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CS473-Algorithms I

Lecture ?

The Algorithms of Kruskal and Prim
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The Algorithms of Kruskal and Prim

Both algorithms use a specific rule to:

Determine a safe-edge in the Generic MST algoritm. 

In Kruskal’s algorithm, the set A is a forest

The Safe-Edge is always a Least-Weight edge in the graph

that connects  two distinct  components (trees).

In Prim’s algorithm, the set A forms a single tree

The Safe-Edge is always a Least-Weight edge in the graph 

that connects the tree to a vertex not in tree.
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Kruskal’s Algorithm
• Kruskal’s algorithm is based directly on the Generic-MST

• It finds a Safe-Edge to add to the growing forest, by finding an 

edge (u,v) of Least-Weight of all edges that connect any two 

trees in the forest

• Let C1 & C2 denote two trees that are connected by (u,v)

u

vC1
C2
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Kruskal’s Algorithm

• Since (u,v) must be a light-edge connecting C1 to some 

other tree, the Corollary implies that (u,v) is a 

Safe-Edge for C1. 

• Kruskal’s algorithm is a greedy algorithm

Because at each step it adds to the forest an edge of 

least possible weight.        
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The Execution of Kruskal’s Algorithm
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Kruskal’s Algorithm

• Our implementation of Kruskal’s Algorithm uses a 

Disjoint-Set Data Structure to maintain several disjoint 

set of elements

• Each set contains the vertices of a tree of the current 

forest
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Kruskal’s Algorithm
MST-KRUSKAL (G, ω)

A  Ø

for each vertex v  V[G] do

MAKE-SET (v)

SORT the edges of E by nondecreasing weight ω

for each edge (u,v)  E in nondecreasing order do

if FIND-SET(u)  FIND-SET(v)  then

A A  {(u,v)}

UNION (u,v)

return A

end
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Kruskal’s Algorithm

• The comparison FIND-SET(u)  FIND-SET(v) 

checks whether the endpoints u & v belong to the same 
tree

• If they do, then the edge (u,v) cannot be added to the 

tree without creating a cycle, and the edge is discarded

• Otherwise, the two vertices belong to different trees, 

and the edge is added to A
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Running Time of Kruskal’s Algorithm

• The running time for a graph G= (V, E) depends on the 

implementation of the disjoint-set data structure.

• Use the Disjoint-Set-Forest implementation with the 

Union-By-Rank and Path-Compression heuristics.

• Since it is the asymptotically fastest implementation 

known

Initialization (first for-loop) takes time O (V)

Sorting takes time O (E lg E) time



CS 473 Lecture ? 23

Running Time of Kruskal’s Algorithm

• There are O (E) operations on the disjoint-set forest 

which in total take O ( E  (E, V) ) time where  is 

the Functional Inverse of Ackerman’s Function

• Since  (E, V) = O ( lg E)

The total running time is O ( E lg E ).   
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Prim’s Algorithm

• Prim’s algorithm is also a special case of Generic-MST 
algorithm

• The edges in the set A always form a single tree

• The tree starts from an arbitrary vertex v and grows 

until the tree spans all the vertices in V

• At each step, a light-edge connecting a vertex in A to a 

vertex in V - A is added to the tree A

• Hence, the Corollary implies that Prim’s algorithm adds 

safe-edges to A at each step.
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Prim’s Algorithm

• This strategy is greedy

• The tree is augmented at each step with an 

edge that contributes the minimum amount 

possible to the tree’s weight.
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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Implementation of Prim’s 

Algorithm
• The key to implementing Prim’s algorithm efficiently is to 

make it easy to select a new edge to be added to A

• All vertices that are not in the tree reside in a priority 

queue Q based on a key field.

• For each vertex v, key[v] is the minimum weight of any 

edge connecting v to a vertex in the tree

key[v] =  if there is no such edge.
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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The Execution of Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
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Prim’s Algorithm
• For each vertex v we maintain two fields:

key [v] : Min. weight of any edge connecting v to a vertex 
in the tree.

key [v] =  if there is no such edge   

 [v] :   Points to the parent of v in the tree. 

• During the algorithm, the set A in Generic-MST is 

maintained as

A = { (v,  [v] )  : v  V - {r} - Q } , where r is a random 
start vertex.

• When the algorithm terminates, the priority queue is empty.

The MST A for G is thus A = { (v,  [v] )  : v  V - {r} } 
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Prim’s Algorithm
MST-PRIM (G, ω, r)

Q  V[G]

for each u  Q do

key[u] 

key[r]  0

 [r]  NIL

BUILD-MIN-HEAP (Q)

while Q  Ø do

u  EXTRACT-MIN (Q)

for each v Adj [u]  do

if v  Q and ω(u, v) < key[v] then

 [v]  u

DECREASE-KEY (Q, v, ω(u, v) )

/* key[v]  ω(u, v) */ 

end
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Prim’s Algorithm

• Through the algorithm, the set V - Q contains the vertices in 

the tree being grown. 

• u  EXTRACT-MIN (Q) identifies a vertex u  Q incident 

on a light edge crossing the cut (V-Q, Q) with the exception 

of the first iteration, in which u = r

• Removing u from the set Q adds it to the set V - Q of 

vertices in the tree
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Prim’s Algorithm

• The inner for-loop updates the key &  fields of every vertex 

v adjacent to u but not in the tree

• This updating maintains the invariants

key [v]  ω ( v,  [v] ), and

( v,  [v] ) is a light-edge connecting v to the tree 
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Running Time of Prim’s Algorithm

• The performance of Prim’s algorithm depends on how 

we implement the priority queue

• If Q is implemented as a binary heap

Use BUILD-MIN-HEAP procedure to perform the 
initialization in O (V) time

while-loop is executed |V| times

each EXTRACT-MIN operation takes O (lgV) time

Therefore, the total time for all calls EXTRACT-MIN is 

O (V lg V)
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Running Time of Prim’s Algorithm

• The inner for-loop is executed O(E) times altogether since the 
sum of the lengths of all adjacency lists is 2|E| 

• Within the for-loop 

The membership test v  Q can be implemented in  constant 
time by keeping a bit for each vertex whether or not it is in Q 
and updating the bit when vertex is removed from Q

The assigment key[v]  ω(u, v) involves a DECREASE-KEY
operation on the heap which can be implemented in O(lg V) 
time
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Running Time of Prim’s Algorithm

• Thus, the total time for Prim’s algorithm is

O( V lgV + E lgV )  = O ( E lgV )

• The asymptotic running time of Prim’s algorithm can be   

improved by using FIBONACCI HEAPS

• If |V| elements are organized into a fibonacci heap we can 

perform:

An EXTRACT-MIN operation in O(lgV) amortized time

A DECREASE-KEY operation (line 11) in O(1) amortized time
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Running Time of Prim’s Algorithm

The asymptotic running time of Prim’s algorithm can be 

improved by using FIBONACCI HEAPS

If |V| elements are organized into a fibonacci heap we can

perform:

An EXTRACT-MIN operation in O(lgV) amortized time

A DECREASE-KEY operation in O(1) amortized time

Hence, if we use FIBONACCI-HEAP to implement the priority 
queue Q the running time of Prim’s algorithm improves to:

O( E + V lgV )


