
1

CS 426

Parallel Programming with OpenMP

2
BilkentBilkent UniversityUniversity

Overview

● Introduction to OpenMP

● Parallel regions

● Worksharing directives

● More about parallel loops

● Synchronization

● Additional features

● OpenMP 2.0

3
BilkentBilkent UniversityUniversity

Brief history of OpenMP

● Historical lack of standardisation in shared memory directives. Each
vendor did their own thing.

● Previous attempt (ANSI X3H5, based on work of Parallel Computing
forum) failed due to political reasons and lack of vendor interest.

● OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now includes
all major vendors.

● OpenMP Fortran standard released October 1997,

� Minor revision (1.1) in November 1999.

� Major revision (2.0) in November 2000.

● OpenMP C/C++ standard released October 1998.

� Major revision (2.0) in March 2002.

� Major revision (3.0) in May 2008.

� Minor revision (3.1) in July 2011.

4
BilkentBilkent UniversityUniversity

OpenMP resources

● Web sites:

www.openmp.org

� Official web site: language specifications, links to
compilers and tools, mailing lists

www.compunity.org

� OpenMP community site: more links, events, resources

● Book: “Parallel Programming in OpenMP”, Chandra et. al.,
Morgan Kaufmann, ISBN 1558606718.

5
BilkentBilkent UniversityUniversity

Resources

● LLNL offers an online OpenMP tutorial

� https://computing.llnl.gov/tutorials/openMP/

● Intel's OpenMP tutorials

� http://software.intel.com/file/24569

● LLNL offers an online OpenMP tutorial

� https://computing.llnl.gov/tutorials/openMP/

● Intel's OpenMP tutorials

� http://software.intel.com/file/24569

6
BilkentBilkent UniversityUniversity

Shared memory systems

● OpenMP is designed for programming shared memory
parallel computers.

● Key feature is a single address space across the whole
memory system.

� every processor can read and write all memory locations

� one logical memory space

● Two main types of hardware:

� true shared memory

� distributed shared memory

7
BilkentBilkent UniversityUniversity

Shared memory systems (cont)

Sun Enterprise/SunFire, Cray SV1,
Compaq ES, multiprocessor PCs, nodes of
IBM SP, NEC SX5

None!

8
BilkentBilkent UniversityUniversity

Shared memory systems (cont)

● Most distributed shared memory systems are clustered:

SGI Origin, HP Superdome, Compaq GS

9
BilkentBilkent UniversityUniversity

Threads and thread teams

● A thread is a (lightweight) process - an instance of a program
+ its data.

● Each thread can follow its own flow of control through a
program.

● Threads can share data with other threads, but also have
private data.

● Threads communicate with each other via the shared data.

● A thread team is a set of threads which co-operate on a task.

● The master thread is responsible for co-ordinating the team.

10
BilkentBilkent UniversityUniversity

Threads (cont.)

PC PC PCPrivate data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3

11
BilkentBilkent UniversityUniversity

Directives and sentinels

● A directive is a special line of source code with meaning only
to certain compilers.

● A directive is distinguished by a sentinel at the start of the
line.

● OpenMP sentinels are:

� Fortran: !$OMP (or C$OMPor *$OMP)

� C/C++: #pragma omp

12
BilkentBilkent UniversityUniversity

Parallel loops

● Loops are the main source of parallelism in many
applications.

● If the iterations of a loop are independent (can be done in any
order) then we can share out the iterations between different
threads.

● e.g. if we have two threads and the loop

do i = 1, 100

a(i) = a(i) + b(i)

end do

we could do iteration 1-50 on one thread and iterations 51-100
on the other.

13
BilkentBilkent UniversityUniversity

Synchronization

● Need to ensure that actions on shared variables occur in the

correct order: e.g.

thread 1 must write variable A before thread 2 reads it,

or

thread 1 must read variable A before thread 2 writes it.

● Note that updates to shared variables

(e.g. a = a + 1) are not atomic!
If two threads try to do this at the same time, one of the updates

may get overwritten.

14
BilkentBilkent UniversityUniversity

Synchronization example

Thread 1 Thread 2
load a

Program

Private
data

Shared
data

10

10

1011 11

1111

add a 1
store a

load a
add a 1
store a

15

CS 426

Parallel Regions

16
BilkentBilkent UniversityUniversity

Parallel region

● The parallel region is the basic parallel construct in OpenMP.

● A parallel region defines a section of a program.

● Program begins execution on a single thread (the master
thread).

● When the first parallel region is encountered, the master
thread creates a team of threads (fork/join model).

● Every thread executes the statements which are inside the
parallel region

● At the end of the parallel region, the master thread waits for
the other threads to finish, and continues executing the next
statements

17
BilkentBilkent UniversityUniversity

Parallel region

18
BilkentBilkent UniversityUniversity

Shared and private data

● Inside a parallel region, variables can either be shared or
private.

● All threads see the same copy of shared variables.

● All threads can read or write shared variables.

● Each thread has its own copy of private variables: these are

invisible to other threads.

● A private variable can only be read or written by its own
thread.

19
BilkentBilkent UniversityUniversity

Parallel region directive

● Code within a parallel region is executed by all threads.

● Syntax:

Fortran: !$OMP PARALLEL

block

!$OMP END PARALLEL

C/C++: #pragma omp parallel

{

block

}

20
BilkentBilkent UniversityUniversity

Parallel region directive (cont)

Example:

call fred()

!$OMP PARALLEL

call billy()

!$OMP END PARALLEL

call daisy()

21
BilkentBilkent UniversityUniversity

Useful functions

● Often useful to find out number of threads being used.

Fortran:

INTEGER FUNCTION OMP_GET_NUM_THREADS()

C/C++:

#include <omp.h>

int omp_get_num_threads(void);

● Important note: returns 1 if called outside parallel region!

22
BilkentBilkent UniversityUniversity

Useful functions (cont)

● Also useful to find out number of the executing thread.

Fortran:

INTEGER FUNCTION OMP_GET_THREAD_NUM()

C/C++:

#include <omp.h>

int omp_get_thread_num(void)

● Takes values between 0 and

OMP_GET_NUM_THREADS() - 1

23
BilkentBilkent UniversityUniversity

Clauses

● Specify additional information in the parallel region directive
through clauses:

Fortran : !$OMP PARALLEL [clauses]

C/C++: #pragma omp parallel [clauses]

● Clauses are comma or space separated in Fortran, space
separated in C/C++.

24
BilkentBilkent UniversityUniversity

Shared and private variables

● Inside a parallel region, variables can be either shared (all
threads see same copy) or private (each thread has its own
copy).

● Shared, private and default clauses

Fortran: SHARED(list)

PRIVATE(list)

DEFAULT(SHARED|PRIVATE|NONE)

C/C++: shared(list)

private(list)

default(shared |none)

25
BilkentBilkent UniversityUniversity

Shared and private (cont)

Example: each thread initialises its own column of a shared array:

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)

myid = omp_get_thread_num() + 1

do i = 1,n

a(i,myid) = 1.0

end do

!$OMP END PARALLEL

0 2 31

i

26
BilkentBilkent UniversityUniversity

Shared and private (cont)

● How do we decide which variables should be shared and which
private?

� Most variables are shared

� Loop indices are private

� Loop temporaries are private

� Read-only variables - shared

� Main arrays - shared

� Write-before-read scalars - usually private

� Sometimes either is semantically OK, but there may
be performance implications in making the choice.

27
BilkentBilkent UniversityUniversity

Multi-line directives

● Fortran: fixed source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)

● Fortran: free source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID), &

!$OMP SHARED(A,N)

● C/C++:
#pragma omp parallel default(none) \

private(i,myid) shared(a,n)

28
BilkentBilkent UniversityUniversity

Initializing private variables

● Private variables are uninitialized at the start of the parallel
region.

● If we wish to initialize them, we use the FIRSTPRIVATE

clause:

Fortran: FIRSTPRIVATE(list)

C/C++: firstprivate(list)

29
BilkentBilkent UniversityUniversity

Initializing private variables (cont)

Example:

b = 23.0;

.

#pragma omp parallel firstprivate(b), private(i,myid)

{

myid = omp_get_thread_num();

for (i=0; i<n; i++){

b += c[myid][i];

}

c[myid][n] = b;

}

30
BilkentBilkent UniversityUniversity

Reductions

● A reduction produces a single value from associative
operations such as addition, multiplication, max, min, and,
or.

● For example:

b = 0;

for (i=0; i<n; i++)

b += a[i];

● Allowing only one thread at a time to update b would remove

all parallelism.

● Instead, each thread can accumulate its own private copy,
then these copies are reduced to give final result.

31
BilkentBilkent UniversityUniversity

Reductions (cont.)

● Use REDUCTION clause:

Fortran: REDUCTION(op: list)

C/C++: reduction(op: list)

● Cannot have reduction arrays, only scalars or array
elements! (except in Fortran 2.0)

32
BilkentBilkent UniversityUniversity

Reductions (cont.)

Example:

b = 0

!$OMP PARALLEL REDUCTION(+:b),

!$OMP& PRIVATE(I,MYID)

myid = omp_get_thread_num() + 1

do i = 1,n

b = b + c(i,myid)

end do

!$OMP END PARALLEL

33
BilkentBilkent UniversityUniversity

IF clause

● We can make the parallel region directive itself conditional.

● Can be useful if there is not always enough work to make

parallelism worthwhile.

Fortran: IF (scalar logical expression)

C/C++ : if (scalar expression)

34
BilkentBilkent UniversityUniversity

IF clause (cont.)

Example:

#pragma omp parallel if (tasks > 1000)

{

while(tasks > 0) donexttask();

}

35

CS 426

Work sharing directives

36
BilkentBilkent UniversityUniversity

Work sharing directives

● Directives which appear inside a parallel region and indicate
how work should be shared out between threads

� Parallel do/for loops

� Parallel sections

� ‘One thread only’ directives

37
BilkentBilkent UniversityUniversity

Parallel do loops

● Loops are the most common source of parallelism in most
codes. Parallel loop directives are therefore very important!

● A parallel do/for loop divides up the iterations of the loop
between threads.

● We will just introduce the basic form here: more details will

follow in the next session.

38
BilkentBilkent UniversityUniversity

Parallel do/for loops (cont)

Syntax:
Fortran:

!$OMP DO [clauses]

do loop

[!$OMP END DO]

C/C++:

#pragma omp for [clauses]

for loop

39
BilkentBilkent UniversityUniversity

Restrictions in C/C++

● Because the for loop in C is a general while loop, there are
restrictions on the form it can take.

● It has to have determinable trip count - it must be of the form:

for (var = a; var logical-op b; incr-exp)

where logical-op is one of <, <=, >, >=

and incr-exp is var = var + /- incr or semantic

equivalents such as var++ .

Also cannot modify var within the loop body.

40
BilkentBilkent UniversityUniversity

Parallel do/for loops (cont)

● With no additional clauses, the DO/FOR directive will usually
partition the iterations as equally as possible between the
threads.

● However, this is implementation dependent, and there is still
some ambiguity:

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2

41
BilkentBilkent UniversityUniversity

Parallel do/for loops (cont)

● How can you tell if a loop is parallel or not?

● Useful test: if the loop gives the same answers if it is run in
reverse order, then it is almost certainly parallel

● Jumps out of the loop are not permitted.

e.g.

do i=2,n

a(i)=2*a(i-1)

end do

42
BilkentBilkent UniversityUniversity

Parallel do/for loops (cont)

2.

ix = base

do i=1,n

a(ix) = a(ix)*b(i)

ix = ix + stride

end do

3.

do i=1,n

b(i)= (a(i)-a(i-1))*0.5

end do

43
BilkentBilkent UniversityUniversity

Parallel do loops (example)

Example:

!$OMP PARALLEL

!$OMP DO

do i=1,n

b(i) = (a(i)-a(i-1))*0.5

end do

!$OMP END DO

!$OMP END PARALLEL

44
BilkentBilkent UniversityUniversity

Parallel DO/FOR directive

● This construct is so common that there is a shorthand form
which combines parallel region and DO/FOR directives:

Fortran:

!$OMP PARALLEL DO [clauses]

do loop

[!$OMP END PARALLEL DO]

C/C++:

#pragma omp parallel for [clauses]

for loop

45
BilkentBilkent UniversityUniversity

Clauses

● DO/FOR directive can take PRIVATE and FIRSTPRIVATE
clauses which refer to the scope of the loop.

● Note that the parallel loop index variable is PRIVATE by
default (but other loop indices are not).

● PARALLEL DO/FOR directive can take all clauses available
for PARALLEL directive.

46
BilkentBilkent UniversityUniversity

Parallel sections

● Allows separate blocks of code to be executed in parallel (e.g.
several independent subroutines)

● Not scalable: the source code determines the amount of
parallelism available.

47
BilkentBilkent UniversityUniversity

Parallel sections (cont)

C/C++:

#pragma omp sections [clauses]

{

[#pragma omp section]

structured-block

[#pragma omp section

structured-block

. . .]

}

48
BilkentBilkent UniversityUniversity

Parallel sections (cont)

Example:

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

call init(x)

!$OMP SECTION

call init(y)

!$OMP SECTION

call init(z)

!$OMP END SECTIONS

!$OMP END PARALLEL

49
BilkentBilkent UniversityUniversity

Parallel sections (cont)

● SECTIONS directive can take PRIVATE, FIRSTPRIVATE,
LASTPRIVATE (see later) and clauses.

● Each section must contain a structured block: cannot branch
into or out of a section.

50
BilkentBilkent UniversityUniversity

Parallel section (cont)

Shorthand form:

Fortran:

!$OMP PARALLEL SECTIONS [clauses]

. . .

!$OMP END PARALLEL SECTIONS

C/C++:

#pragma omp parallel sections [clauses]

{

. . .

}

51
BilkentBilkent UniversityUniversity

SINGLE directive

● Indicates that a block of code is to be executed by a single
thread only.

● The first thread to reach the SINGLE directive will execute the
block

● Other threads wait until block has been executed.

52
BilkentBilkent UniversityUniversity

SINGLE directive (cont)

Syntax:

Fortran:

!$OMP SINGLE [clauses]

block

!$OMP END SINGLE

C/C++:

#pragma omp single [clauses]

structured block

53
BilkentBilkent UniversityUniversity

SINGLE directive (cont)

Example:

#pragma omp parallel

{

setup(x);

#pragma omp single

{

input(y);

}

work(x,y);

}

54
BilkentBilkent UniversityUniversity

SINGLE directive (cont)

● SINGLE directive can take PRIVATE and FIRSTPRIVATE
clauses.

● Directive must contain a structured block: cannot branch into
or out of it.

55
BilkentBilkent UniversityUniversity

MASTER directive

● Indicates that a block of code should be executed by the
master thread (thread 0) only.

● Other threads skip the block and continue executing: different
from SINGLE in this respect.

● Most often used for I/O.

56
BilkentBilkent UniversityUniversity

MASTER directive (cont)

Syntax:

Fortran:

!$OMP MASTER

block

!$OMP END MASTER

C/C++:

#pragma omp master

structured block

57

CS 426

More about parallel do/for loops

58
BilkentBilkent UniversityUniversity

LASTPRIVATE clause

● Sometimes need the value a private variable would have had
on exit from loop (normally undefined).

Syntax:

Fortran: LASTPRIVATE(list)

C/C++: lastprivate(list)

● Also applies to sections directive (variable has value assigned
to it in the last section.)

59
BilkentBilkent UniversityUniversity

LASTPRIVATE clause (cont)

Example:

!$OMP PARALLEL

!$OMP DO LASTPRIVATE(i)

do i=1,func(l,m,n)

d(i)=d(i)+e*f(i)

end do

ix = i-1

. . .

!$OMP END PARALLEL

60
BilkentBilkent UniversityUniversity

SCHEDULE clause

● The SCHEDULE clause gives a variety of options for
specifying which loops iterations are executed by which
thread.

● Syntax:

Fortran: SCHEDULE (kind[, chunksize])

C/C++: schedule (kind[, chunksize])

where kind is one of

STATIC, DYNAMIC, GUIDED or RUNTIME

and chunksize is an integer expression with positive value.

● E.g. !$OMP DO SCHEDULE(DYNAMIC,4)

61
BilkentBilkent UniversityUniversity

STATIC schedule

● With no chunksize specified, the iteration space is divided into
(approximately) equal chunks, and one chunk is assigned to
each thread (block schedule).

● If chunksize is specified, the iteration space is divided into
chunks, each of chunksize iterations, and the chunks are
assigned cyclically to each thread (block cyclic schedule)

62
BilkentBilkent UniversityUniversity

STATIC schedule

63
BilkentBilkent UniversityUniversity

DYNAMIC schedule

● DYNAMIC schedule divides the iteration space up into chunks
of size chunksize, and assigns them to threads on a first-
come-first-served basis.

● i.e. as a thread finish a chunk, it is assigned the next chunk in
the list.

● When no chunksize is specified, it defaults to 1.

64
BilkentBilkent UniversityUniversity

GUIDED schedule

● GUIDED schedule is similar to DYNAMIC, but the chunks
start off large and get smaller exponentially.

● The size of the next chunk is (roughly) the number of
remaining iterations divided by the number of threads.

● The chunksize specifies the minimum size of the chunks.

● When no chunksize is specified it defaults to 1.

65
BilkentBilkent UniversityUniversity

DYNAMIC and GUIDED schedules

66
BilkentBilkent UniversityUniversity

Choosing a schedule

When to use which schedule?

● STATIC best for load balanced loops - least overhead.

● DYNAMIC useful if iterations have widely varying loads, but
ruins data locality.

● GUIDED often less expensive than DYNAMIC, but beware of
loops where the first iterations are the most expensive!

● Use RUNTIME for convenient experimentation.

67
BilkentBilkent UniversityUniversity

ORDERED directive

● Can specify code within a loop which must be done in the
order it would be done if executed sequentially.

● Syntax:

Fortran: !$OMP ORDERED

block

!$OMP END ORDERED

C/C++: #pragma omp ordered

structured block

● Can only appear inside a DO/FOR directive which has the
ORDERED clause specified.

68
BilkentBilkent UniversityUniversity

ORDERED directive (cont)

Example:

#pragma omp for ordered [clauses...]

(loop region)

#pragma omp ordered

structured_block

(endo of loop region)

69

CS 426

Synchronization

70
BilkentBilkent UniversityUniversity

Why is it required?

Recall:

● Need to synchronise actions on shared variables.

● Need to ensure correct ordering of reads and writes.

● Need to protect updates to shared variables (not atomic by
default)

71
BilkentBilkent UniversityUniversity

BARRIER directive

● No thread can proceed past a barrier until all the other
threads have arrived.

● Note that there is an implicit barrier at the end of DO/FOR,
SECTIONS and SINGLE directives.

● Syntax:

Fortran: !$OMP BARRIER

C/C++: #pragma omp barrier

● Either all threads or none must encounter the barrier:
otherwise DEADLOCK!!

72
BilkentBilkent UniversityUniversity

BARRIER directive (cont)

Example:

!$OMP PARALLEL PRIVATE(I,MYID,NEIGHB)

myid = omp_get_thread_num()

neighb = myid - 1

if (myid.eq.0) neighb = omp_get_num_threads()-1

...

a(myid) = a(myid)*3.5

b(myid) = a(neighb) + c

...

!$OMP END PARALLEL

73
BilkentBilkent UniversityUniversity

NOWAIT clause

● The NOWAIT clause can be used to suppress the implicit
barriers at the end of DO/FOR, SECTIONS and SINGLE
directives. (Barriers are expensive!)

● Syntax:

Fortran: !$OMP DO

do loop

!$OMP END DO NOWAIT

C/C++: #pragma omp for nowait

for loop

● Similarly for SECTIONS and SINGLE .

74
BilkentBilkent UniversityUniversity

NOWAIT clause (cont)

Example: Two loops with no dependencies

!$OMP PARALLEL

!$OMP DO

do j=1,n

a(j) = c * b(j)

end do

!$OMP END DO NOWAIT

!$OMP DO

do i=1,m

x(i) = sqrt(y(i)) * 2.0

end do

!$OMP END PARALLEL

75
BilkentBilkent UniversityUniversity

NOWAIT clause

● Use with EXTREME CAUTION!

● All too easy to remove a barrier which is necessary.

● This results in the worst sort of bug: non-deterministic
behaviour (sometimes get right result, sometimes wrong,
behaviour changes under debugger, etc.).

● May be good coding style to use NOWAIT everywhere and
make all barriers explicit.

76
BilkentBilkent UniversityUniversity

NOWAIT clause (cont)

Example:

!$OMP DO

do j=1,n

a(j) = b(j) + c(j)

end do

!$OMP DO

do j=1,n

d(j) = e(j) * f

end do

!$OMP DO

do j=1,n

z(j) = (a(j)+a(j+1)) * 0.5

end do

77
BilkentBilkent UniversityUniversity

Critical sections

● A critical section is a block of code which can be executed by
only one thread at a time.

● Can be used to protect updates to shared variables.

● The CRITICAL directive allows critical sections to be named.

● If one thread is in a critical section with a given name, no
other thread may be in a critical section with the same name

(though they can be in critical sections with other names).

78
BilkentBilkent UniversityUniversity

CRITICAL directive

● Syntax:

Fortran: !$OMP CRITICAL [(name)]

block

!$OMP END CRITICAL [(name)]

C/C++: #pragma omp critical [(name)]

structured block

● In Fortran, the names on the directive pair must match.

● If the name is omitted, a null name is assumed (all unnamed
critical sections effectively have the same null name).

79
BilkentBilkent UniversityUniversity

CRITICAL directive (cont)

Example: pushing and popping a task stack

!$OMP PARALLEL SHARED(STACK),PRIVATE(INEXT,INEW)

...

!$OMP CRITICAL (STACKPROT)

inext = getnext(stack)

!$OMP END CRITICAL (STACKPROT)

call work(inext,inew)

!$OMP CRITICAL (STACKPROT)

if (inew .gt. 0) call putnew(inew,stack)

!$OMP END CRITICAL (STACKPROT)

...

!$OMP END PARALLEL

80
BilkentBilkent UniversityUniversity

ATOMIC directive

● Used to protect a single update to a shared variable.

● Applies only to a single statement.

● Syntax:

Fortran: !$OMP ATOMIC

statement

where statement must have one of these forms:

x = x op expr, x = expr op x, x = intr (x, expr) or

x = intr(expr, x)

op is one of +, * , - , / , .and. , .or. , .eqv. , or .neqv.

intr is one of MAX, MIN, IAND, IOR or IEOR

81
BilkentBilkent UniversityUniversity

ATOMIC directive (cont)

C/C++: #pragma omp atomic

statement

where statement must have one of the forms:

x binop = expr, x++, ++x, x-- , or -- x

and binop is one of +, * , - , / , &, ^ , <<, or >>

● Note that the evaluation of expr is not atomic.

● May be more efficient than using CRITICAL directives, e.g. if
different array elements can be protected separately.

82
BilkentBilkent UniversityUniversity

ATOMIC directive (cont)

Example (compute degree of each vertex in a graph):

#pragma omp parallel for

for (j=0; j<nedges; j++){

#pragma omp atomic

degree[edge[j].vertex1]++;

#pragma omp atomic

degree[edge[j].vertex2]++;

}

83
BilkentBilkent UniversityUniversity

Choosing synchronisation

● As a rough guide, use ATOMIC directives if possible, as these
allow most optimisation.

● If this is not possible, use CRITICAL directives. Make sure
you use different names wherever possible.

● As a last resort you may need to use the lock routines, but
this should be quite a rare occurrence.

84
BilkentBilkent UniversityUniversity

FLUSH directive

● The FLUSH directive ensures that a variable is written to/read
from main memory.

● The variable will be flushed out of the register file (and out of
cache on a system without sequentially consistent caches).
Also sometimes called a memory fence.

85
BilkentBilkent UniversityUniversity

FLUSH directive (cont)

● Syntax:

Fortran: !$OMP FLUSH [(list)]

C/C++: #pragma omp flush [(list)]

● list specifies a list of variables to be flushed. If no list is
specified, all shared variables are flushed.

● A FLUSH directive is implied by a BARRIER, at entry and exit
to CRITICAL and ORDERED sections, and at the end of
PARALLEL, DO/FOR, SECTIONS and SINGLE directives
(except when a NOWAIT clause is present).

86
BilkentBilkent UniversityUniversity

FLUSH directive (cont)

Example (point-to-point synchronisation):

!$OMP PARALLEL PRIVATE(MYID,I, NEIGHB)

. . .

do j = 1, niters

do i = lb(myid), ub(myid)

a(i) = (a(i-1) + a(i))*0.5

end do

ndone (myid) = ndone (myid) + 1

!$OMP FLUSH (NDONE)

do while (ndone(neighb).lt. ndone(myid))

!$OMP FLUSH (NDONE)

end do

end do

Must wait for
previous iteration to
finish on neighbour

Make sure write is to
main memory

Make sure read is
from main memory

87

CS 426

Additional Features

88
BilkentBilkent UniversityUniversity

Additional features

● Nested parallelism

● Orphaned directives and binding rules

● Dynamic parallelism

● Thread private global variables

● Conditional compilation

● I/O

89
BilkentBilkent UniversityUniversity

Nested parallelism

● Unlike most previous directive systems, nested parallelism is
permitted in OpenMP.

● This is enabled with the OMP_NESTEDenvironment variable
or the OMP_SET_NESTEDroutine.

● If a PARALLEL directive is encountered within another
PARALLEL directive, a new team of threads will be created.

● The new team will contain only one thread unless nested
parallelism is enabled.

90
BilkentBilkent UniversityUniversity

Nested parallelism (cont)

Example:

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

!$OMP PARALLEL DO

do i = 1,n

x(i) = 1.0

end do

!$OMP SECTION

!$OMP PARALLEL DO

do j = 1,n

y(j) = 2.0

end do

!$OMP END SECTIONS

!$OMP END PARALLEL

91
BilkentBilkent UniversityUniversity

Nested parallelism (cont)

● Not often needed, but can be useful to exploit non-scalable
parallelism (SECTIONS).

● Note: nested parallelism isn’t supported in many current
implementations (the code will execute, but as if
OMP_NESTED was not set).

● This was an unsatisfactory area in the original standard.

� there was no way to control how many threads are used at
each level of nesting

� this was fixed in 2.0, but still not many implementations

92

CS 426

OpenMP – More Details

93
BilkentBilkent UniversityUniversity

Lock routines

● Occasionally we may require more flexibility than is provided
by CRITICAL and ATOMIC directions.

● A lock is a special variable that may be set by a thread. No
other thread may set the lock until the thread which set the
lock has unset it.

● Setting a lock can either be blocking or non-blocking.

● A lock must be initialised before it is used, and may be
destroyed when it is not longer required.

● Lock variables should not be used for any other purpose.

94
BilkentBilkent UniversityUniversity

Lock routines - syntax

Fortran:

SUBROUTINE OMP_INIT_LOCK(var)

SUBROUTINE OMP_SET_LOCK(var)

LOGICAL FUNCTION OMP_TEST_LOCK(var)

SUBROUTINE OMP_UNSET_LOCK(var)

SUBROUTINE OMP_DESTROY_LOCK(var)

var should be an INTEGER of the same size as addresses (e.g.
INTEGER*8 on a 64-bit machine)

95
BilkentBilkent UniversityUniversity

Lock routines - syntax

C/C++:

#include <omp.h>

void omp_init_lock(omp_lock_t *lock);

void omp_set_lock(omp_lock_t *lock);

int omp_test_lock(omp_lock_t *lock);

void omp_unset_lock(omp_lock_t *lock);

void omp_destroy_lock(omp_lock_t *lock);

There are also nestable lock routines which allow the same
thread to set a lock multiple times before unsetting it the same
number of times.

96
BilkentBilkent UniversityUniversity

Lock routines (cont)

Example:
// omp_test_lock.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>
omp_lock_t simple_lock;
int main() {

omp_init_lock(&simple_lock);
#pragma omp parallel num_threads(4)
{

int tid = omp_get_thread_num();

while (!omp_test_lock(&simple_lock))
printf_s("Thread %d - failed to acquire simple_lock\n ",tid);

printf_s("Thread %d - acquired simple_lock\n", tid);

printf_s("Thread %d - released simple_lock\n", tid);
omp_unset_lock(&simple_lock);

}
omp_destroy_lock(&simple_lock);

}

97
BilkentBilkent UniversityUniversity

Orphaned directives

● Directives are active in the dynamic scope of a parallel region,

not just its lexical scope.

● Example:
!$OMP PARALLEL

call fred()

!$OMP END PARALLEL

subroutine fred()

!$OMP DO

do i = 1,n

a(i) = a(i) + 23.5

end do

return

end

98
BilkentBilkent UniversityUniversity

Orphaned directives (cont)

● This is very useful, as it allows a modular programming
styleQ.

● But it can also be rather confusing if the call tree is
complicated (what happens if fred is also called from outside

a parallel region?)

● There are some extra rules about data scope attributesQ.

99
BilkentBilkent UniversityUniversity

Data scoping rules

When we call a subroutine from inside a parallel region:

● Variables in the argument list inherit their data scope attribute
from the calling subroutine.

● Global variables and COMMON blocks are shared, unless
declared THREADPRIVATE (see later).

● static local variables in C/C++ and SAVEvariables in

Fortran are shared.

● All other local variables are private.

100
BilkentBilkent UniversityUniversity

Orphaned directives (cont)

● We can find out if we are in a parallel region or not with the
OMP_IN_PARALLEL function:

Fortran: LOGICAL FUNCTION OMP_IN_PARALLEL()

C/C++: #include <omp.h>

int omp_in_parallel(void);

101
BilkentBilkent UniversityUniversity

Binding rules

● There could be ambiguity about which parallel region
directives refer to, so we need some rulesQ.

● DO/FOR, SECTIONS, SINGLE, MASTER and BARRIER
directives always bind to the nearest enclosing PARALLEL
directive.

● ORDERED directive binds to nearest enclosing DO directive.

102
BilkentBilkent UniversityUniversity

Dynamic parallelism

● It is possible to let the system choose how many threads
execute each parallel region, to let it optimise resource
allocation.

● The number of threads will be equal to or less than that set by
the user, and remains fixed for the duration of each parallel
region.

● Can be set by OMP_SET_DYNAMIC routine or by the
OMP_DYNAMIC environment variable.

● Its default value is implementation dependent: if your code
relies on using a certain number of threads (not
recommended) you should disable dynamic parallelism.

103
BilkentBilkent UniversityUniversity

Thread private global variables

● It can be convenient for each thread to have its own copy of
variables with global scope (COMMON blocks in Fortran, or

file-scope and namespace-scope variables in C/C++).

● Outside parallel regions and in MASTER directives, accesses
to these variables refer to the master thread’s copy.

104
BilkentBilkent UniversityUniversity

Thread private globals (cont)

Syntax:

Fortran: !$OMP THREADPRIVATE (/ cb/ [,/ cb/])

where cb is a named common block.

This directive must come after all the declarations for the
common blocks.

C/C++: #pragma omp threadprivate (list)

This directive must be a file or namespace scope, after all
declarations of variables in list and before any references to
variables in list. See standard document for other restrictions.

105
BilkentBilkent UniversityUniversity

COPYIN clause

● Allows the values of the master thread’s THREADPRIVATE
data to be copied to all other threads at the start of a parallel
region.

Syntax:

Fortran: COPYIN(list)

C/C++: copyin(list)

In Fortran the list can contain both COMMON blocks and

variables in COMMON blocks.

106
BilkentBilkent UniversityUniversity

COPYIN clause

Example:

common /junk/ nx

common /stuff/ a,b,c

!$OMP THREADPRIVATE (/JUNK/,/STUFF/)

nx = 32

c = 17.9

. . .

!$OMP PARALLEL PRIVATE(NX2,CSQ) COPYIN(/JUNK/,C)

nx2 = nx * 2

csq = c*c

. . .

107
BilkentBilkent UniversityUniversity

Conditional compilation

● Allows source lines to be recognised by an OpenMP compiler
and ignored (treated as comments) by other compilers.

● In C/C++ this is done in the traditional way with the
preprocessor macro _OPENMP

● In Fortran, in addition to this macro, any line beginning with
the sentinels !$, C$ or *$ (latter two only in fixed source form),
is conditionally compiled.

● The sentinel is replaced with two spaces.

108
BilkentBilkent UniversityUniversity

Conditional compilation (cont)

Example (read value of OMP_NUM_THREADS):

nthreads = 1

!$OMP PARALLEL

!$OMP MASTER

!$ nthreads = omp_get_num_threads()

!$OMP END MASTER

!$OMP END PARALLEL

print *, “No. of threads = “, nthreads

109
BilkentBilkent UniversityUniversity

I/O

● Should assume that I/O is not thread-safe.

● Need to synchronise multiple threads writing to or reading

from the same file.

� Note that there is no way for multiple threads to have private
file positions.

● OK to have multiple threads reading/writing to different files.

110

CS 426

OpenMP functions listed

111
BilkentBilkent UniversityUniversity

Directives

● General format:
#pragma omp directive-name [clause, '] newline

● #pragma omp
� Required for all OpenMP C/C++ directives

● directive-name
� A valid OpenMP directive. Must appear after pragma and before clauses

● [clause, ']
� Optional. Clauses can be in any order, and repeated as necessary

unless otherwise restricted.

● newline
� Required. Followed by structured block

112
BilkentBilkent UniversityUniversity

Directives

● General Rules:
� Case sensitive
� Follow conventions of C/C++ standards for compile direvtives
� Only one directive name may be specified per directive
� Each directive applies to at most one succeeding statement,

which must be a structured block
� Long directive lines can be continued by succeeding lines by

excaping the newline character with a backslash (‘\’) at the
end of a directive line

113
BilkentBilkent UniversityUniversity

Syntax – atomic

● #pragma omp atomic ‘statement’
● ‘statement’ can be:

� x bin_op= expr
– bin_op: {+ * - / & ^ | << >>}
– expr: an expression of scalar type that does not

reference x
� x++
� ++x
� x--
� --x

● Indicates that the specified memory location must be updated
atomically and not be exposed to multiple, simultaneous writing
threads.

114
BilkentBilkent UniversityUniversity

Syntax – parallel

● #pragma omp parallel ‘clause’
● ‘clause’ can be:

� if(exp)
� private(list)
� firstprivate(list)
� num_threads(int_exp)
� shared(list)
� default(shared|none)
� copyin(list)
� reduction(operator: list)

● Indicates that the code section is to be parallelized

115
BilkentBilkent UniversityUniversity

Syntax – for

● #pragma omp for ‘clause’
● ‘clause’ can be:

� private(list)
� firstprivate(list)
� lastprivate(list)
� reduction(operator: list)
� ordered
� schedule(type)
� Nowait

● Compiler distributes loop iterations within team of threads

116
BilkentBilkent UniversityUniversity

Syntax – ordered

● #pragma omp ordered

� Indicates that the code section must be executed in
sequential order

117
BilkentBilkent UniversityUniversity

Syntax – parallel for

● #pragma omp parallel for ‘clause’
● ‘clause’ can be:

� if(exp)
� private(list)
� firstprivate(list)
� lastprivate(list)
� num_threads(int_exp)
� shared(list)
� default(shared|none)
� copyin(list)
� reduction(operator: list)
� ordered
� schedule(type)

● Combines the omp parallel and omp for directives

118
BilkentBilkent UniversityUniversity

Syntax – sections

● #pragma omp sections ‘clause’

● ‘clause’ can be:
� private(list)

� firstprivate(list)

� lastprivate(list)

� reduction(operator: list)

� nowait

● In structured block following the directive, an opm section
directive will indicate that the following sub-block can be distributed
for parallel execution.

119
BilkentBilkent UniversityUniversity

Syntax – parallel sections

● #pragma omp parallel sections ‘clause’
● ‘clause’ can be:

� if(exp)
� private(list)
� firstprivate(list)
� lastprivate(list)
� shared(list)
� default(shared|none)
� copyin(list)
� reduction(operator: list)
� Nowait

● Combines the omp parallel and omp sections directives

120
BilkentBilkent UniversityUniversity

Syntax – single

● #pragma omp single ‘clause’

● ‘clause’ can be:

� private(list)

� copyprivate(list)

� firstprivate(list)

� Nowait

● Indicates that the code section must only be run by a single
available thread.

121
BilkentBilkent UniversityUniversity

Syntax – master

● #pragma omp master

� Indicates that the code section must only be run by
master thread

122
BilkentBilkent UniversityUniversity

Syntax – critical

● #pragma omp critical

� Indicates that the code section can only be executed by
a single thread at any given time

123
BilkentBilkent UniversityUniversity

Syntax – barrier

● #pragma omp barrier

� Identifies a synchronization point at which threads in a
parallel region will not continue until all other threads in
that section reach the same spot

� Explicit for a few directives
– omp parallel

– omp for

124
BilkentBilkent UniversityUniversity

Syntax – flush

● #pragma omp flush (list)
� Identifies a point at which the compiler ensures that all

threads in a parallel region have the same view of specified
objects in memory. If no list is given, then all shared objects
are synchronized.

� flush is implicit for the following directives:
– omp barrier
– Entrance and exit of omp critical
– Exit of omp parallel
– Exit of omp for
– Exit of omp sections
– Exit of omp single

125
BilkentBilkent UniversityUniversity

Syntax – threadprivate

● #pragma omp threadprivate (var)

� omp threadprivate makes the variable private to a

thread

126
BilkentBilkent UniversityUniversity

OpenMP Functions

● void omp_set_num_threads (int)
� Called inside serial section. Can exceed available processors

● int omp_get_num_threads (void)
� Returns number of active threads

● int omp_get_max_threads (void)
� Returns max system allowed threads

● int omp_get_thread_num (void)
� Returns thread’s ID number (ranges from 0 to t-1)

● int omp_get_num_procs (void)
� Returns number of processors available to the program

127
BilkentBilkent UniversityUniversity

OpenMP Functions

● int omp_in_parallel (void)
� Returns 1 if called inside a parallel block

● void omp_set_dynamic (int)
� Enable (1) or disable (0) dynamic threads

● int omp_get_dynamic (void)
� Returns 1 if dynamic threads enabled

● void omp_set_nested (int)
� Enable (1) or disable (0) nested parallelism

● int omp_get_nested (void)
� Returns 1 if nested parallelism enabled (default 0)

128
BilkentBilkent UniversityUniversity

OpenMP Functions

● void omp_init_lock (omp_lock_t*)
� Initializes a lock associated with the lock variable

● void omp_destroy_lock (omp_lock_t*)
� Disassociates the given lock variable from any locks

● void omp_set_lock (omp_lock_t*)
� Wait until specified lock is available

● void omp_unset_lock (omp_lock_t*)
� Releases the lock from executing routine

● int omp_test_lock (omp_lock_t*)
� Attempts to set a lock, but does not wait if the lock is unavailable

� Returns non-zero value on success

129
BilkentBilkent UniversityUniversity

OpenMP Functions

● double omp_get_wtime (void)

� Returns the number of elapsed seconds since some
point in the past

● double omp_get_wtick (void)

� Returns the number of elapsed seconds between
successive clock ticks

130
BilkentBilkent UniversityUniversity

Environment Variables

● OMP_SCHEDULE
� Applies only to parallel for directives with their schedule clause set to

RUNTIME

� Determines how iterations of the loop are scheduled

● OMP_NUM_THREADS
� Maximum number of threads to use for execution

● OMP_DYNAMIC
� Enable (1) or disable (0) dynamic adjustment of threads available for

execution

● OMP_NESTED
� Enable (1) or disable (0) nested parallelism

131
BilkentBilkent UniversityUniversity

Clause - list

● list
� private(list)

� firstprivate(list)

� lastprivate(list)

� shared(list)

� copyin(list)

● List of variables

132
BilkentBilkent UniversityUniversity

Clause – operator: list

● operator: list
� reduction(operator: list)

● Operators includes:

� +

� *

� &

� |

� ^

� &&

� ||

133
BilkentBilkent UniversityUniversity

Clause – schedule(type , size)

● schedule(type, size)
� schedule(static)

– Allocates n / t contiguous iterations to each thread

� schedule(static, C)
– Allocates C contiguous iterations to each thread

� schedule(dynamic)
– Allocates 1 iteration at a time, dynamically

� schedule(dynamic, C)
– Allocates C iterations at a time, dynamically

� schedule(guided, C)
– Allocates decreasingly large iterations to each thread until size reaches C

� schedule(guided)
– Same as (guided, C) , with C = 1

� schedule(runtime)
– Based on environment variable OMP_SCHEDULE

134
BilkentBilkent UniversityUniversity

Examples – Reduction

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[]) {

int i, n;
float a[100], b[100], sum;

n = 100; /* Some initializations */
for (i=0; i < n; i++)

a[i] = b[i] = i * 1.0;
sum = 0.0;
#pragma omp parallel for reduction(+:sum)

for (i=0; i < n; i++)
sum = sum + (a[i] * b[i]);

printf(" Sum = %f\n",sum);
}

135
BilkentBilkent UniversityUniversity

Examples – OpenMP Functions

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]){
int nthreads, tid, procs, maxt, inpar,

dynamic, nested;

/* Start parallel region */
#pragma omp parallel private(nthreads, tid) {

/* Obtain thread number */
tid = omp_get_thread_num() ;

/* Only master thread does this */
if (tid == 0) {

printf("Thread %d getting info...\n", tid);

/* Get environment information */
procs = omp_get_num_procs() ;
nthreads = omp_get_num_threads() ;
maxt = omp_get_max_threads() ;
inpar = omp_in_parallel() ;
dynamic = omp_get_dynamic() ;
nested = omp_get_nested() ;

/* Print environment information */
printf("Number of processors = %d\n", procs);
printf("Number of threads = %d\n", nthreads);
printf("Max threads = %d\n", maxt);
printf("In parallel? = %d\n", inpar);
printf("Dynamic threads? = %d\n", dynamic);
printf("Nested parallelism? = %d\n", nested);
}

} /* Done */
}

136

CS 426

OpenMP 2.0

137
BilkentBilkent UniversityUniversity

New features in Fortran 2.0

● Fuller support for Fortran 90/95:

� WORKSHARE directive for array syntax.

� THREADPRIVATE/COPYIN on variables (e.g. for
module data).

� In-line comment in directives.
● Reductions on arrays.

● COPYPRIVATE on END SINGLE (propagates value to all threads).

● NUM_THREADS clause on parallel regions.

● Timing routines.

● Q. plus some clarifications (e.g. reprivatisation of variables is
allowed.)

138
BilkentBilkent UniversityUniversity

New features in C/C++ 2.0

● COPYPRIVATE on END SINGLE (propagates value
to all threads).

● NUM_THREADS clause on parallel regions.

● Timing routines.

● ...plus a lot of correction/clarifications.

139
BilkentBilkent UniversityUniversity

Workshare directive

● A worksharing directive (!) which allows parallelisation of
Fortran 90 array operations, WHERE and FORALL
constructs.

● Syntax:

!$OMP WORKSHARE

block

!$OMP END WORKSHARE [NOWAIT]

140
BilkentBilkent UniversityUniversity

Workshare directive (cont.)

● Simple example

REAL A(100,200), B(100,200), C(100,200)

...

!$OMP PARALLEL

!$OMP WORKSHARE

A=B+C

!$OMP END WORKSHARE

!$OMP END PARALLEL

● N.B. No schedule clause: distribution of work units to threads
is entirely up to the compiler!

141
BilkentBilkent UniversityUniversity

Workshare directive (cont.)

● Can also contain array intrinsic functions, WHERE and
FORALL constructs, scalar assignment to shared variables,
ATOMIC and CRITICAL directives.

● No branches in or out of block.

● No function calls except array intrinsics and those declared
ELEMENTAL.

● Combined directive:

!$OMP PARALLEL WORKSHARE

block

!$OMP END PARALLEL WORKSHARE

142
BilkentBilkent UniversityUniversity

Workshare directive (cont.)

● Example:

!$OMP PARALLEL WORKSHARE

A = B + C

WHERE (D .ne. 0) E = 1/D

!$OMP ATOMIC

t = t + SUM(F)

FORALL (i=1:n, X(i)=0) X(i)= 1

!$OMP END PARALLEL WORKSHARE

143
BilkentBilkent UniversityUniversity

THREADPRIVATE variables

● THREADPRIVATE directive (and COPYIN) clause can be
applied to variables not in COMMON.

● Useful for module data and SAVEd variables.

Example:

SUBROUTINE DAISY
USE FRED
!$OMP PARALLEL
....
XX = YY
...
!$OMP END PARALLEL

MODULE FRED
REAL XX(100)
!$OMP THREADPRIVATE (XX)
END MODULE FRED

144
BilkentBilkent UniversityUniversity

Array reductions

● Arrays may be used as reduction variables (previously only
scalars and array elements).

Example:

!$OMP PARALLEL DO PRIVATE(I) REDUCTION(+:B)

DO J = 1,N

DO I = 1,M

B(I) = B(I) + A(I,J)

END DO

END DO

145
BilkentBilkent UniversityUniversity

COPYPRIVATE clause

● Broadcasts the value of a private variable to all threads at
the end of a SINGLE directive.

● Perhaps most useful for reading in the value of private
variables.

● Syntax:

Fortran:

!$OMP END SINGLE COPYPRIVATE(list)

C/C++:

#pragma omp single copyprivate(list)

146
BilkentBilkent UniversityUniversity

COPYPRIVATE clause

Example:

!$OMP PARALLEL PRIVATE(A,B)

...

!$OMP SINGLE

READ(24) A

!$OMP END SINGLE COPYPRIVATE(A)

B = A*A

...

!$OMP END PARALLEL

147
BilkentBilkent UniversityUniversity

Nested parallelism again

● OpenMP 1.0/1.1 specification of nested parallelism has a
serious omission: there is no way to specify how many
threads should execute each level.

e.g. 2-d decomposition of 2-d loop nest:

!$OMP PARALLEL DO

DO I = 1,4

!$OMP PARALLEL DO

DO J = 1,N

A(I,J) = B(I,J)

END DO

END DO

148
BilkentBilkent UniversityUniversity

NUMTHREADS clause

● This is addressed in OpenMP 2.0 (Fortran and C/C++) with the
NUM_THREADS clause.

e.g.:

!$OMP PARALLEL DO NUM_THREADS(4)

DO I = 1,4

!$OMP PARALLEL DO NUM_THREADS(TOTALTHREADS/4)

DO J = 1,N

A(I,J) = B(I,J)

END DO

END DO

Note: The value set in the clause supersedes the value

in the environment variable OMP_NUM_THREADS

(or that set by omp_set_num_threads())

149
BilkentBilkent UniversityUniversity

Nested parallelism

● However, even 2.0 compliant compilers still may not
implement nested parallelism......

● Turns out to be very hard to do correctly without impacting

performance significantly.

150
BilkentBilkent UniversityUniversity

Other things

● Inline comments in directives

!$OMP PARALLEL DO !Directive added by JMB 1/8/ 01

● Timing routines:

� return current wall clock time (relative to arbitrary origin)
with:

DOUBLE PRECISION FUNCTION OMP_GET_WTIME()

double omp_get_wtime(void);

� return clock precision with

DOUBLE PRECISION FUNCTION OMP_GET_WTICK()

double omp_get_wtick(void);

151
BilkentBilkent UniversityUniversity

Using timers

DOUBLE PRECISION STARTTIME, TIME

STARTTIME = OMP_GET_WTIME()

......(work to be timed)

TIME = OMP_GET_WTIME()- STARTTIME

Note: timers are local to a thread: must make both calls on the
same thread.

Also note: no guarantees about resolution!

152
BilkentBilkent UniversityUniversity

Clarifications

● Both Fortran and C/C++ 2.0 standards contain quite a
number of corrections and clarifications.

● If something is not clear in the 1.0/1.1 standard, it is worth
reading the relevant section of 2.0, even if you are not using a
2.0 compliant compiler....

