
CS 473 Lecture ? 1

CS473-Algorithms I

Lecture ?

The Algorithms of Kruskal and Prim

CS 473 Lecture ? 2

The Algorithms of Kruskal and Prim

Both algorithms use a specific rule to:

Determine a safe-edge in the Generic MST algoritm.

In Kruskal’s algorithm, the set A is a forest

The Safe-Edge is always a Least-Weight edge in the graph

that connects two distinct components (trees).

In Prim’s algorithm, the set A forms a single tree

The Safe-Edge is always a Least-Weight edge in the graph

that connects the tree to a vertex not in tree.

CS 473 Lecture ? 3

Kruskal’s Algorithm
• Kruskal’s algorithm is based directly on the Generic-MST

• It finds a Safe-Edge to add to the growing forest, by finding an

edge (u,v) of Least-Weight of all edges that connect any two

trees in the forest

• Let C1 & C2 denote two trees that are connected by (u,v)

u

vC1
C2

CS 473 Lecture ? 4

Kruskal’s Algorithm

• Since (u,v) must be a light-edge connecting C1 to some

other tree, the Corollary implies that (u,v) is a

Safe-Edge for C1.

• Kruskal’s algorithm is a greedy algorithm

Because at each step it adds to the forest an edge of

least possible weight.

CS 473 Lecture ? 5

The Execution of Kruskal’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(a)

11

CS 473 Lecture ? 6

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

11

The Execution of Kruskal’s Algorithm

(b)

CS 473 Lecture ? 7

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

11

The Execution of Kruskal’s Algorithm

(c)

CS 473 Lecture ? 8

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

11

The Execution of Kruskal’s Algorithm

(d)

CS 473 Lecture ? 9

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

11

The Execution of Kruskal’s Algorithm

(e)

CS 473 Lecture ? 10

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(g,i) discarded

11

The Execution of Kruskal’s Algorithm

(f)

CS 473 Lecture ? 11

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

11

The Execution of Kruskal’s Algorithm

(g)

CS 473 Lecture ? 12

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(h,i) discarded

11

The Execution of Kruskal’s Algorithm

(h)

CS 473 Lecture ? 13

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

11

The Execution of Kruskal’s Algorithm

(i)

CS 473 Lecture ? 14

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(b,c) discarded

11

The Execution of Kruskal’s Algorithm

(j)

CS 473 Lecture ? 15

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

11

The Execution of Kruskal’s Algorithm

(k)

CS 473 Lecture ? 16

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(e,f) discarded

11

The Execution of Kruskal’s Algorithm

(l)

CS 473 Lecture ? 17

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

11

(b,h) discarded

The Execution of Kruskal’s Algorithm

(m)

CS 473 Lecture ? 18

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

11

(d,f) discarded

The Execution of Kruskal’s Algorithm

(n)

CS 473 Lecture ? 19

Kruskal’s Algorithm

• Our implementation of Kruskal’s Algorithm uses a

Disjoint-Set Data Structure to maintain several disjoint

set of elements

• Each set contains the vertices of a tree of the current

forest

CS 473 Lecture ? 20

Kruskal’s Algorithm
MST-KRUSKAL (G, ω)

A  Ø

for each vertex v  V[G] do

MAKE-SET (v)

SORT the edges of E by nondecreasing weight ω

for each edge (u,v)  E in nondecreasing order do

if FIND-SET(u)  FIND-SET(v) then

A A  {(u,v)}

UNION (u,v)

return A

end

CS 473 Lecture ? 21

Kruskal’s Algorithm

• The comparison FIND-SET(u)  FIND-SET(v)

checks whether the endpoints u & v belong to the same
tree

• If they do, then the edge (u,v) cannot be added to the

tree without creating a cycle, and the edge is discarded

• Otherwise, the two vertices belong to different trees,

and the edge is added to A

CS 473 Lecture ? 22

Running Time of Kruskal’s Algorithm

• The running time for a graph G= (V, E) depends on the

implementation of the disjoint-set data structure.

• Use the Disjoint-Set-Forest implementation with the

Union-By-Rank and Path-Compression heuristics.

• Since it is the asymptotically fastest implementation

known

Initialization (first for-loop) takes time O (V)

Sorting takes time O (E lg E) time

CS 473 Lecture ? 23

Running Time of Kruskal’s Algorithm

• There are O (E) operations on the disjoint-set forest

which in total take O (E  (E, V)) time where  is

the Functional Inverse of Ackerman’s Function

• Since  (E, V) = O (lg E)

The total running time is O (E lg E).

CS 473 Lecture ? 24

Prim’s Algorithm

• Prim’s algorithm is also a special case of Generic-MST
algorithm

• The edges in the set A always form a single tree

• The tree starts from an arbitrary vertex v and grows

until the tree spans all the vertices in V

• At each step, a light-edge connecting a vertex in A to a

vertex in V - A is added to the tree A

• Hence, the Corollary implies that Prim’s algorithm adds

safe-edges to A at each step.

CS 473 Lecture ? 25

Prim’s Algorithm

• This strategy is greedy

• The tree is augmented at each step with an

edge that contributes the minimum amount

possible to the tree’s weight.

CS 473 Lecture ? 26

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(a)

11

CS 473 Lecture ? 27

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(b)

11

CS 473 Lecture ? 28

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(c)

11

7

CS 473 Lecture ? 29

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(d)

11

CS 473 Lecture ? 30

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(e)

11

CS 473 Lecture ? 31

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(f)

11

CS 473 Lecture ? 32

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(h)

11

CS 473 Lecture ? 33

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(i)

11

Implementation of Prim’s

Algorithm
• The key to implementing Prim’s algorithm efficiently is to

make it easy to select a new edge to be added to A

• All vertices that are not in the tree reside in a priority

queue Q based on a key field.

• For each vertex v, key[v] is the minimum weight of any

edge connecting v to a vertex in the tree

key[v] =  if there is no such edge.

CS 473 Lecture ? 34

CS 473 Lecture ? 35

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(a)

11

4*

8*

 







CS 473 Lecture ? 36

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(b)

11

8*

8* 







CS 473 Lecture ? 37

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(c)

11

8

7



4

2*

CS 473 Lecture ? 38

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(d)

11

7

7



4*6

CS 473 Lecture ? 39

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(e)

11

7

7

10

2*

CS 473 Lecture ? 40

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(f)

11

1*

7

10

CS 473 Lecture ? 41

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(g)

11

7*

10

CS 473 Lecture ? 42

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(h)

11 9*

CS 473 Lecture ? 43

The Execution of Prim’s Algorithm

a

b c

e

d

8

8

4

67

2

10

4 14

1
h g f

i

7

9

2

(i)

11

CS 473 Lecture ? 44

Prim’s Algorithm

u1

u2

u3

v
key[v]= 

[v]=NIL

8

6

4

V-Q

Q

CS 473 Lecture ? 45

Prim’s Algorithm

i1

u2

u3

v
key[v]= 8

[v]= u1

8

6

4

V-Q

Q

Vertex u1 moves from Q to V-Q thru EXTRACT-MIN

CS 473 Lecture ? 46

Prim’s Algorithm

u1

u2

u3

v

key[v]= 6

[v]= u2

8

6

4

V-Q

Q

Vertex u2 moves from Q to V-Q thru EXTRACT-MIN

CS 473 Lecture ? 47

Prim’s Algorithm

u1

u2

u3

v
key[v]= 4

[v]= u3

8

6

4

V-Q

Q

Vertex u3 moves from Q to V-Q thru EXTRACT-MIN

CS 473 Lecture ? 48

Prim’s Algorithm
• For each vertex v we maintain two fields:

key [v] : Min. weight of any edge connecting v to a vertex
in the tree.

key [v] =  if there is no such edge

 [v] : Points to the parent of v in the tree.

• During the algorithm, the set A in Generic-MST is

maintained as

A = { (v,  [v]) : v  V - {r} - Q } , where r is a random
start vertex.

• When the algorithm terminates, the priority queue is empty.

The MST A for G is thus A = { (v,  [v]) : v  V - {r} }

CS 473 Lecture ? 49

Prim’s Algorithm
MST-PRIM (G, ω, r)

Q  V[G]

for each u  Q do

key[u] 

key[r]  0

 [r]  NIL

BUILD-MIN-HEAP (Q)

while Q  Ø do

u  EXTRACT-MIN (Q)

for each v Adj [u] do

if v  Q and ω(u, v) < key[v] then

 [v]  u

DECREASE-KEY (Q, v, ω(u, v))

/* key[v]  ω(u, v) */

end

CS 473 Lecture ? 50

Prim’s Algorithm

• Through the algorithm, the set V - Q contains the vertices in

the tree being grown.

• u  EXTRACT-MIN (Q) identifies a vertex u  Q incident

on a light edge crossing the cut (V-Q, Q) with the exception

of the first iteration, in which u = r

• Removing u from the set Q adds it to the set V - Q of

vertices in the tree

CS 473 Lecture ? 51

Prim’s Algorithm

• The inner for-loop updates the key &  fields of every vertex

v adjacent to u but not in the tree

• This updating maintains the invariants

key [v]  ω (v,  [v]), and

(v,  [v]) is a light-edge connecting v to the tree

CS 473 Lecture ? 52

Running Time of Prim’s Algorithm

• The performance of Prim’s algorithm depends on how

we implement the priority queue

• If Q is implemented as a binary heap

Use BUILD-MIN-HEAP procedure to perform the
initialization in O (V) time

while-loop is executed |V| times

each EXTRACT-MIN operation takes O (lgV) time

Therefore, the total time for all calls EXTRACT-MIN is

O (V lg V)

CS 473 Lecture ? 53

Running Time of Prim’s Algorithm

• The inner for-loop is executed O(E) times altogether since the
sum of the lengths of all adjacency lists is 2|E|

• Within the for-loop

The membership test v  Q can be implemented in constant
time by keeping a bit for each vertex whether or not it is in Q
and updating the bit when vertex is removed from Q

The assigment key[v]  ω(u, v) involves a DECREASE-KEY
operation on the heap which can be implemented in O(lg V)
time

CS 473 Lecture ? 54

Running Time of Prim’s Algorithm

• Thus, the total time for Prim’s algorithm is

O(V lgV + E lgV) = O (E lgV)

• The asymptotic running time of Prim’s algorithm can be

improved by using FIBONACCI HEAPS

• If |V| elements are organized into a fibonacci heap we can

perform:

An EXTRACT-MIN operation in O(lgV) amortized time

A DECREASE-KEY operation (line 11) in O(1) amortized time

CS 473 Lecture ? 55

Running Time of Prim’s Algorithm

The asymptotic running time of Prim’s algorithm can be

improved by using FIBONACCI HEAPS

If |V| elements are organized into a fibonacci heap we can

perform:

An EXTRACT-MIN operation in O(lgV) amortized time

A DECREASE-KEY operation in O(1) amortized time

Hence, if we use FIBONACCI-HEAP to implement the priority
queue Q the running time of Prim’s algorithm improves to:

O(E + V lgV)

