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a b s t r a c t

Memory is a key parameter in embedded systems since both code complexity of

embedded applications and amount of data they process are increasing. While it is true

that the memory capacity of embedded systems is continuously increasing, the increases

in the application complexity and dataset sizes are far greater. As a consequence, the

memory space demand of code and data should be kept minimum. To reduce the

memory space consumption of embedded systems, this paper proposes a control flow

graph (CFG) based technique. Specifically, it tracks the lifetime of instructions at the basic

block level. Based on the CFG analysis, if a basic block is known to be not accessible in the

rest of the program execution, the instruction memory space allocated to this basic block

is reclaimed. On the other hand, if the memory allocated to this basic block cannot be

reclaimed, we try to compress this basic block. This way, it is possible to effectively use

the available on-chip memory, thereby satisfying most of instruction/data requests from

the on-chip memory. Our experiments with this framework show that it outperforms the

previously proposed CFG-based memory reduction approaches.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in embedded processor design techniques have led to the development of complex embedded
systems. Memory is a key parameter in these embedded systems since both code complexity of embedded applications
and amount of data they process are increasing. While it is true that the memory capacity of embedded systems is
continuously increasing, the increases in the application complexity and dataset sizes are far greater. Moreover, as
embedded systems become increasingly complex, there is a growing demand for executing multiple applications
concurrently, thereby putting even higher pressure on memory system.

Scratch Pad Memories (SPMs) have received considerable attention as on-chip memory building blocks. This is
especially true for embedded systems as SPMs consume less energy and exhibit a very good runtime data locality behavior.
Unlike a conventional cache managed by hardware, SPM is controlled by a programmer or a compiler. Therefore, if
supported by appropriate compiler analysis and optimizations, SPM can cut the number of off-chip data accesses
dramatically. Moreover, when compared to a cache, SPM provides predictability and reproducibility of timings, which is
crucial for time critical embedded systems, or other systems where precise timing is important. Prior studies have
explored different approaches to exploit the use of SPMs as memory blocks for both instruction and data [2,3,7,9,11,24].

We focus on the efficient use of a two level SPM memory hierarchy shared by multiple applications executing at the
same time. In such an SPM memory hierarchy, this paper proposes a control flow graph (CFG) based technique to reduce
the memory space consumption of applications. Specifically, it tracks the lifetime of instructions at the basic block level.
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Based on the CFG analysis, if a basic block is known to be not accessible in the rest of the program execution, the
instruction memory space allocated to this basic block is reclaimed. On the other hand, if the memory allocated to this
basic block cannot be reclaimed, our CFG based approach tries to compress the basic block if this basic block is rarely
accessed. This way, it is possible to effectively use the available on-chip memory, thereby satisfying most of instruction/
data requests from the on-chip memory. This is particularly important when available on-chip memory space is shared by
multiple applications. In this paper, we make the following contributions:

� The first contribution of this paper is to reclaim the instruction memory that is no longer needed. This is achieved by
generating a live set for each basic block in a given application. An example CFG fragment is given for a sample GCD
implementation in Fig. 1. If execution reaches basic block C5, only live basic blocks are C5 and C6. Therefore, memory
allocated to basic blocks C0, C1, C2, C3, and C4 can be deallocated.
� The second contribution of this paper is to extend memory space savings by compressing less frequently accessed basic

blocks. Based on the profiling information, compression algorithm selects target basic blocks to compress. One needs to
be careful in compressing a basic block as it can cause excessive execution overheads if not carefully selected. For
example, if we consider the same CFG given in Fig. 1, one can see that C0 is followed either by C1 on the left branch or
C5 on the right branch. If we know based on the profiling information that C0 is followed by C5 most of the time,
compressing basic blocks C1, C2, C3, and C4 will reduce the memory space dramatically. As a result, this approach can
be expected to be most successful in situations where there exist a few basic blocks with very high reuse.
� Third contribution of this paper is to evaluate the proposed CFG based memory reduction scheme using eleven

benchmarks. It also compares our approach to a previously proposed basic block level garbage collection approach. Our
experiments with several applications show that our approach can be very useful in increasing the benefits coming
from an SPM.
� The last contribution of this paper is to show how saved memory space can be used to increase energy savings in

banked memory architectures currently employed in some embedded systems.

The rest of this paper is organized as follows. Section 2 discusses related work, and Section 3 gives the details of the
execution environment, dataflow analysis and proposed algorithms. Section 4 presents the results from our experimental
evaluation and Section 5 concludes the paper.

2. Related work

Prior SPM studies primarily focused on the data access management. For instance, Panda et al. [16] present a static data
partitioning scheme to eliminate the potential conflict misses due to limited associativity of on-chip cache. This approach
benefits applications with a number of small (and highly reused) arrays that can fit in the SPM. In [8], authors propose a
dynamic SPM management scheme for data accesses. Their framework uses both loop and data transformations to
maximize the reuse of data elements stored in the SPM. Cooper et al. [6] show that using the register allocation’s coloring
paradigm can significantly reduce the amount of memory required for the program. Catthoor [5] discuss how accesses to a
software-managed memory hierarchy can be optimized through code/data transformations. In [22], authors present
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_gcd:
subl %esp=%esp,4
store4 

MEM[%esp]=%ebp
copy4 %ebp=%esp
addl __t=%ebp,8
load4 %edx=MEM[__t]
addl __t=%ebp,12
load4 %eax=MEM[__t]
andl __t=%eax,%eax
cmpl_eq cc_eq=__t,0
twoWayBr cc_eq,L8,L6
goto L6

Fig. 1. An example CFG fragment is given for a sample GCD implementation.

O. Ozturk / Computer Languages, Systems & Structures 37 (2011) 168–177 169



Author's personal copy

a dynamic allocation method for global and stack data. In the proposed method data to be accessed frequently is copied
into the SRAM using compiler-inserted code at fixed points in the program. An integrated hardware/software solution to
support SPMs at a high abstraction level is presented in [7]. In contrast to these studies, our work focuses on reducing
memory space occupancy of instruction accesses. Consequently, our optimization framework and required compiler
analysis are entirely different from theirs.

From an instruction memory angle, work in [4,20] also present SPM management schemes. However, compared to our
approach presented in this paper, these schemes are static; that is, the contents of the SPM are decided before the execution
and are fixed for the entire execution. While such an approach might be successful with small sized codes, larger codes in
general require a dynamic SPM management scheme. Technique presented in [14] tries to reduce the energy consumption of
instruction accesses. This scheme is fundamentally different than ours as it relies on hardware (rather than the compiler) to
detect opportunities for exploiting the SPM. As mentioned earlier in the paper, such an approach is costly and requires
significant modifications to hardware. An optimal SPM mapping approach has been proposed in [3] for code segments that
works directly on application binaries. Dynamic programming algorithm is applied to solve the mapping problem. In [21],
authors present a compiler-managed instruction store architecture (K-store) that places the computation intensive loops in
an SPM like SRAM memory and allocates the remaining instructions to a regular instruction cache. Execution is switched (at
runtime) dynamically between the instructions in the traditional instruction cache and the ones in the K-store, by inserting
jump instructions. Approach presented in [24] use the SPM for storing instructions and propose a generic cache aware SPM
allocation. Udayakumaran et al. [23] propose a dynamic strategy for embedded systems with SPMs, where data that is about
to be accessed frequently is copied into the scratch pad using compiler-inserted code at fixed and infrequent points in the
program. Verma et al. [25] present an allocation technique to insert instructions which dynamically copy code segments and
variables on the SPM. In [18], authors use compiler managed dynamic placement algorithm to keep hot code segments in
SPM. Li et al. [10] propose a compiler directed memory coloring approach to assign static data onto SPM. Werth et al. [26]
propose an approach to automatically fragment and load code into local SPM. Basic block level management of an instruction
memory is proposed in [15]. Our work is different as we employ basic block compression for the basic blocks that are not
known to be dead. However, BBGC-base keeps them as they are, whereas BBGC-aggressive deallocates them. While the latter
reduces the memory space drastically, it incurs performance penalty due to the false speculation. Our approach generates
better results with minimal overheads as will be shown in the experimental results.

There also exist several cache memory-based studies that aim at improving the performance of instruction caches
through compiler-directed modifications. Works presented in [17] and [12] present algorithms to bring instructions (basic
blocks) with temporal affinity together in the address space in an attempt to improve instruction cache hit rates. In [13],
authors also consider procedure merging to further increase the instruction cache performance. Work in [19] presents
trace cache, a special instruction cache that captures dynamic instruction sequences. In contrast to all these cache-based
studies, our work focuses on software-managed instruction memories, and demonstrates how dead basic blocks can be
collected for reducing average memory occupancy.

3. Basic block memory reduction

3.1. Target architecture

In this paper, we focus on a single CPU-based embedded architecture with an SPM, of which the high level diagram is
shown in Fig. 2. This architecture contains a two-level software-managed memory hierarchy where on-chip SPM space is
divided into instruction memory and data memory portions. Moreover, the SPM space is shared by all applications running
concurrently. In addition to the SPM space, there is also a large off-chip memory space. While the architecture contains
both data and instruction memories, in this work we exclusively focus on instruction accesses. Multicore processors have
rapidly gained traction in the embedded domain and will soon dominate the processors on many of these systems. In such
architectures, each processor core can potentially have its own SPM or there can even be a shared SPM space. Therefore,
other factors need to be considered in a multicore environment. We concentrate mainly on the management of the
instruction memory and the number of processor cores to use for a given application is orthogonal to the focus of this
paper. Our goal in this paper is rather to study the management of an instruction memory space of a processor.

Fig. 2. Two-level software-managed memory architecture.
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3.2. Our approach

Our approach tries to deallocate the instruction memory that is no longer needed. We achieve this by deallocating the
memory space of the dead basic blocks at every point of execution. Our approach is similar to the one presented in [15]
where lifetime of instructions are tracked at the basic block granularity. In their approach, there are two versions of the
proposed scheme, BBGC (basic block-level garbage collection) and BBGC-aggressive. In BBGC-aggressive, memory allocated
for a basic block is deallocated even if the basic block is not dead, but its next access is predicted to be too far in the
execution. Potentially, this increases the execution time when the basic block in question needs to be brought into the on-
chip memory. Alternatively, our approach tries to compress the basic blocks that are predicted to be too far in the
execution, instead of sending them off-chip. This reduces the memory allocated for such basic blocks, simultaneously
keeping them still in the on-chip memory for later accesses.

Instruction memory effectiveness can be increased by making use of basic block compression since, at any given time,
not all the basic blocks in the instruction memory have the same criticality. While some of them might be in active use,
others will not be accessed until some time in the future. Therefore, it might be possible to keep the latter type of basic
blocks in a compressed form to increase the available space for new applications.

Our specific compression algorithm selects the basic blocks to be compressed by looking at their predicted next uses.
One needs to be careful in compressing a basic block as it can cause excessive execution overheads if not carefully selected.
This approach can be expected to be most successful in situations where there exist a few basic blocks with very high
reuse. Consider the example CFG given in Fig. 3, where frequencies and number of times each CFG edge is taken are given
next to the edges. As can be seen from this figure, C0 is dead when execution reaches C1. On the other hand, basic blocks
C1 and C2 are accessed over and over for almost a million times. Rest of the basic blocks, C3 through Ck�1 shown with
‘‘Remaining BBs’’, are not used for a long time and can be compressed to save on-chip memory space. As a result, this
approach can be expected to be most successful in situations where there exist a few basic blocks with very high reuse. By
doing so, we greatly reduce the memory space with minimal execution overheads.

As stated earlier, the drawback of compression is that if such a (compressed) basic block needs to be accessed later, it
first needs to be decompressed, which typically takes time and consumes energy. Because of this, the number of
decompressions should be minimized as much as possible. In fact, for such a strategy to be successful, the cost of
decompressing a basic block within the SPM must be lower than accessing it (in an uncompressed form) from the off-chip
memory. To limit the number of decompressions, we do not compress the basic blocks that are part of a cyclic path in the
CFG. This way it is possible to eliminate the basic blocks that are being accessed over and over within a cyclic path.

3.3. Algorithm

One needs to make several important decisions to manage the basic blocks of a given application: (1) Which basic
blocks should be declared as dead? (2) If a basic block is found to be alive, should that basic block be compressed, or be left
uncompressed? (3) Where should a newly created basic block be stored in the SPM? (4) When the current use of a data
block is over, should we compress it or not? In this section, we present an algorithm to capture compiler-based SPM
management heuristic based on data basic block analysis.

Our algorithm that demonstrates how SPM management heuristic operates is shown in Fig. 4. The algorithm iterates
over all the basic blocks in the application code. In this algorithm, Pi, Si, and Di correspond to the set of predecessors, the
set of successors, and the set of dead basic blocks, respectively. These sets are generated offline by the compiler and
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Fig. 3. An example CFG fragment where a few basic blocks are highly reused.
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populated to our tool. Similarly, we keep track of the live basic blocks and compressed basic blocks using the L set and C
set, respectively. Note that, uncompressed basic blocks can easily be obtained by L�C.

Although, the next basic block to be executed is found to be decompressed in most cases. Rarely, it may need to be
decompressed due to the mispredicted reuse distance. Once it is decompressed, compressed set C is updated. Next,
memory allocated to the basic blocks that are marked as dead (Dl) is deallocated. This is performed in the second for loop
by using the list of dead basic blocks when the execution reaches basic block l. Both compressed set C and live set L are
updated.

In the last part, algorithm identifies the basic blocks among the predecessors (Pl) to compress soon. These basic blocks
are selected based on their reuse distances, t.r. These values are obtained for each basic block pair through profiling.
Similarly, basic blocks that are going to be accessed soon (among the successors, Sl) are decompressed. We use two

Fig. 4. Our algorithm that demonstrates how SPM management heuristic based on basic block analysis operates.
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different threshold values to decide, namely, T c and T d for compressions and decompressions, respectively. We initially
tested our approach using a single threshold for both compression and decompression. However, due to different costs for
compression and decompression, we observed that using two different thresholds gives better results.

3.4. Energy reduction in multi-bank memories

We now discuss how our approach can be used for reducing energy consumption of a multi-bank on-chip memory. The
benefits come from the fact that our basic block placement strategy stores the blocks with similar lifetimes consecutively
in memory. Therefore, they are likely to reside in the same memory bank, and if all the blocks stored in a given bank are
dead, the bank can be placed into a low-power mode to save energy. In Fig. 4, this is achieved by selecting the memory
bank using the call maxaff . It selects the memory bank with maximum affinity by looking at the resident basic blocks. This
is the case for both compressions and decompressions. We compare this approach with a sequential layout, where basic
blocks are distributed based on the CFG reverse postorder. Our results indicate that the effectiveness of this strategy
increases when the number of banks is increased (under the same total on-chip memory capacity).

4. Experimental evaluation

4.1. Simulation platform and implementation

Trimaran is a compiler/simulator infrastructure that provides a vehicle for implementation and experimentation in
state-of-the-art research in compiler techniques for instruction level parallelism (ILP) [1]. In the Trimaran environment, a
program flows through Impact, Elcor, and the cycle-level simulator. Impact applies machine-independent classical
optimizations and transformations to the source program, whereas Elcor is responsible for machine-dependent
optimizations and scheduling (see Fig. 6). We modified the Elcor part to insert special instructions for bringing procedures
to the on-chip memory compressing/decompressing and deleting the dead basic blocks when possible. The increase in
compilation time due to our algorithms was around 20% on the average, and the increase in code size (due to the extra
instructions inserted by the compiler) was less than 3% for all the applications we tested. The cycle-level simulator was
modified to track the status of each basic block that resides in the on-chip memory. It must be emphasized that while we
model a VLIW architecture, our approach is certainly applicable to other style of architectures as well. Essentially, it is a
memory space optimization technique that could be used with different types of embedded processors.

4.2. Results

We used eleven benchmarks to test the effectiveness of our scheme. Table 1 gives these benchmarks and their salient
features. The third column gives the number of basic blocks in the CFGs of each benchmark, and the fourth column gives
the number of basic block visits (executions) at runtime. The next column shows the number of function calls in each
application at runtime, and the sixth column gives the maximum memory space occupied by the basic blocks of the
applications (at runtime). Note that, if no memory space optimization is performed, this is the ‘‘memory occupancy’’
(or ‘‘memory consumption’’) of the application. Our objective is to reduce the memory occupancy over the course of
execution by exploiting the lifetimes of basic blocks. The last column of Table 1 gives the number of execution cycles for
each benchmark, when no space optimization is used.

The graphs in Fig. 5 show the memory occupancy of the benchmarks for the original case (marked ‘‘Original’’), the case
using a previously proposed scheme [15] (marked ‘‘BBGC’’), and the case using our approach (marked ‘‘Our Approach’’).
Note that, the x-axis represents the time divided into slices of equal size. Comparing our scheme with BBGC version
(marked ‘‘BBGC’’), one can see that our scheme saves more memory space (except in benchmarks apsi, cordic, and

Table 1
The characteristics of the benchmark codes used in this study.

Benchmark Source Number of
basic blocks

Number of
basic block visits

Number of
function calls

Code size (KB) Number of
execution cycles

adi Livermore 17 70,605 1 414 283,111

apsi Perfect Club 25 50,411 14 695 144,923

bmcm Perfect Club 25 1,060,602 1 413 7,255,040

compress Spec 308 5,543,178 34,422 1799 20,846,970

cordic MediaBench 54 300,069 1 1234 2,105,869

eflux Perfect Club 43 69,770 1 471 555,293

g721encode MediaBench 357 63,815,783 1,475,191 1766 165,938,959

mxm Spec 17 1,060,605 1 343 7,182,875

rawcaudio MediaBench 98 2,495,142 228 982 7,434,169

tomcatv Spec 51 61,684 1 697 552,610

tsf Perfect Club 38 324,762 16 469 2,543,920
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g721encode where the two schemes generate similar results). We see that different benchmarks exhibit generally
different memory occupancy trends when BBGC or our approach is used. However, in all the benchmarks, our approach
reduces the memory occupancy further down compared to BBGC. Fig. 7 presents the savings in the memory occupancy,
averaged over the execution time. We see that BBGC and BBGC-aggressive reduces the average instruction memory
occupancy by 35% and 43%, respectively, whereas our approach saves 17% more memory space as compared to the BBGC
and 9% more memory space as compared to the BBGC-aggressive. The savings are much higher with benchmarks such as
bmcm and compress, whereas apsi and rawcaudio show relatively smaller benefits. This can be explained as follows. In
both bmcm and compress, there is a loop that consumes most of the execution time (� 70%) and this loop comes close to
the end of the program execution. Consequently, when the execution reaches this loop and iterates in it, most of the basic
blocks encountered earlier in the execution are already dead; that is, their memory space has already been deallocated. In
contrast, in apsi and rawcaudio, the execution mostly iterates in a loop that is at the very beginning of the CFG.
Therefore, for a long time, the memory space that holds other basic blocks in the program cannot be reclaimed.
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Fig. 5. Memory occupancies of the benchmark codes in our suite (note that the curves for ‘‘BBGC’’ and ‘‘Our Approach’’ are the same for apsi, cordic,
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However, as has been discussed earlier, one drawback of this scheme is the increase in the execution cycles due to
compressions and decompressions. Assuming 1 cycle on-chip memory latency, 20 MB/s LZO Compression/Decompression
Rate, and 80 cycle off-chip memory latency, Table 2 gives the percentage increase in execution cycles due to BBGC and our
approach. The increases are with respect to the execution cycles given in the last column of Table 1. We see that the
average increases brought by the BBGC and our scheme are 2.75% and 4.43%, respectively. The percentages in this table
include all the performance overheads incurred by these schemes. The reason for the relatively large increase in execution
cycles of g721encode and compress when our scheme is used is the large number of decompressions due to the basic
blocks that have been compressed not long ago. This is mainly caused by loops with small execution times. While this

ELCOR
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IMPACT

Fig. 6. Major components of Trimaran. Shaded portions are modified to implement our approach.
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Fig. 7. Average improvements in memory occupancy of basic blocks.

Table 2
Performance overheads incurred in the proposed approaches.

Benchmark Performance
overheads for BBGC (%)

Performance overheads
for our approach (%)

adi 2.67 3.14

apsi 3.59 4.27

bmcm 1.53 2.55

compress 2.78 8.16

cordic 4.40 5.30

eflux 1.36 4.69

g721encode 3.86 7.90

mxm 2.01 3.06

rawcaudio 3.41 2.66

tomcatv 1.65 2.81

tsf 3.00 4.15

Average 2.75 4.43
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drawback can be fixed in part by stipulating that a block is deallocated only if there are k41 loops between its successive
visits, we did not pursue this direction further.

We next evaluate the influence of our approach to energy savings. The scheme evaluated is the one discussed in Section 3.4.
As we have discussed earlier, the saved memory space can also be used for energy savings in a banked memory architecture.
The potential benefits of pursuing this direction are shown in Fig. 8 for rawcaudio and cordic. To obtain these results, the
memory is scanned at each basic block access at runtime, and considering the number of banks (x-axis), we counted what
percentage of the banks would hold only dead blocks, and thus would be put in a low-power mode. The savings are then given
as fractions of the savings obtained using sequential layout. Note that, while our absolute savings actually increase with the
increased number of banks, the results given in this graph do not reflect this trend as they are normalized with respect to the
sequential layout. It must be mentioned that these are just potential benefits, as managing low-power modes would typically
involve some power/performance overheads, that also need to be accounted for. However, these graphs still indicate that large
energy gains might be possible through our approach.

5. Conclusion

This paper shows how CFG analysis can be used for reducing the memory space consumption. Specifically, instruction
memory requirements of a given application is reduced as much as possible by tracking the lifetime of basic blocks. First,
we deallocate the memory space allocated to the basic blocks that are no longer accessible. Second, we compress the basic
blocks that are alive but rarely accessed. The compiler provides the CFG and the corresponding access frequencies of CFG
edges to our framework, which in turn determines the deallocation and compression decisions. This paper also presents
experimental evidence, demonstrating the impact of the proposed approach in practice. The results indicate that the CFG-
based techniques presented in this paper is very effective in reducing memory space consumption, and our savings are
consistent across a range of values of major simulation parameters.
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