
CS 473 Lecture X 1

CS473-Algorithms I

Lecture X

Disjoint Set Operations

CS 473 Lecture X 2

A disjoint-set data structure

• Maintains a collection of disjoint
dynamic sets

• Each set is identified by a representative which is some
member of the set

In some applications,

• It doesn't matter which member is used as the
representative

• We only care that,

 if we ask for the representative of a set twice without
modifying the set between the requests,

we get the same answer both times

}{ ,..., kSS1S

Disjoint Set Operations

CS 473 Lecture X 3

In other applications,
There may be a prescribed rule for choosing the
representative

E.G. Choosing the smallest member in the set

Disjoint Set Operations

Each element of a set is represented by an object “x”

MAKE-SET(x) creates a new set whose only member is x
– Object x is the representative of the set

– x is not already a member of any other set

UNION(x, y) unites the dynamic sets that contain
x & y

– are assumed to be disjoint prior to the operation

– The new representative is some member of

ySS &

ySS &

ySS 

CS 473 Lecture X 4

– Usually, the representative of either is chosen as
the new representative

We destroy sets , removing them from the collection

since we require the sets in the collection to be disjoint

FIND-SET(x) returns a pointer to the representative of the
unique set containing x

We will analyze the running times in terms of two parameters

 n : The number of MAKE-SET operations

 m : The total number of MAKE-SET, UNION

and FIND-SET operations

yORSS

ySS &

S

Disjoint Set Operations

CS 473 Lecture X 5

• Each union operation reduces the number of sets by one

since the sets are disjoint

 Therefore, only one set remains after n - 1 union

operations

 Thus, the number of union operations is n – 1

• Also note that, m n always hold

since MAKE-SET operations are included in the

total number of operations





Disjoint Set Operations

CS 473 Lecture X 6

Determining the connected components of an undirected graph G=(V,E)

CONNECTED-COMPONENTS (G)
for each vertex v V[G] do

MAKE-SET(v)
endfor

for each edge (u, v) E[G] do
if FIND-SET(u) FIND-SET(v) then

UNION(u, v)
endif

endfor
end

SAME-COMPONENT(u,v)
if FIND-SET(u) = FIND-SET(v) then

return TRUE
else

return FALSE
endif

end






An Application of Disjoint-Set Data Structures

CS 473 Lecture X 7

a b

c d

j

g

fe h

i

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

An Application of Disjoint-Set Data Structures
Determining the connected components of an undirected graph G=(V,E)

CS 473 Lecture X 8

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Determining the connected components of an undirected graph G=(V,E)

CS 473 Lecture X 9

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

(e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Determining the connected components of an undirected graph G=(V,E)

CS 473 Lecture X 10

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

(e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}

(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Determining the connected components of an undirected graph G=(V,E)

CS 473 Lecture X 11

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

(e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}

(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}

(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Determining the connected components of an undirected graph G=(V,E)

CS 473 Lecture X 12

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

(e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}

(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}

(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}

(a, b) {a, b, c, d} {e, g} {f} {h, i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Determining the connected components of an undirected graph G=(V,E)

CS 473 Lecture X 13

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

(e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}

(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}

(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}

(a, b) {a, b, c, d} {e, g} {f} {h, i} {j}

(e, f) {a, b, c, d} {e, f, g} {h, i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Determining the connected components of an undirected graph G=(V,E)

CS 473 Lecture X 14

Initial {a} {b} {c} {d} {e} {f} {g} {h} {i} {j}

(b, d) {a} {b, d} {c} {e} {f} {g} {h} {i} {j}

(e, g) {a} {b, d} {c} {e, g} {f} {h} {i} {j}

(a, c) {a, c} {b, d} {e, g} {f} {h} {i} {j}

(h, i) {a, c} {b, d} {e, g} {f} {h, i} {j}

(b, c) {a, b, c, d} {e, f, g} {h, i} {j}

(a, b) {a, b, c, d} {e, g} {f} {h, i} {j}

(e, f) {a, b, c, d} {e, f, g} {h, i} {j}

a b

c d

j

g

fe h

i

An Application of Disjoint-Set Data Structures
Determining the connected components of an undirected graph G=(V,E)

CS 473 Lecture X 15

• Represent each set by a linked-list

• The first object in the linked-list serves as its set

representative

• Each object in the linked-list contains

i. A set member

ii. A pointer to the object containing the next set

member

iii. A pointer back to the representative

Linked-List Representation of Disjoint Sets

MAKE-SET(x) : O(1)
Representative pointer

x

/ Next Object Pointer

FIND-SET(x) : We return the representative pointer of x

CS 473 Lecture X 16

A Simple Implementation of Union : UNION(, y)

– APPEND x's list to the end of y 's list

– The representative of y 's list becomes the new representative

– UPDATE the representative pointer of each object originally

on x's list which takes time linear in the length of x's list

Linked-List Representation of Disjoint Sets

1x 2x 4x3x• • • • 's

list
•/

1y 2y 3y• • •y 's

list

NIL

CS 473 Lecture X 17

1x 2x 4x3x
• • • • 's

list
•/

1y 2y 3y
• • •y 's

list

NIL

1y 2y 2x3y
• • • •

•
3x
•

•
4x
•

•
1x
•
/

A Simple Implementation of Union : UNION(, y)

Linked-List Representation of Disjoint Sets

CS 473 Lecture X 18

• A sequence of m operations that requires time

• Suppose that we have n objects and let m = 2n - 1

)(2m

nxxx ,...,, 21

Analysis of the Simple Union Implementation

Operation Number of Objects

Updated

Updated Objects

(Denoted By ‘’)

MAKE-SET(1) 1 {1}


CS 473 Lecture X 19

{1}

{2}

1

1

MAKE-SET(1)

MAKE-SET(2)

Updated Objects

(Denoted By ‘’)
Number of Objects

Updated

Operation





Analysis of the Simple Union Implementation

CS 473 Lecture X 20

{1}

{2}

1

1

.

.

.

MAKE-SET(1)

MAKE-SET(2)

.

.

.

Updated Objects

(Denoted By ‘’)
Number of Objects

Updated

Operation





Analysis of the Simple Union Implementation

CS 473 Lecture X 21

{1}

{2}

{n}

1

1

.

.

.

1

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

Updated Objects

(Denoted By ‘’)
Number of Objects

Updated

Operation







Analysis of the Simple Union Implementation

CS 473 Lecture X 22

{1}

{2}

{n}

{1} {2} {1,


2}

1

1

.

.

.

1

1

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1,


2)

Updated Objects

(Denoted By ‘’)
Number of Objects

Updated

Operation







 

Analysis of the Simple Union Implementation

CS 473 Lecture X 23

{1}

{2}

{n}

{1} {2} {1,


2}

{1,


2} {3} {1,


2,


3}

1

1

.

.

.

1

1

2

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1,


2)

UNION(2,


3)

Updated Objects

(Denoted By ‘’)
Number of Objects

Updated

Operation












 

Analysis of the Simple Union Implementation

CS 473 Lecture X 24

{1}

{2}

{n}

{1} {2} {1,


2}

{1,


2} {3} {1,


2,


3}

{1,


2,


3} {4} {1,


2,


3,


4}

1

1

.

.

.

1

1

2

3

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1,


2)

UNION(2,


3)

UNION(3,


4)

Updated Objects

(Denoted By ‘’)
Number of Objects

Updated

Operation







 

 


 



Analysis of the Simple Union Implementation

CS 473 Lecture X 25

{1}

{2}

{n}

{1} {2} {1,


2}

{1,


2} {3} {1,


2,


3}

{1,


2,


3} {4} {1,


2,


3,


4}

1

1

.

.

.

1

1

2

3
.
.

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1,


2)

UNION(2,


3)

UNION(3,


4)

.

.

Updated Objects

(Denoted By ‘’)
Number of Objects

Updated

Operation












  


 



Analysis of the Simple Union Implementation

CS 473 Lecture X 26

{1}

{2}

{n}

{1} {2} {1,


2}

{1,


2} {3} {1,


2,


3}

{1,


2,


3} {4} {1,


2,


3,


4}

{1,


2,..,


n-1} {n} {1,


2,..,


n-1,


n,}

1

1

.

.

.

1

1

2

3
.
.

n - 1

MAKE-SET(1)

MAKE-SET(2)

.

.

.

MAKE-SET(n)

UNION(1,


2)

UNION(2,


3)

UNION(3,


4)

.

.

UNION(n-1,


n)

Updated Objects

(Denoted By ‘’)
Number of Objects

Updated

Operation












 



 




  

Analysis of the Simple Union Implementation

CS 473 Lecture X 27

• The total number of representative pointer updates

())(
2

1

2

1
1

2

1 22
1

1

nnnnnnin
n

i

 




MAKE-SET

operations

UNION

operations

)(2m since  2mn 

 Thus, on the average, each operation requires (m) time

 That is, the amortized time of an operation is (m)

Analysis of the Simple Union Implementation

CS 473 Lecture X 28

A Weighted-Union Heuristic

• The simple implementation is inefficient because

 We may be appending a longer list to a shorter list

during a UNION operation

so that we must update the representative

pointer of each member of the longer list

Weighted Union Heuristic

– Maintain the length of each list

– Always append the smaller list to the longer list

With ties broken arbitrarily

‼ A single UNION can still take (m) time if both sets have

(m) members

CS 473 Lecture X 29

Theorem: A sequence of m MAKE-SET, UNION & FIND-

SET operations, n of which are MAKE-SET operations, takes

O(m+nlgn) time

Proof: Try to compute an upper bound on the number of

representative pointer updates for each object in a set of size n

Weighted Union Heuristic

Consider a fixed object x

– Each time x’s R-PTR was updated, x was a member of the
smaller set

{x} {v}→ { ,v} 1-st update |Sx| 2

{x, v} {w1, w2} → { , v ,w1,w2} 2-nd update |Sx| 4

{x,v,w1,w2} {z1,z2,z3,z4} → { , v ,w1,w2,z1,z2,z3,z4}; |Sx| 4

3-rd update |S| 8






 


 



 
   



CS 473 Lecture X 30

• For any k n, after x’s R-PTR has been updated times
the resulting set must have at least k members

 R-PTR of each object can be updated at most time

over all UNION operations

  klg

 nlg

Weighted Union Heuristic

Analysis of The Weighted-Union Heuristic
• The figure below illustrates a worst case sequence for a set

with n = 16 objects
• The total number of R-PTR updates

3248814224188
16

16
4

8

16
2

4

16
1

2

16


)nlgn(Onlg
2

n

2

n
.....

2

n

2

n


lg n

CS 473 Lecture X 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Analysis of The Weighted-Union Heuristic

CS 473 Lecture X 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 , 2 3 , 4 5 , 6 7 , 8 9 ,10 11 ,12 13 , 14 15 ,16

2
1

2

nn


Analysis of The Weighted-Union Heuristic

CS 473 Lecture X 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2
2

4

nn


2
1

2

nn


1 2, , 3, 4 5 6, , 7, 8 9 10, , 11,12 13 14, ,15, 16

1 , 2 3 , 4 5 , 6 7 , 8 9 ,10 11 ,12 13 , 14 15 , 16

Analysis of The Weighted-Union Heuristic

CS 473 Lecture X 34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2
2

4

nn


2
4

8

nn


2
1

2

nn


1 2 3 4, , , , 5, 6, 7, 8 9 10 11 12, , , , 13, 14, 15, 16

1 2, , 3, 4 5 6, , 7, 8 9 10, , 11,12 13 14, ,15, 16

1 , 2 3 , 4 5 , 6 7 , 8 9 ,10 11 ,12 13 , 14 15 , 16

Analysis of The Weighted-Union Heuristic

CS 473 Lecture X 35

1 2 3 4 5 6 7 8, , , , , , , , 9, 10, 11, 12, 13, 14, 15, 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2
2

4

nn


2
4

8

nn


2
8

16

nn


2
1

2

nn


1 2 3 4, , , , 5, 6, 7, 8 9 10 11 12, , , , 13, 14, 15, 16

1 2, , 3, 4 5 6, , 7, 8 9 10, , 11,12 13 14, ,15, 16

1 , 2 3 , 4 5 , 6 7 , 8 9 ,10 11 ,12 13 , 14 15 , 16

Analysis of The Weighted-Union Heuristic

CS 473 Lecture X 36

• Each MAKE-SET & FIND-SET operation takes O(1) time,

and there are O(m) of them

 The total time for the entire sequence

= O(m + nlgn)

Analysis of The Weighted-Union Heuristic

Disjoint Set Forests

In a faster implementation, we represent sets by rooted trees

– Each node contains one member

– Each tree represents one set

– Each member points only to its parent

– The root of each tree contains the representative

– Each root is its own parent

CS 473 Lecture X 37

UNION(x, y)

x1

x2 x3

x4

y1

y2

y3

y1

y2

y3

x1

x2 x3

x4

Disjoint Set Forests

CS 473 Lecture X 38

MAKE-SET : Simply creates a tree with just one node : O(1)
FIND-SET : Follows parent pointers until the root node is found

The nodes visited on this path toward the root
constitute the FIND-PATH

UNION : Makes the root of one tree to point to the other one

Disjoint Set Forests

Straightforward Implementation

Heuristics To Improve the Running Time

• Straightforward implementation is no faster than ones that use

the linked-list representation

• A sequence of n – 1 UNIONs, following a sequence of n

MAKE-SETs, may create a tree, which is just a linear chain of

n nodes

CS 473 Lecture X 39

First Heuristic : UNION by Rank

• Similar to the weighted-union used for the linked-list

representation

• The idea is to make the root of the tree with fewer nodes

point to the root of the tree with more nodes

Heuristics To Improve the Running Time

• Rather than explicitly keeping the size of the subtree

rooted at each node

We maintain a rank

– that approximates the logarithm of the subtree size

– and is also an upperbound on the height of the node
• During a UNION operation

– make the root with smaller rank to point to the

root with larger rank

CS 473 Lecture X 40

Second Heuristic : Path Compression
• Use it during the FIND-SET operations

• Make each node on the FIND-PATH to point directly to

the root

a

b

c

d

e

f

FIND-SET(b)

Heuristics To Improve the Running Time

CS 473 Lecture X 41

Path Compression During FIND-SET(b) Operation

a

c d e

f

b

Heuristics To Improve the Running Time

CS 473 Lecture X 42

Pseudocodes For the Heuristics
Implementation of UNION-BY-RANK Heuristic
p[x] : Pointer to the parent of the node x
rank[x] : An upperbound on the height of node x in the tree

MAKE-SET(x) UNION(x,y)

p[x] ← x LINK(FIND-SET(x),FIND-SET(y))
rank[x] ← 0 end

end

LINK(x,y)

if rank[x] > rank[y] then

p[y] ← x

else

p[x] ← y

if rank[x] = rank[y] then

rank[y] = rank[y] + 1

endif

endif

end

CS 473 Lecture X 43

Implementation of UNION-BY-RANK Heuristic

– When a singleton set is created by a MAKE-SET

the initial rank of the single node in the tree is zero

– Each FIND-SET operation leaves all ranks unchanged

– When applying a UNION to two trees,

we make the root of tree with higher rank

the parent of the root of lower rank

Ties are broken arbitrarily

CS 473 Lecture X 44

Implementation of the Path-Compression Heuristic

The FIND-SET procedure with Path-Compression
Iterative Version

FIND-SET(x)

y ← x

while y p[y] do

y ← p[y]

endwhile

root ← y

while x p[x] do

parent ← p[x]

p[x] ← root

x ← parent

endwhile

return root

end





Recursive Version

FIND-SET(x)

if x p[x] then

p[x] ← FIND-SET(p[x])

endif

return p[x]

end



