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A disjoint-set data structure

• Maintains a collection                         of disjoint 
dynamic sets

• Each set is identified by a representative which is some 
member of the set

In some applications,

• It doesn't matter which member is used as the 
representative

• We only care that,

 if we ask for the representative of a set twice without    
modifying the set between the requests,

we get the same answer both times

}{ ,..., kSS1S

Disjoint Set Operations
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In other applications,
There may be a prescribed rule for choosing the 
representative 

E.G. Choosing the smallest member in the set 

Disjoint Set Operations

Each element of a set is represented by an object “x”

MAKE-SET(x) creates a new set whose only member is x
– Object x is the representative of the set

– x is not already a member of any other set

UNION(x, y) unites the dynamic sets             that contain
x & y

– are assumed to be disjoint prior to the operation

– The new representative is some member of 

ySS &

ySS &

ySS 
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– Usually, the representative of either               is chosen as 
the new representative

We destroy sets             , removing them from the collection 

since we require the sets in the collection to be disjoint

FIND-SET(x) returns a pointer to the representative of the 
unique set containing x

We will analyze the running times in terms of two parameters

 n  : The number of MAKE-SET operations

 m : The total number of MAKE-SET, UNION

and FIND-SET operations 

yORSS

ySS &

S

Disjoint Set Operations
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• Each union operation reduces the number of sets by one

since the sets are disjoint

 Therefore, only one set remains after  n - 1 union 

operations

 Thus, the number of union operations is       n – 1

• Also note that, m      n  always hold

since MAKE-SET operations are included in the     

total number of operations





Disjoint Set Operations
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Determining the connected components of an undirected graph G=(V,E)

CONNECTED-COMPONENTS (G)
for each vertex v      V[G] do

MAKE-SET(v)
endfor

for each edge (u, v) E[G] do
if   FIND-SET(u)       FIND-SET(v) then

UNION(u, v)
endif

endfor
end

SAME-COMPONENT(u,v)
if FIND-SET(u) = FIND-SET(v) then 

return TRUE
else

return FALSE
endif

end






An Application of Disjoint-Set Data Structures



CS 473 Lecture X 7

a b

c d

j

g

fe h

i

Initial    {a}    {b}      {c}     {d}    {e}       {f}    {g}    {h}    {i}   {j}

An Application of Disjoint-Set Data Structures
Determining the connected components of an undirected graph G=(V,E)
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Determining the connected components of an undirected graph G=(V,E)
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• Represent  each set by a linked-list

• The first object in the linked-list serves as its set

representative

• Each object in the linked-list contains

i. A set member

ii. A pointer to the object containing the next set 

member

iii. A pointer back to the representative

Linked-List Representation of Disjoint Sets

MAKE-SET(x) : O(1)
Representative pointer

x

/ Next Object Pointer

FIND-SET(x) : We return the representative pointer of x
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A Simple Implementation of Union : UNION(, y)

– APPEND x's list to the end of y 's list

– The representative of y 's list becomes the new representative

– UPDATE the representative pointer of each object originally 

on x's list which takes time linear in the length of x's list 

Linked-List Representation of Disjoint Sets

1x 2x 4x3x• • • • 's 

list
•/

1y 2y 3y• • •y 's 

list

NIL
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1x 2x 4x3x
• • • • 's 

list
•/
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• • •y 's 

list
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1y 2y 2x3y
• • • •

•
3x
•

•
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•

•
1x
•
/

A Simple Implementation of Union : UNION(, y)

Linked-List Representation of Disjoint Sets
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• A sequence of m operations that requires            time

• Suppose that we have n objects                    and let m = 2n - 1

)( 2m

nxxx ,...,, 21

Analysis of the Simple Union Implementation

Operation Number of Objects 

Updated

Updated Objects 

(Denoted By ‘’)

MAKE-SET(1) 1 {1}

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Analysis of the Simple Union Implementation



CS 473 Lecture X 20

{1}

{2}

1

1

.

.

.

MAKE-SET(1)

MAKE-SET(2)

.

.

.

Updated Objects 

(Denoted By ‘’)
Number of Objects 

Updated

Operation





Analysis of the Simple Union Implementation



CS 473 Lecture X 21

{1}

{2}

{n}

1

1

.

.

.

1

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

Updated Objects 

(Denoted By ‘’)
Number of Objects 

Updated

Operation







Analysis of the Simple Union Implementation



CS 473 Lecture X 22

{1}

{2}

{n}

{1}      {2}      {1, 


2}

1

1

.

.

.

1

1

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1, 


2)

Updated Objects 

(Denoted By ‘’)
Number of Objects 

Updated

Operation







 

Analysis of the Simple Union Implementation



CS 473 Lecture X 23

{1}

{2}

{n}

{1}      {2}      {1, 


2}

{1, 


2}     {3}      {1, 


2, 


3}

1

1

.

.

.

1

1

2

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1, 


2)

UNION(2, 


3)

Updated Objects 

(Denoted By ‘’)
Number of Objects 

Updated

Operation












 

Analysis of the Simple Union Implementation



CS 473 Lecture X 24

{1}

{2}

{n}

{1}      {2}      {1, 


2}

{1, 


2}     {3}      {1, 


2, 


3}

{1, 


2, 


3}    {4}     {1, 


2, 


3,


4}

1

1

.

.

.

1

1

2

3

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1, 


2)

UNION(2, 


3)

UNION(3, 


4)

Updated Objects 

(Denoted By ‘’)
Number of Objects 

Updated

Operation







 

 


 



Analysis of the Simple Union Implementation



CS 473 Lecture X 25

{1}

{2}

{n}

{1}      {2}      {1, 


2}

{1, 


2}     {3}      {1, 


2, 


3}

{1, 


2, 


3}    {4}     {1, 


2, 


3,


4}

1

1

.

.

.

1

1

2

3
.
.

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1, 


2)

UNION(2, 


3)

UNION(3, 


4)

.

.

Updated Objects 

(Denoted By ‘’)
Number of Objects 

Updated

Operation












  


 



Analysis of the Simple Union Implementation



CS 473 Lecture X 26

{1}

{2}

{n}

{1}      {2}      {1, 


2}

{1, 


2}     {3}      {1, 


2, 


3}

{1, 


2, 


3}    {4}     {1, 


2, 


3,


4}

{1, 


2,..,


n-1}    {n}     {1, 


2,..,


n-1,


n,}

1

1

.

.

.

1

1

2

3
.
.

n - 1

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1, 


2)

UNION(2, 


3)

UNION(3, 


4)

.

.

UNION(n-1, 


n)

Updated Objects 

(Denoted By ‘’)
Number of Objects 

Updated

Operation












 



 




  

Analysis of the Simple Union Implementation



CS 473 Lecture X 27

• The total number of representative pointer updates
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MAKE-SET 

operations

UNION 

operations

)( 2m since  2mn 

 Thus, on the average, each operation requires (m) time

 That is, the amortized time of an operation is (m)

Analysis of the Simple Union Implementation
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A Weighted-Union Heuristic

• The simple implementation is inefficient because

 We may be appending a longer list to a shorter list

during a UNION operation 

so that we must update the representative                 

pointer of each member of the longer list

Weighted Union Heuristic

– Maintain the length of each list

– Always append the smaller list to the longer list

With ties broken arbitrarily

‼ A single UNION can still take (m) time if both sets have 

(m) members
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Theorem: A sequence of m MAKE-SET, UNION & FIND-

SET operations, n of which are MAKE-SET operations, takes 

O(m+nlgn) time

Proof: Try to compute an upper bound on the number of 

representative pointer updates for each object in a set of size n

Weighted Union Heuristic

Consider a fixed object x

– Each time x’s R-PTR was updated, x was a  member of  the 
smaller set 

{x}    {v}→ {   ,v}  1-st update |Sx|   2

{x, v}     {w1, w2} → {   , v ,w1,w2}    2-nd update |Sx|   4

{x,v,w1,w2}    {z1,z2,z3,z4} → {   , v ,w1,w2,z1,z2,z3,z4}; |Sx|  4

3-rd update |S|   8






 


 



 
   


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• For any k   n, after x’s R-PTR has been updated          times 
the resulting set must have at least k members

 R-PTR of each object can be updated at most          time 

over all UNION operations

  klg

 nlg

Weighted Union Heuristic

Analysis of The Weighted-Union Heuristic
• The figure below illustrates a worst case sequence for a set 

with n = 16 objects
• The total number of R-PTR updates
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Analysis of The Weighted-Union Heuristic
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Analysis of The Weighted-Union Heuristic
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• Each MAKE-SET & FIND-SET operation takes O(1) time, 

and there are O(m) of them

 The total time for the entire sequence

= O(m + nlgn)

Analysis of The Weighted-Union Heuristic

Disjoint Set Forests

In a faster implementation, we represent sets by rooted trees

– Each node contains one member

– Each tree represents one set

– Each member points only to its parent

– The root of each tree contains the representative

– Each root is its own parent
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UNION(x, y)
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x4

y1

y2

y3

y1

y2

y3

x1

x2 x3

x4

Disjoint Set Forests
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MAKE-SET : Simply creates a tree with just one node : O(1)
FIND-SET : Follows parent pointers until the root node is found 

The nodes visited on this path toward the root 
constitute the FIND-PATH

UNION : Makes the root of one tree to point to the other one

Disjoint Set Forests

Straightforward Implementation

Heuristics To Improve the Running Time

• Straightforward implementation is no faster than ones that use 

the linked-list representation

• A sequence of n – 1 UNIONs, following a sequence of n

MAKE-SETs, may create a tree, which is just a linear chain of 

n nodes 
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First Heuristic : UNION by Rank

• Similar to the weighted-union used for the linked-list

representation

• The idea is to make the root of the tree with fewer nodes 

point to the root of the tree with more nodes

Heuristics To Improve the Running Time

• Rather than explicitly keeping the size of the subtree 

rooted at each node

We maintain a rank

– that approximates the logarithm of the subtree size

– and is also an upperbound on the height of the node
• During a UNION operation 

– make the root with smaller rank to point to the

root with larger rank
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Second Heuristic : Path Compression
• Use it during the FIND-SET operations 

• Make each node on the FIND-PATH to point directly to 

the root

a

b

c

d

e

f

FIND-SET(b)

Heuristics To Improve the Running Time
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Path Compression During FIND-SET(b) Operation

a

c d e

f

b

Heuristics To Improve the Running Time
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Pseudocodes For the Heuristics
Implementation of UNION-BY-RANK Heuristic
p[x] : Pointer to the parent of the node x
rank[x] : An upperbound on the height of node x in the tree

MAKE-SET(x) UNION(x,y)

p[x] ← x                             LINK(FIND-SET(x),FIND-SET(y))
rank[x] ← 0 end

end

LINK(x,y)

if rank[x] > rank[y] then

p[y] ← x

else

p[x] ← y

if rank[x] = rank[y]  then

rank[y] = rank[y] + 1

endif

endif

end
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Implementation of UNION-BY-RANK Heuristic

– When a singleton set is created by a MAKE-SET

the initial rank of the single node in the tree is zero

– Each FIND-SET operation leaves all ranks unchanged

– When applying a UNION to two trees,

we make the root of tree with higher rank

the parent of the root of lower rank

Ties are broken arbitrarily
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Implementation of the Path-Compression Heuristic

The FIND-SET procedure with Path-Compression
Iterative Version

FIND-SET(x)

y ← x

while y p[y]  do

y ← p[y]

endwhile

root ← y

while x p[x]  do

parent ← p[x]

p[x] ← root

x ← parent

endwhile

return root

end





Recursive Version

FIND-SET(x)

if x p[x]  then

p[x] ← FIND-SET(p[x])

endif

return p[x]

end




