)$ is a forest
 - Each connected component of G_A is a tree
- Corollary: Let $A \subset E$ be a subtree of some MST T of G (i.e., $A \subset T$) Let C be a connected component in forest $G_A = (V,A)$
 - If (u,v) is a light edge connecting C to some other component in G_A then (u,v) is a safe edge for A
- Algorithms of Kruskal and Prim :
 - Both algorithms use a specific rule:
 - > To determine a safe-edge in the Generic MST algoritm.

- In Kruskal's algorithm
 - \succ Set A : A forest
 - Safe-Edge : Least-Weight edge connecting two components (trees).
- In Prim's algorithm
 - Set A : A single tree

Safe-Edge : Least-Weight edge connecting tree to a vertex not in the tree.