
© The Author 2013. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxt011

Application-Specific Heterogeneous
Network-on-Chip Design

Dilek Demirbas, Ismail Akturk, Ozcan Ozturk and Uğur Güdükbay

Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
∗Corresponding author: ozturk@cs.bilkent.edu.tr

As a result of increasing communication demands, application-specific and scalable Network-on-
Chips (NoCs) have emerged to connect processing cores and subsystems in Multiprocessor System-
on-Chips. A challenge in application-specific NoC design is to find the right balance among different
tradeoffs, such as communication latency, power consumption and chip area. We propose a novel
approach that generates latency-aware heterogeneous NoC topology. Experimental results show that
our approach improves the total communication latency up to 27% with modest power consumption.

Keywords: Network-on-Chip synthesis; Multiprocessor System-on-Chip design; heterogeneous
chip-multiprocessors; many-core architectures

Received 9 April 2012; revised 19 October 2012
Handling editor: Raif Onvural

1. INTRODUCTION

Advancements in production and material technology allow
us to manufacture the integrated circuits known as many-
cores that contain various processing cores, along with
other hardware subsystems such as memory and networking
subsystems. Having multiple communicating processing cores
and subsystems in many-cores makes it necessary to have a
well-designed communication framework to connect them. A
custom, application-specific communication infrastructure is
necessary to fulfill the requirements of a targeted application
domain within the given constraints. Such constraints include
the latency incurred in communication, total execution time
of a given set of applications, power consumption and chip
area. Most of the time, if not always, there are tradeoffs among
these constraints. It is essential to find the right balance among
tradeoffs to maximize resource utilization.

Many-cores, as well as multi-cores, have become mainstream
in the production of Very Large-Scale Integration circuits.
Although the number of processing cores on a chip has
increased, managing the computation and communication of
these cores remains challenging. It is crucial to provide effective
and scalable communication architecture to utilize an increased
number of processing cores embedded in a chip. Network-on-
Chips (NoCs) have been proposed and manufactured to provide
a scalable communication architecture with some Quality of
Service guarantees. Many examples of NoC topologies, such as
hypercube, Clos, butterfly, mesh and torus, have effectively been

used in System-on-Chips with homogeneous processing cores.
However, they do not fulfill the requirements of next-generation
chip multiprocessors that consist of heterogeneous processing
cores and other hardware components. The heterogeneity of
processing cores is due to variations in size, computation
and communication capabilities and, thus, traditional NoC
topologies and tile-based floorplans do not fit with them.

Application-specific NoC design is necessary to fulfill the
requirements of the desired chip multiprocessor with the given
constraints and available budget [1]. One important constraint is
the communication latency that occurs among processing cores;
our focus is on a heterogeneous NoC design that minimizes this
latency while still considering other constraints. NoC design
is utilized with appropriate task-scheduling and core-mapping.
Task scheduling aims to identify the processing core that will
run the given task. Core mapping, on the other hand, is to
place a given processing core on a given NoC. In most task
scheduling and core mapping approaches, the NoC is fixed and
given beforehand, e.g. A3MAP [2] and NMAP [3].

We introduce an application-specific heterogeneous NoC
design algorithm that considers the given constraints and
generates a floorplan for the desired many-core. We make the
following contributions:

(i) In the design of chip multiprocessors, architects and
designers must decide what kind of processing cores
should be used to realize the desired chip. However, the
immense amount of variation in processing cores makes

The Computer Journal, 2013

 The Computer Journal Advance Access published February 12, 2013
 at B

ilkent U
niversity L

ibrary (B
IL

K
) on February 13, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

2 D. Demirbas et al.

this decision tedious and error prone. Thus, figuring out
the types of processing cores to be used is of great
importance. Our algorithm identifies the processing
cores that will be used in the design.

(ii) Our algorithm places the selected cores on a given
chip area in a way that the total latency occurring
on the chip is minimized, while the given area is
utilized as much as possible. It should be noted that the
regular NoC topologies are inappropriate for such cases
because heterogeneous architectures have non-uniform
sets of processing cores. Thus, an effective custom NoC
is the key to achieve the desired performance of a
heterogeneous multi-core.

(iii) Along with generation of custom NoC topology, there
are two other important concerns that affect the
overall performance of a multi-core: task scheduling
and core mapping [4]. Our work is complementary
to task scheduling and core mapping because their
effectiveness is tightly coupled to the NoC that should
be used. Our algorithm cooperates with task-scheduling
and core-mapping algorithms during the generation of
the desired NoC and the floorplan.

(iv) Although the given constraints belong to separate stages
of the design process, we take them into account as a
whole. For example, maximization of area utilization
should be considered together with the latency concern.
As we show in the experimental results, maximizing
area utilization does not necessarily mean having
minimum communication latency.

2. RELATED WORK

Kumar et al. [5] present a single-ISA heterogeneous multi-
core architecture to reduce processor power consumption. They
use various types of processors from the power/performance
design space. When an application executes, the system
automatically chooses the most appropriate core to meet
the requirements. The authors select a certain heterogeneity
level and try to utilize the multi-core architecture to its
maximum extent. Later, they extend this framework by targeting
performance rather than power [6]. In [7], authors discuss
and analyze the relative merits of using custom logic, FPGAs
and GPGPUs in the next generation heterogeneous multi-
core architectures. ReMAP [8] introduces a framework where
threads share a common reconfigurable fabric that can be
configured for individual thread computation or fine-grained
communication with integrated computation. The authors
discuss the communication primitives that can be used and
evaluate their framework using a heterogeneous architecture
with two different processors: single-issue and dual-issue out-
of-order cores. Luk et al. [9] use adaptive mapping to map
computations to processing elements on a machine with one
CPU and one GPU. They use their heterogeneous programming
system, Qilin, to test it.

Heterogeneous chip multiprocessor design requires the
placement of different types of processors in a given
chip area that resembles a 2D bin-packing problem with
additional constraints such as latency. The placement problem
can be separated into two: global and detailed placement.
Detailed placement was studied by Pan et al. [10].
Hadjiconstantinou and Iori [11] presented a heuristic approach
for solving a 2D single large object placement problem, called
2SLOPP.

Hybrid genetic algorithms for the rectangular packing
problem were presented by Schnecke and Vornberger [12].
Terashima-Marín et al. [13] introduced a hyper-heuristic
algorithm and classifier systems for solving 2D regular cutting
stock problems. Pál [14] compared three heuristic algorithms for
the cutting problem. Optimal rectangle placement algorithms
have also been proposed. Cui [15] studied a recursive algorithm
for generating two-staged cutting patterns of punched strips.
Lauther [16] introduced a placement algorithm for general
cell assemblies, using a combination of the polar graph
representation and min-cut placement. Wang and Wong [17]
developed a similar algorithm that employs simulated annealing
and they tried to minimize the total area and wire length
simultaneously. Cong et al. [18] compared a set of rectangle
packing algorithms to observe area-optimal packing. They
minimized the maximum block aspect ratio subject to a zero-
dead-space constraint. Different types of blocks produced
by Parquet [19], B*-tree [20], TCG-S [21] and BloBB [22]
packages were compared with a zero-dead-area algorithm. We
also compared our placement algorithm with these algorithms.

Wei et al. [23] dealt with the 2D rectangular packing problem,
also called the rectangular knapsack problem, that aims to
maximize the filling rate. They divided the problem into two
stages: first they presented a least-wasted strategy that evaluates
the positions of rectangles, and then conducted a random local
search to improve the results. The proposed latency-aware NoC
design algorithm is based on their work.

3. THE PROPOSED FRAMEWORK

We target application-specific heterogeneous NoC-based
architecture generation. We implement our approach using
a latency-aware Least-Wasted-First (LWF) 2D bin-packing
algorithm.

3.1. Heterogeneous NoC-based architecture

Figure 1 shows the high level view of a heterogeneous NoC-
based chip multiprocessor (CMP) with a two-dimensional
mesh topology. Each node of this mesh consists of a
network switch/router (represented by R), and a processor
(represented by CPU) with a memory component. Except for
boundary nodes, the network switch is responsible for direct
communication with the neighboring switches (i.e. north, south,
west and east). For each pair of adjacent nodes, i and j , the

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Application-Specific Heterogeneous Network-on-Chip Design 3

EV6
EV4

R

EV5

R

EV4

R

R

EV5

R

FIGURE 1. NoC based heterogeneous CMP architecture.

FIGURE 2. The overview of the proposed approach.

communication links between them are bi-directional. That is,
there exists a communication link from node i to node j as well
as a link from node j to node i. We assume the distance between
two nodes is captured using the link length as has been done
in related studies [4]. We identify the distances between pairs
of nodes according to their center locations, which is captured
using our algorithm.

3.2. Overview of our approach

High level view of our approach is shown in Fig. 2. As it can be
seen from the figure, starting with different types of processors
and an application-specific task graph, we generate the layout
and corresponding task scheduling.

For our implementation, we consider using the state-of-the-
art superscalar processors, though the processor selection is
orthogonal to our approach. In the specific example shown in
Fig. 1, we use three different Alpha cores [5], namely, EV4,
EV5 and EV6. The relative sizes of these processors when

TABLE 1. The nomenclature.

Notation Definition

τ Set of tasks where τ = t1, t2, t3, . . . , tN

Pi Parent task set of task i where Pi ⊆ τ

LT Communication Latency
θi Finish time of task i

Ti,j Execution time of task i on processing core j

Tnl Total execution time for no-latency consideration
Pi,j Power consumption of task i on processing core j

Pswitch,
Pwire

Power consumption on switch and power
consumption on wire, respectively

PTi,j
Power consumption of sending bits from

processing core running task i to processing
core running task j

pw , dw Wire power and wire delay per bit for unit length
of wire, respectively

ps , ds Switching power and switching delay per bit,
respectively

dss Setup delay for switch
δi,j Distance between processing cores running tasks

i and task j

vi,j Communication volume sent from task i to task j

implemented in 0.10 micron technology are 2.87, 5.06 and
24.5 mm2, respectively [5]. It should be noted that routers are
not considered as part of the processors while estimating the
areas.

4. PROBLEM FORMULATION

Here, we formulate the latency-aware layout problem. The
notation used is given in Table 1.

A set of tasks can be represented as a directed acyclic
graph. Let τ denote the set of tasks on a given graph where
τ = {t1, t2, . . . , tN }. The execution time of task i on processing
core j is represented as Ti,j . The completion time of task i is
represented as θi , which is composed of two parts. First, the
actual execution time of the task. Secondly, the delay caused by
the dependencies present. Let Pi represent the parent task set
for task i, where every task in set Pi needs to finish before task
i can continue. Therefore, we need to consider the completion
time of each task in Pi while calculating the completion time
of task i. In addition to the completion times, we also need to
consider the data transfer required between the parent tasks and
the executing task. We represent this data transfer with LTi,k

.
Hence, we can express the time to start executing task i as

θi = Ti,j + max(θk + LTi,k
), such that k ∈ Pi. (1)

The contributors to communication latency are the set-up
delay, dss, time spent on the switching element to send vk,i

bits and time spent to send vk,i bits on the wire. This gives

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

4 D. Demirbas et al.

the formula of communication latency between cores as

LTk,i
= dss + (dsvk,i) + (dwvk,iδk,i), (2)

where ds and dw are switching and wire delay per bit,
respectively, and δk,i is the distance between the processors
that run tasks k and i. After finding time to finish all tasks
and associated communication latencies, the total execution
time of the task graph and total communication latency can
be calculated. The total execution time is

Ttotal = max(θi), (3)

where i = 1, 2, 3, . . . , N . The total communication latency, Tc,
can be expressed as

Tc = Ttotal − Tnl, (4)

where Tnl indicates the total execution time for no-latency
consideration. It should be noted that the communication
latency given with Tc includes all communication latencies
related to buffer delays, wire delays and time spent in the router
pipeline. In the above expression, all communication expressed
with LTi,k

is assumed as zero. Thus, Equation (1) takes the
following form:

Tnl = max(Ti,j + max(θk)), such that k ∈ Pi. (5)

Power consumption can be calculated using computation
power consumption and communication power consumption.
The power consumed by the processing core to run task i is
represented as Pi,j . To calculate the overall power consumed in
computation, we use the following expression:

Pcomp =
K∑

i=1

N∑

j=1

Pi,j , such that task i is executed by core k.

(6)

Similarly, the communication power consumption can be
captured as well. The power consumption of sending vk,i bits
from the processing core running task k to the processing core
running task i can be calculated as

PTk,i
= Pswitch + Pwire, (7)

where

Pswitch = psvk,i and Pwire = pwvk,iδk,i . (8)

Then, the total power consumption of sending all packets among
communicating processors can be calculated as

Pcomm =
N∑

x=1

N∑

y=1

PTx,y
. (9)

It should be noted that we assume the power consumed in setting
up a hop is negligible compared with the power consumed
to switch vk,i bits; thus, we do not consider the setup power
for a hop in our formulation. As a result, the overall power
consumption can be captured with the following expression:

Ptotal = Pcomp + Pcomm. (10)

5. AN EXAMPLE

Here, we demonstrate the generation of the NoC topology and
placement of processing cores based on the given constraints
and specifications. We also give a numerical example of how
the total execution time and total communication latency are
calculated based on the formulations given above.

At the beginning, the processing cores are selected and placed
into the chip area. In this example, the first layout consists of six
cores, (P0, 0, 0) → (P1, 0, 3) → (P1, 2, 3) → (P2, 2, 5) → (P2, 3,
5) → (P2, 4, 5), where the parameters represent the processor
type and the x and y coordinates, respectively. After the first
layout is generated, the tasks given in the task graph are assigned
to these processing cores according to the selected scheduling
scheme. In this example, ordered scheduling is applied. After
the scheduling of tasks to the processing cores, we obtain a
scheduled task graph (see Fig. 3). The total execution time is
117.5, that is, max(θi), where

θ0 = 10,

θ1 = 10 + [20 + (140 × 10−3 × 10)] = 31.4,

θ2 = 10 + [30 + (180 × 10−3 × 20)] = 43.6,

θ3 = 31.4 + [15 + (320 × 10−3 × 40)] = 59.2,

θ4 = 12 + [max(31.4 + 5.75, 43.6 + 9.3)] = 64.9,

θ5 = 30 + [43.6 + (150 × 10−3 × 10)] = 75.1

θ6 = 40 + [max(64.9 + 2.05, 75.1 + 2.4)] = 117.5.

We take dss and ds to be zero for simplicity and we assume
that all the wire links are of the same type and dw as 10−3.
After finding the total execution time, the total communication

FIGURE 3. Scheduled task graph. The numbers next to the outer
circles represent the execution times for the tasks assigned to the
particular processing cores; the solid directed lines represent the
communication volumes; the dashed lines represent the distances
between the processing cores to which the corresponding tasks are
assigned.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Application-Specific Heterogeneous Network-on-Chip Design 5

latency can be calculated as follows:

LT = 117.5 − (10 + 30 + 30 + 40) = 7.5

6. METHODOLOGY

Placing communicating processing cores as close as possible
will reduce the latency caused by wire propagation delay. Such
a placement might seem trivial for a couple of cores and
tasks; however, it becomes challenging when the number of
processing cores and associated tasks scale up. Finding optimal
NoC topology and placement of a given set of processing
cores is known as an NP-hard problem [24]. In addition to the
complexity of finding proper placement for processing cores,
the concerns of task scheduling and other constraints such as
power consumption make the problem even more challenging.
Thus, we developed heuristics that effectively find near-optimal
NoC topology and placement of processing cores that fulfill
the design requirements within a reasonable amount of time.
Basically, our heuristics consist of three main parts:

(1) NoC topology generation and placement of processing
cores;

(2) scheduling of tasks on processing cores based on the
given scheduling scheme;

(3) calculation of the latency and total execution time of the
task graph on the proposed layout.

The overall procedure of exploring a latency-aware NoC
topology and processing core placement is presented in Fig. 4.
The constraints, including the desired chip width, chip height,
the maximum number of processing cores allowed on the given
chip area and the number of processing core types (i.e. degree
of heterogeneity), are given as an input. In addition to these

FIGURE 4. The methodology for exploring a latency-aware NoC
topology and processing core placement.

constraints, the task graph associated with the set of applications
that is intended to be run on the resulting multi-core and the
specifications of candidate processing cores as well as other
subsystem components are also given beforehand. Application
characterization and task generation are performed separately
prior to this approach. It is possible to use compiler-supported
or profiler-based task graph extraction techniques. As will be
detailed in the rest of the paper, we assume the task graph is
available as an input. Therefore, we do not discuss the details of
task graph extraction; rather, we concentrate on NoC topology
generation and scheduling tasks on the processing cores in a
latency-aware fashion.

In the first phase of our approach, the algorithm evaluates the
given constraints and component specifications and generates
an NoC topology and proposes placement locations of the
processing cores. In the second phase, the given task graph is
processed based on the specified scheduling scheme, and all
tasks are assigned to the processing cores that were determined
in the first phase. In the third phase, the overall execution
time of the task graph and associated communication latency
are evaluated. Specifically, we use our communication latency
and computation latency calculation approaches discussed in
Section 4, that is, we use LTi,k

values obtained for all (i, k) pairs
for estimating task latencies.

These three phases are repeated until the desired NoC
topology and placement of processing cores are found, or
the time specified for the algorithm expires. At the end,
the algorithm returns the NoC topology and placement of
processing cores, which minimizes the communication latency
for the given set of processing cores and tasks.

6.1. NoC topology generation

For simplicity, we consider that each processing core is asso-
ciated with a unique switch that is located at the bottom left
corner of the core. Then, we generate candidate topologies for
selected processing cores by placing them on a given chip area.
Placement of processing cores on a chip area can be treated
as a 2D bin-packing problem; thus, we extended and used the
LWF 2D bin-packing algorithm presented by Wei et al. [23] to
generate candidate NoC topologies. In the LWF algorithm, a
set of rectangles is selected and stored in an array. The selection
of the set of rectangles is repeated a certain number of times.
For each set of rectangles different placements are generated.
To generate a placement, two rectangles are selected randomly
from the array and then swapped. If the new order of rectangles
improves the area utilization, the new order is accepted; other-
wise, the old order is restored. This process is repeated a certain
number of iterations. Since the original LWF algorithm has an
objective function of area utilization, it eliminates placements
that might minimize the latency for the given set of processing
cores and tasks. Thus, we modified the LWF algorithm in such
a way that we made it latency-aware (see Algorithm 1). We
accomplished this as follows. We calculate the latency for the

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

6 D. Demirbas et al.

function Enhanced-LWF(
)
Input: List of processor types.
Output: Optimum layout and the latency for the optimum layout.

for j to maxSwap do
Fill processor list randomly from processor type list
optimumLayout ← Pack processor list into the chip area
minimumLatency ← Calculate latency for optimumLayout

for j to maxSwap do
Select random a, b processors from processor list
Swap their position
currentLayout ← Pack swapped processor list into the chip area
minimumLatency ← Calculate latency for currentLayout

if (currentLatency < minimumLatency) then
optimumLayout ← currentLayout

minimumLatency ← currentLatency

end if
end for

end for
end function

Algorithm 1: Enhanced-LWF algorithm to generate NoC topology.

optimal layout constructed. Then we swap the positions of
processors and calculate the latency again. If the new layout
reduces the latency, we change the optimal layout accordingly.
We further improved this algorithm (the base version) by
incorporating simulated annealing.

It should be noted that our main goal is to minimize the overall
latency; it is also possible to address different objectives such
as minimizing the power consumption, or even a combination
of multiple objectives. However, we do not address these
additional objectives within the scope of this work.

To make the placement latency-aware, instead of looking at
the area utilization, we look at the latency for the given order.
If the new order minimizes the latency, we accept the new
order; otherwise we restore the previous order. However, it is
possible to be trapped into a local minima for the current order
of processing cores. To overcome this, we employ simulated
annealing. If the new order of processing cores does not
minimize the latency, we still accept the new order with some
probability, with the hope of escaping from local minima and
reaching global minima. The cooling schedule and acceptance
probability function are dependent on the given constraints and
some other internal parameters of the algorithm. For the sake
of brevity, we do not give details of implementing simulated
annealing, but we evaluate the base algorithm and simulated
annealing version in the experimental results section to show
its impact. While simulated annealing increases the probability
of reaching optimal NoC topology, or at least a better topology
than that generated by the base algorithm, it brings additional
computational overhead, which we consider insignificant.

Just before generating candidate placements as described
above, we must determine which processing cores will be used

in placement. To do that, we preprocess the given constraints and
component specifications. First, we eliminate the processing
cores that do not fit into the chip area. Then, we select a number
of processing cores as specified (i.e. the maximum number of
processing cores), ensuring that at least one processing core is
selected from each type of processing core.Appendix 1 provides
example layouts generated with our approach.

6.2. Task scheduling

Scheduling of tasks to the processing cores is performed
based on the specified scheduling scheme. Our algorithm
is highly flexible in this regard. It is possible to integrate
any scheduling scheme with no complications. We use three
scheduling algorithms:

(i) ordered scheduling,
(ii) random scheduling,

(iii) minimum execution time scheduling

In ordered scheduling, the given tasks are scheduled to
processing cores in order. The first task is assigned to the
first processing core, the second task is assigned to the second
processing core and so on. In the event that there are more tasks
than the number of processing cores, scheduling returns to the
first processing core and continues until all tasks have been
assigned to a processing core.

In random scheduling, the given tasks are randomly
scheduled to processing cores. To prevent under-utilized
processing cores (i.e. cores that has no task assigned), we use
a dynamic list. After filling the list with processing cores, we
assign the next task to a processing core randomly. Then, we

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Application-Specific Heterogeneous Network-on-Chip Design 7

remove that processing core from the list. If there are still
unassigned tasks when the list is empty, we fill the list again
and proceed as described.

In minimum execution time scheduling, the given tasks are
scheduled to processing cores according to the execution times.
Each task is assigned to a processing core that will run the
task faster than the others. Similar to random scheduling, we
use a dynamic list to prevent under-utilized and/or over-utilized
processing cores.

It should be noted that it is also possible to employ a
scheduling and mapping algorithm specific to the application
domain, where our algorithm generates the NoC and floorplan
accordingly. This allows us to integrate early design processes
with high-level design and implementation processes, which
leads to better layouts.

After all tasks have been scheduled, we calculate the total
communication latency and execution time of the given task
graph, as described in Section 4.

7. EXPERIMENTAL RESULTS

We divided our experiments into two categories. In the first
category, we aimed to show that the 2D bin-packing algorithm
that we extended is competitive with other well-known packing
algorithms. During these experiments we did not consider the
total execution time of the task graph and communication
latency of the generated NoC, but considered packing efficiency
in terms of dead areas that could not be utilized for packing. For
this category, we performed each set of experiments 10 times
and took the average.

In the second category, we aimed to show that the latency-
aware NoC design algorithm that is based on the extended
LWF bin-packing algorithm generates NoC topology and places
processing cores on a given chip area such that the total
execution time and communication latency of the given task
graph are minimized considering the given constraints and fulfill
the requirements of the desired layout. In this category, we
performed four sets of experiments for different benchmarks
and settings. Again, we performed each set of experiments 10
times and took the average.

7.1. Packing efficiency

In this category of experiments, we show that the LWF bin-
packing algorithm that we used is competitive with other
well-known bin-packing algorithms in terms of maximizing
area utilization and execution time. We compared LWF with
the Parquet [19], B*-tree [20], TCG-S [21] and BloBB [22]
algorithms. We use a benchmark called Floorplanning
Examples with Known Optimal Area (FEKO-A) [18] that is
an extended version of MNCN benchmarks [25].

The performance of the LWF bin-packing algorithm is very
competitive, as seen in Table 2. For the first three circuits LWF
finds the optimal layout (i.e. zero dead area), as BloBB does. For

TABLE 2. The dead area comparison of LWF with well-known
packing algorithms. The values are the percentages of the dead areas.

Circuit Parquet B*-tree TCG-S BloBB LWF

FEKOA1 14.36 4.76 5.40 0.00 0.00
FEKOA2 9.69 6.74 8.66 0.00 0.00
FEKOA3 11.31 3.95 3.61 0.00 0.00
FEKOA4 6.26 2.32 4.62 4.58 3.88
FEKOA5 5.55 2.05 4.80 6.56 3.62
FEKOA6 9.11 8.99 10.98 8.56 5.24

FEKOA4 and FEKOA5 it performs much better than Parquet
and BloBB; however slightly worse than B*-tree. Overall, we
can infer that the LWF bin-packing algorithm is competitive
and suitable for use in floorplanning applications.

The processing times incurred with our approach are
reasonable. Specifically, the run-times for the FEKOA1,
FEKOA2, FEKOA3, FEKOA4, FEKOA5 and FEKOA6
benchmarks are 0.48, 0.50, 0.43, 2.02, 6.13 and 7.58 s,
respectively, for the dead area figures reported in Table 2.
We believe that these run times are within acceptable ranges,
particularly for chip design where one can invest a large number
of cycles in offline design, as the chip performance is of utmost
importance. The dead area can further be reduced at the expense
of excessive number of iterations. For example, for the FEKOA6
benchmark, to reduce the dead area from 5.24 to 3.99%, the
processing time increases from 7.58 to 799 s.

7.2. Latency-aware NoC design

We perform four sets of experiments in this category. In the first
set, we show that NoC designs that try to maximize chip area
utilization without considering latency as a first-class concern
result in higher total execution time and communication latency.
We compare our latency-aware NoC design algorithm with
CompaSS [26], known as a powerful packing algorithm for NoC
design. In this set of experiments, we use MCNC benchmarks
with different settings.

In the second set, we compare our latency-aware NoC
design algorithm with task-scheduling and core-mapping
algorithms. Such algorithms consider that NoC is fixed and
given beforehand. As we claim earlier, to achieve the desired
layout, one must consider task scheduling, core mapping and
NoC topology generation as a whole. We present a set of results
here to show that task-scheduling and core-mapping algorithms,
such as NMAP andA3MAP, do not minimize the total execution
time and the communication latency since they are oblivious
to the NoC design requirements. We conceive that our work is
complementary to the task-scheduling and core-mapping efforts
and will result in designs that minimize the total execution time
and the communication latency. In this set of experiments, we
use E3S benchmarks [27] with different settings.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

8 D. Demirbas et al.

In the third set of experiments, we use larger benchmarks
for the scalability analysis of our algorithm. We generate larger
benchmarks that are based on E3S benchmarks. In the larger
benchmarks, we use the same set of processing cores and
tasks as given in E3S; however, we extend the task graphs and
replicate tasks as well as processing cores accordingly.

In the fourth set of experiments, we generate fully synthetic
benchmarks to extend the scalability analysis. We generate
several benchmarks with a high number of tasks and processing
cores with Task Graph for Free (TGFF) [28].

(a)

(b)

(c)

FIGURE 5. Total execution time of CompaSS and the proposed
algorithm on MCNC benchmarks with (a) minimum execution time
scheduling, (b) ordered scheduling and (c) random scheduling.

We use the delay and power models presented by Hu et al.
[29] to calculate the communication latency and the power
consumption on switches and wires. The execution time of a
given set of tasks and the power consumption of processing
cores are obtained from E3S benchmarks or generated through
TGFF for this category of experiments.

7.2.1. Impact of latency-awareness on NoC design
To have a desired layout, one must consider the total
execution time and communication latency while generating
NoC topology in conjunction with other concerns. To obtain the
execution times and communication latencies, we apply our task
latency estimation approach discussed in Section 4. Figure 5
shows that our algorithm generates better NoC topologies that
minimize the total execution time for different task-scheduling
schemes than CompaSS does.

Note that the simulated annealing version of the algorithm
performs better for ami33; however, it shows neither remarkable
improvement nor degradation compared with the base algorithm
for other benchmarks. We think that this is acceptable, given the
resulting average values.

We use four different task graphs (tg1, tg2, tg4 and tg8) to
evaluate the generated NoC topologies of CompaSS and the

(a)

(b)

FIGURE 6. Comparison of (a) normalized total execution time and
(b) normalized power consumption of E3S benchmarks running on
layout generated by different algorithms.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Application-Specific Heterogeneous Network-on-Chip Design 9

proposed algorithm. In each task graph, there is a different
number of tasks, depending on the circuit of interest. For
example, there are 8 × 49 tasks and 4 × 49 tasks for ami49
in tg8 and tg4, respectively.

7.2.2. Impact of cooperation of NoC design with task
scheduling and mapping

Figure 6a shows a normalized total execution time of E3S
benchmarks for NMAP, A3MAP and our algorithm. For NMAP

(a)

(b)

(c)

FIGURE 7. Breakdown of the total execution time (i.e. latency
incurred among communicating processing cores and execution time
of tasks on processing cores) for larger benchmarks that are populated
from E3S benchmark suite. The layouts are generated by SA+LWF
with (a) minimum execution time scheduling, (b) ordered scheduling
and (c) random scheduling.

and A3MAP a predefined custom NoC topology with seven
processing cores was given. Since the NMAP and A3MAP
algorithms were constrained by the given NoC topology, they
could not minimize latency despite the best attempts with
scheduling and core mapping. On the other hand, our algorithm
can effectively generate a NoC topology that minimizes
latency, although a simpler task-scheduling scheme is used (i.e.
minimum execution time scheduling) compared with NMAP
and A3MAP. Note that the simulated annealing version of the
algorithm performs better than the base version in consumer
and telecom benchmark sets whereas it performs worse in

(a)

(b)

(c)

FIGURE 8. The comparison of total power consumption for larger
benchmarks that are populated from the E3S benchmark suite. The
layouts are generated by SA+LWF with (a) minimum execution time
scheduling, (b) ordered scheduling and (c) random scheduling.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

10 D. Demirbas et al.

auto-indust and networking benchmark sets. This is due to the
fact that the algorithm is allowed to accept an order of processing
cores with some probability even if the order is not better than
the previous one, as described in Section 6. Such an accepted
order may lead the algorithm to generate worse topologies as
well as better ones. Thus, to compensate for iterations performed
on the wrong order of processing cores, the number of iterations
needs to be increased in the simulated annealing version of the
algorithm. Since we use the same number of iterations for both
versions of the algorithm, the decrease in performance of the

(a)

(b)

(c)

FIGURE 9. Total execution time for 1024 tasks running on 256,
512 and 1024 processing cores with (a) minimum execution time
scheduling, (b) ordered scheduling and (c) random scheduling.

simulated annealing version, shown in Fig. 6a, is acceptable.
Performance can be improved with more iterations, which will
result in longer runs.

Power consumption is another important concern for NoC
design. We also compare NoC topologies generated by our
algorithm with NMAP and A3MAP algorithms that effectively
schedule tasks and map cores to the given NoC while
considering power consumption.As Fig. 6b shows, although we
use a simple task-scheduling scheme, our algorithm generates
NoC topologies that have reasonable power consumption
compared with NMAP and A3MAP. We believe that the power

(a)

(b)

(c)

FIGURE 10. Total execution time for 2048 tasks running on 256,
512, 1024 and 2048 processing cores with (a) minimum execution
time scheduling, (b) ordered scheduling and (c) random scheduling.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Application-Specific Heterogeneous Network-on-Chip Design 11

efficiency of NoCs generated by our algorithm can be improved
if sophisticated task-scheduling algorithms are used.

7.2.3. Scalability analysis with larger task graphs derived
from E3S

To perform a scalability analysis of the presented algorithm, we
generate larger task graphs based on E3S benchmarks. All the
specifications of the tasks and processing cores are preserved;
however, their number is increased through replication. We
generate four extended graphs, namely tgff_16, tgff_32, tgff_64

(a)

(b)

(c)

FIGURE 11. Power consumption of 1024 tasks with (a) minimum
execution time scheduling, (b) ordered scheduling and (c) random
scheduling.

and tgff_128, which have 16, 32, 64 and 128 tasks, respectively.
The maximum number of processing cores allowed is the
same as the number of tasks. Figure 7 shows the breakdown
of the total execution time of these larger benchmarks for
different task-scheduling schemes. The layouts are generated
by the simulated annealing version of our algorithm (i.e.
SA+LWF). As expected, the total execution time increases
with the number of tasks in the graphs. It is also possible
to see the effect of the task-scheduling scheme on the total
execution time. A minimum execution time scheduling scheme
provides better results compared with an ordered scheduling

(a)

(b)

(c)

FIGURE 12. Power consumption of 2048 tasks with (a) minimum
execution time scheduling, (b) ordered scheduling and (c) random
scheduling.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

12 D. Demirbas et al.

scheme. However, there is no significant difference between
the minimum execution time scheduling and random scheduling
scheme, especially for smaller number of tasks. Nevertheless,
the effectiveness of our algorithm can be seen regardless of the
scheduling scheme used, namely it is orthogonal to the task
scheduling being used.

Figure 8 shows the power consumption characteristics of
the generated NoC for the given task graphs. It can be seen
that SA+LWF has lower power consumption than LA+LWF
in general. Given task scheduling schemes yield similar power

(a)

(b)

(c)

FIGURE 13. The ratio of number of processing cores placed and the
maximum number of processing cores allowed for 1024 tasks with (a)
minimum execution time scheduling, (b) ordered scheduling and (c)
random scheduling.

consumption for smaller sets of benchmarks. However, for a
larger set of task graphs the ordered task-scheduling scheme
results in lower power consumption, especially when it is used
with SA+LWF.

7.2.4. Scalability analysis with fully synthetic task graphs
We extend our scalability analysis with fully synthetic task
graphs and processing cores for higher numbers. We generate
two task graphs, one with 1024 and one with 2048 tasks.
We perform experiments with 256, 512 and 1024 processing

(a)

(b)

(c)

FIGURE 14. The ratio of the number of processing cores placed and
the maximum number of processing cores allowed for 2048 tasks with
(a) minimum execution time scheduling, (b) ordered scheduling and
(c) random scheduling.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Application-Specific Heterogeneous Network-on-Chip Design 13

cores for the first graph, and 256, 512, 1024 and 2048 processing
cores for the second graph. Figures 9 and 10 show the total
execution time versus the number of processing cores available
for 1024 and 2048 tasks with different scheduling schemes.

Figures 11 and 12 show the power consumption for 1024
and 2048 tasks with different settings. Figures 13 and 14 show
the ratio of processing cores packed on the given chip area and
the maximum number of processing cores allowed to be used
for 1024 tasks and 2048 tasks with different task scheduling
schemes.

7.3. Algorithm intrinsics

This section describes the effects of internal parameters on the
performance of the algorithm. Figure 15a shows the relationship
between the total execution time and the total number of
iterations the algorithm runs. As the number of iterations
increases, the total execution time decreases for hp, ami33 and

FIGURE 15. Total execution times for different benchmarks on the
layouts generated by (a) the base version and (b) the simulated
annealing version.

ami49. The total execution time remains the same for apte and
xerox when the number of iterations increases. This is because
apte and xerox have fewer processing cores than the other
benchmarks; the algorithm completes the search and finds the
desired NoC topology in fewer iterations; thus, increasing the
number of iterations does not improve the total execution time.

Figure 15b shows the performance of the simulated annealing
version of the algorithm with respect to the number of iterations.
As indicated earlier, it may require more iterations to obtain
the same or better total execution time compared with the base
version. This is because the algorithm is allowed to accept an
order of processing cores with some probability even if the order
is not better than the previous one. There is no guarantee that
better topologies will be reached when such orders are accepted.
This means that as the algorithm may run iterations with no
better results, it may require more iterations to obtain the same
or better total execution time in the simulated annealing version
compared with the base version.

8. CONCLUSION

We propose a novel algorithm to generate latency-aware NoC
topology minimizing the execution time and communication
latency of a given set of tasks in a reasonable time. The algorithm
has two objectives: (i) to select appropriate processing cores
that will be used in the design and (ii) to place these cores on a
given chip area in a way that the execution of the given tasks and
the communication latency are minimized. Our algorithm can
cooperate with task-scheduling and core-mapping algorithms
during the design of the chip multiprocessor. The experimental
results show that our algorithm improves the communication
latency up to 27% with moderate power consumption.

ACKNOWLEDGEMENTS

We thank Rana Nelson for proofreading this manuscript.

FUNDING

This research is supported in part by Turk Telekom under
Grant Number 3015-04 and by a Marie Curie International
Reintegration Grant within the 7th European Community
Framework Programme.

REFERENCES

[1] Marculescu, R., Ogras, U.Y., Peh, L.-S., Jerger, N.E. and
Hoskote, Y. (2009) Outstanding research problems in NoC
design: system, microarchitecture, and circuit perspectives. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., 28, 3–21.

[2] Jang, W. and Pan, D. (2010) A3MAP: Architecture-aware
Analytic Mapping for Networks-on-Chip. Proc. 15th Asia and
South Pacific Design Automation Conference (ASP-DAC), Taipei,
Taiwan, January 18–21, pp. 523–528. IEEE, Piscataway, NJ,
USA.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

14 D. Demirbas et al.

[3] Murali, S. and Micheli, G.D. (2004) Bandwidth-Constrained
Mapping of Cores onto NoC Architectures. Proc. Design,
Automation and Test in Europe Conference and Exhibition
(DATE ’04), Paris, France, February 16–20, pp. 896–901. IEEE,
Piscataway, NJ, USA.

[4] Ogras, U.Y. and Marculescu, R. (2005) Energy- and Performance-
Driven NoC Communication Architecture Synthesis using
a Decomposition Approach. Proc. Design, Automation and
Test in Europe (DATE ’05), Munich, Germany, March 7–11,
pp. 352–357. IEEE, Piscataway, NJ, USA.

[5] Kumar, R., Farkas, K.I., Jouppi, N.P., Ranganathan, P. and
Tullsen, D.M. (2003) Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power Reduction.
Proc. 36th Annual IEEE/ACM Int. Symp. on Microarchitecture
(MICRO-36), San Diego, CA, USA, December 3–5, pp. 81–92.
IEEE, Piscataway, NJ, USA.

[6] Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P. and
Farkas, K.I. (2004) Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance. Proc.
31st Annual Int. Symp. on Computer Architecture (ISCA ’04),
Munich, Germany, June 19–23, pp. 64–75. IEEE, Piscataway,
NJ, USA.

[7] Chung, E.S., Milder, P.A., Hoe, J.C. and Mai, K. (2010)
Single-Chip Heterogeneous Computing: Does the Future Include
Custom Logic, FPGAs, and GPGPUs? Proc. 43rd Annual
IEEE/ACM Int. Symp. on Microarchitecture (MICRO-43),
Atlanta, GA, USA, December 4–8, pp. 225–236. IEEE Computer
Society Washington, DC, USA.

[8] Watkins, M.A. and Albonesi, D.H. (2010) ReMAP: A
Reconfigurable Heterogeneous Multicore Architecture. Proc.
43rd Annual IEEE/ACM Int. Symp. on Microarchitecture
(MICRO-43), Atlanta, GA, USA, December 4–8, pp. 497–508.
IEEE Computer Society, Washington, DC, USA.

[9] Luk, C.-K., Hong, S. and Kim, H. (2009) Qilin: Exploiting
Parallelism on Heterogeneous Multiprocessors with Adaptive
Mapping. Proc. 42nd Annual IEEE/ACM Int. Symp. on
Microarchitecture (MICRO-42), NewYork, NY, USA, December
12–16, pp. 45–55. ACM New York, NY, USA.

[10] Pan, M., Viswanathan, N. and Chu, C. (2005) An Efficient and
Effective Detailed Placement Algorithm. Proc. IEEE/ACM Int.
Conf. on Computer-Aided Design (ICCAD ’05), San Jose, CA,
USA, November 6–10, pp. 48–55. IEEE Computer Society,
Washington, DC, USA.

[11] Hadjiconstantinou, E. and Iori, M. (2007) A hybrid genetic
algorithm for the two-dimensional single large object placement
problem. Eur. J. Oper. Res., 183, 1150–1166.

[12] Schnecke, V. and Vornberger, O. (1997) Hybrid genetic
algorithms for constrained placement problems. IEEE Trans.
Evol. Comput., 1, 266–277.

[13] Terashima-Marín, H., Flores-Álvarez, E.J. and Ross, P. (2005)
Hyper-Heuristics and Classifier Systems for Solving 2D-Regular
Cutting Stock Problems. Proc. Conf. on Genetic and Evolutionary
Computation (GECCO’05), Washington, DC, USA, June 25–29,
pp. 637–643. ACM, New York, NY, USA.

[14] Pál, L. (2006) A Genetic Algorithm for the Two-Dimensional
Single Large Object Placement Problem. Proc. 3rd Romanian–
Hungarian Joint Symposium on Applied Computational Intelli-
gence (SACI’06), Timisoara, Romania, May 25–26.

[15] Cui, Y. (2007) Recursive algorithm for generating two-staged
cutting patterns of punched strips. Math. Comput. Appl., 12,
107–115.

[16] Lauther, U. (1979) A Min-cut Placement Algorithm for General
Cell Assemblies Based on a Graph Representation. Proc. 16th
Design Automation Conf. (DAC’79), San Diego, CA, USA, June
25–27, pp. 1–10. IEEE, Piscataway, NJ, USA.

[17] Wang, T. and Wong, D.F. (1990) An Optimal Algorithm for
Floorplan Area Optimization. Proc. 27th ACM/IEEE Design
Automation Conf. (DAC’90), Orlando, FL, USA, June 24–28,
pp. 180–186. ACM, New York, NY, USA.

[18] Cong, J., Nataneli, G., Romesis, M. and Shinnerl, J.R. (2004)
An Area-optimality Study of Floorplanning. Proc. Int. Symp. on
Physical Design (ISPD’04), New York, NY, USA, April 18–21,
pp. 78–83. ACM.

[19] Adya, S. and Markov, I. (2001) Fixed-Outline Floorplanning
through Better Local Search. Proc. Int. Conf. on Computer Design
(ICCD’01), Austin, TX, USA, September 23–26, pp. 328–334.
IEEE, Piscataway, NJ, USA.

[20] Chang,Y.-C., Chang,Y.-W., Wu, G.-M. and Wu, S.-W. (2000) B*-
trees: A New Representation for Non-slicing Floorplans. Proc.
37th Design Automation Conf., Los Angeles, CA, USA, June
5–9, pp. 458–463. ACM, New York, NY, USA.

[21] Lin, J.-M. and Chang,Y.-W. (2002) TCG-S: Orthogonal Coupling
of P*-admissible Representations for General Floorplans. Proc.
39th Design Automation Conf. (DAC’02), New Orleans, LA,
USA, June 10–14, pp. 842–847. IEEE, Piscataway, NJ, USA.

[22] Chan, H.H. and Markov, I.L. (2003) Symmetries in Rectangular
Block-packing. In Barbara Smith et al. (eds) Proc. Int. Workshop
on Symmetry in Constraint Satisfaction Problems (SymCon’03),
Kinsale, Ireland, September 29–October 3, pp. 27–40.

[23] Wei, L., Zhang, D. and Chen, Q. (2009) A least wasted first
heuristic algorithm for the rectangular packing problem. Comput.
Oper. Res., 36, 1608–1614.

[24] Garey, M.R. and Johnson, D S. (1990) Computers and
Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA.

[25] Yang, S. (1991) Logic Synthesis and Optimization Benchmarks
User Guide, Version 3.0. Technical Report. Microelectronics
Center of North Carolina, NC, USA.

[26] Chan, H. and Markov, I. (2004) Practical Slicing and Non-slicing
Block-packing without Simulated Annealing. Proc. ACM Great
Lakes Symp. on VLSI (GLSVLSI’04), Boston, MA, USA, April
26–28, pp. 282–287. ACM, New York, NY, USA.

[27] Embedded Microprocessor Benchmark Consortium (EEMBC)
(2011). Embedded System Synthesis Benchmarks Suite (E3S).
http://ziyang.eecs.umich.edu/∼dickrp/e3s/.

[28] Dick, R., Rhodes, D. and Wolf, W. (1998) TGFF: Task
Graphs for Free. Proc. 6th Int. Workshop on Hardware/Software
Codesign (CODES/CASHE’98), Seattle, WA, USA, March
15–18, pp. 97–101. IEEE Computer Society, Washington, DC,
USA.

[29] Hu, Y., Zhu, Y., Chen, H., Graham, R. and Cheng, C.-K. (2006)
Communication LatencyAware Low Power NoC Synthesis. Proc.
43rd ACM/IEEE Design Automation Conf., San Francisco, CA,
USA, July 24–28, pp. 574–579. ACM, New York, NY, USA.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://ziyang.eecs.umich.edu/$^sim $dickrp/e3s/
http://comjnl.oxfordjournals.org/

Application-Specific Heterogeneous Network-on-Chip Design 15

APPENDIX 1. EXAMPLES OF GENERATED LAYOUTS

Figure A1a–d show the generated layouts that contain 256, 512, 1024 and 2048 processing cores for a task graph with 2048
tasks.

FIGURE A1. Sample layouts containing (a) 256, (b) 512, (c) 1024 and (d) 2048 processing cores for a task graph with 2048 tasks.

The Computer Journal, 2013

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on February 13, 2013
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Related Work
	3 The Proposed Framework
	3.1 Heterogeneous NoC-based architecture
	3.2 Overview of our approach

	4 Problem Formulation
	5 An Example
	6 Methodology
	6.1 NoC topology generation
	6.2 Task scheduling

	7 Experimental results
	7.1 Packing efficiency
	7.2 Latency-aware NoC design
	7.3 Algorithm intrinsics

	8 Conclusion

