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Parallel Programming with OpenMP
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Overview

● Introduction to OpenMP

● Parallel regions 

● Worksharing directives

● More about parallel loops

● Synchronization

● Additional features

● OpenMP 2.0 
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Brief history of OpenMP

● Historical lack of standardisation in shared memory directives. Each 
vendor did their own thing.

● Previous attempt (ANSI X3H5, based on work of Parallel Computing
forum) failed due to political reasons and lack of vendor interest.

● OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now includes 
all major vendors.

● OpenMP Fortran standard released October 1997, 

� Minor revision (1.1) in November 1999. 

� Major revision (2.0) in November 2000.

● OpenMP C/C++ standard released October 1998. 

� Major revision (2.0) in March 2002.

� Major revision (3.0) in May 2008.

� Minor revision (3.1) in July 2011.
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OpenMP resources

● Web sites:

www.openmp.org

� Official web site: language specifications, links to 
compilers and tools, mailing lists

www.compunity.org

� OpenMP community site: more links, events, resources

● Book: “Parallel Programming in OpenMP”, Chandra et. al.,
Morgan Kaufmann, ISBN 1558606718.
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Resources

● LLNL offers an online OpenMP tutorial

� https://computing.llnl.gov/tutorials/openMP/

● Intel's OpenMP tutorials

� http://software.intel.com/file/24569

● LLNL offers an online OpenMP tutorial

� https://computing.llnl.gov/tutorials/openMP/

● Intel's OpenMP tutorials

� http://software.intel.com/file/24569
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Shared memory systems

● OpenMP is designed for programming shared memory 
parallel computers.

● Key feature is a single address space across the whole 
memory system.

� every processor can read and write all memory locations

� one logical memory space

● Two main types of hardware:

� true shared memory

� distributed shared memory
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Shared memory systems (cont)

Sun Enterprise/SunFire,  Cray SV1, 
Compaq ES, multiprocessor PCs, nodes of 
IBM SP, NEC SX5

None!
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Shared memory systems (cont)

● Most distributed shared memory systems are clustered:

SGI Origin, HP Superdome, Compaq GS
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Threads and thread teams

● A thread is a (lightweight) process - an instance of a program 
+ its data.

● Each thread can follow its own flow of control through a 
program.

● Threads can share data with other threads, but also have 
private data. 

● Threads communicate with each other via the shared data.

● A thread team is a set of threads which co-operate on a task.

● The master thread is responsible for co-ordinating the team.
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Threads (cont.)

PC PC PCPrivate data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3
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Directives and sentinels

● A directive is a special line of source code with meaning only 
to certain compilers. 

● A directive is distinguished by a sentinel at the start of the 
line.

● OpenMP sentinels are:

� Fortran: !$OMP (or C$OMPor *$OMP)

� C/C++: #pragma omp
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Parallel loops

● Loops are the main source of parallelism in many 
applications.

● If the iterations of a loop are independent (can be done in any 
order) then we can share out the iterations between different 
threads. 

● e.g. if we have two threads and the loop                    

do i = 1, 100

a(i) = a(i) + b(i) 

end do

we could do iteration 1-50 on one thread and iterations 51-100 
on the other.      
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Synchronization

● Need to ensure that actions on shared variables occur in the 

correct order: e.g. 

thread 1 must write variable A before thread 2 reads it, 

or

thread 1 must read variable A before thread 2 writes it. 

● Note that updates to shared variables 

(e.g. a = a + 1 ) are not atomic!
If two threads try to do this at the same time, one of the updates 

may get overwritten.
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Synchronization example

Thread 1 Thread 2
load a

Program

Private
data

Shared
data

10

10

1011 11

1111

add a 1
store a

load a
add a 1
store a
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Parallel region

● The parallel region is the basic parallel construct in OpenMP. 

● A parallel region defines a section of a program.

● Program begins execution on a single thread (the master 
thread).

● When the first parallel region is encountered, the master 
thread creates a team of threads (fork/join model).

● Every thread executes the statements which are inside the 
parallel region

● At the end of the parallel region, the master thread waits for 
the other threads to finish, and continues executing the next 
statements
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Parallel region
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Shared and private data

● Inside a parallel region, variables can either be shared or 
private.

● All threads see the same copy of shared variables. 

● All threads can read or write shared variables.

● Each thread has its own copy of private variables: these are 

invisible to other threads.

● A private variable can only be read or written by its own 
thread.
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Parallel region directive

● Code within a parallel region is executed by all threads. 

● Syntax:

Fortran:   !$OMP PARALLEL

block

!$OMP END PARALLEL

C/C++:    #pragma omp parallel

{

block

}
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Parallel region directive (cont)

Example:

call fred()

!$OMP PARALLEL 

call billy()

!$OMP END PARALLEL 

call daisy()
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Useful functions

● Often useful to find out number of threads being used.

Fortran:

INTEGER FUNCTION OMP_GET_NUM_THREADS()

C/C++: 

#include <omp.h>

int omp_get_num_threads(void);

● Important note: returns 1 if called outside parallel region!
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Useful functions (cont)

● Also useful to find out number of the executing thread.

Fortran: 

INTEGER FUNCTION OMP_GET_THREAD_NUM()

C/C++:

#include <omp.h> 

int omp_get_thread_num(void) 

● Takes values between 0 and 

OMP_GET_NUM_THREADS() - 1
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Clauses

● Specify additional information in the parallel region directive 
through clauses:

Fortran : !$OMP PARALLEL [clauses]

C/C++:    #pragma omp parallel [clauses]

● Clauses are comma or space separated in Fortran, space 
separated in C/C++. 
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Shared and private variables

● Inside a parallel region, variables can be either shared (all 
threads see same copy) or private (each thread has its own 
copy).

● Shared, private and default clauses

Fortran: SHARED(list)

PRIVATE( list) 

DEFAULT(SHARED|PRIVATE|NONE)

C/C++:   shared( list)

private( list) 

default(shared |none)
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Shared and private (cont)

Example: each thread initialises its own column of a shared array:

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N) 

myid = omp_get_thread_num() + 1 

do i = 1,n 

a(i,myid) = 1.0

end do

!$OMP END PARALLEL

0 2 31

i
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Shared and private (cont) 

● How do we decide which variables should be shared and which 
private?

� Most variables are shared

� Loop indices are private

� Loop temporaries are private

� Read-only variables - shared

� Main arrays - shared

� Write-before-read scalars - usually private

� Sometimes either is semantically OK, but there may 
be performance implications in making the choice.
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Multi-line directives

● Fortran: fixed source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)

● Fortran: free source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID), &

!$OMP SHARED(A,N)

● C/C++:
#pragma omp parallel default(none) \

private(i,myid) shared(a,n) 
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Initializing private variables

● Private variables are uninitialized at the start of the parallel 
region. 

● If we wish to initialize them, we use the FIRSTPRIVATE 

clause:

Fortran: FIRSTPRIVATE( list)

C/C++: firstprivate( list)
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Initializing private variables (cont)

Example:

b = 23.0; 

. . . . .

#pragma omp parallel firstprivate(b), private(i,myid)

{

myid = omp_get_thread_num();  

for (i=0; i<n; i++){

b += c[myid][i]; 

}

c[myid][n] = b; 

}
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Reductions

● A reduction produces a single value from associative 
operations such as addition, multiplication, max, min, and, 
or. 

● For example:

b = 0;

for (i=0; i<n; i++)

b += a[i];

● Allowing only one thread at a time to update b would remove 

all parallelism.

● Instead, each thread can accumulate its own private copy, 
then these copies are reduced to give final result.
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Reductions (cont.)

● Use REDUCTION clause:

Fortran: REDUCTION(op: list)

C/C++: reduction( op: list)

● Cannot have reduction arrays, only scalars or array 
elements! (except in Fortran 2.0)  



32
BilkentBilkent UniversityUniversity

Reductions (cont.) 

Example:

b = 0

!$OMP PARALLEL REDUCTION(+:b),

!$OMP& PRIVATE(I,MYID)

myid = omp_get_thread_num() + 1 

do i = 1,n 

b = b + c(i,myid) 

end do

!$OMP END PARALLEL 
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IF clause

● We can make the parallel region directive itself conditional. 

● Can be useful if there is not always enough work to make 

parallelism worthwhile.

Fortran: IF ( scalar logical expression)

C/C++ :  if ( scalar expression)
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IF clause (cont.)

Example:

#pragma omp parallel if (tasks > 1000)

{

while(tasks > 0) donexttask();

}
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Work sharing directives
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Work sharing directives

● Directives which appear inside a parallel region and indicate 
how work should be shared out between threads

� Parallel do/for loops

� Parallel sections

� ‘One thread only’ directives 
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Parallel do loops

● Loops are the most common source of parallelism in most 
codes. Parallel loop directives are therefore very important!

● A parallel do/for loop divides up the iterations of the loop 
between threads.

● We will just introduce the basic form here: more details will 

follow in the next session.
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Parallel do/for loops (cont)

Syntax:
Fortran:

!$OMP DO [clauses]

do loop

[ !$OMP END DO ]

C/C++:       

#pragma omp for [clauses]

for loop
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Restrictions in C/C++

● Because the for loop in C is a general while loop, there are 
restrictions on the form it can take.

● It has to have determinable trip count - it must be of the form:

for (var = a; var logical-op b; incr-exp)

where logical-op is one of  <, <=, >, >=

and incr-exp is var = var + /- incr or semantic

equivalents such as var++ .

Also cannot modify var within the loop body. 
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Parallel do/for loops (cont)

● With no additional clauses, the DO/FOR directive will usually 
partition the iterations as equally as possible between the 
threads.

● However, this is implementation dependent, and there is still 
some ambiguity: 

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2
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Parallel do/for loops (cont)

● How can you tell if a loop is parallel or not?

● Useful test: if the loop gives the same answers if it is run in 
reverse order, then it is almost certainly parallel

● Jumps out of the loop are not permitted. 

e.g. 

do i=2,n

a(i)=2*a(i-1)         

end do
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Parallel do/for loops (cont)

2.

ix = base 

do i=1,n

a(ix) = a(ix)*b(i)

ix  = ix + stride 

end do

3.

do i=1,n 

b(i)= (a(i)-a(i-1))*0.5

end do
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Parallel do loops (example)

Example:

!$OMP PARALLEL

!$OMP DO 

do i=1,n

b(i) = (a(i)-a(i-1))*0.5

end do 

!$OMP END DO

!$OMP END PARALLEL
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Parallel DO/FOR directive

● This construct is so common that there is a shorthand form 
which combines parallel region and DO/FOR directives:

Fortran: 

!$OMP PARALLEL DO [clauses]

do loop

[ !$OMP END PARALLEL DO ]

C/C++: 

#pragma omp parallel for [clauses]

for loop 



45
BilkentBilkent UniversityUniversity

Clauses

● DO/FOR directive can take PRIVATE and FIRSTPRIVATE 
clauses which refer to the scope of the loop.

● Note that the parallel loop index variable is PRIVATE by 
default (but other loop indices are not).

● PARALLEL DO/FOR directive can take all clauses available 
for PARALLEL directive. 
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Parallel sections

● Allows separate blocks of code to be executed in parallel (e.g. 
several independent subroutines)

● Not scalable: the source code determines the amount of 
parallelism available.
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Parallel sections (cont)

C/C++:

#pragma omp sections [clauses]

{

[ #pragma omp section ]

structured-block

[ #pragma omp section

structured-block

. . . ]

}
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Parallel sections (cont)

Example:

!$OMP PARALLEL 

!$OMP SECTIONS 

!$OMP SECTION

call init(x)

!$OMP SECTION

call init(y)

!$OMP SECTION

call init(z)

!$OMP END SECTIONS

!$OMP END PARALLEL
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Parallel sections (cont)

● SECTIONS directive can take PRIVATE, FIRSTPRIVATE, 
LASTPRIVATE (see later) and  clauses.

● Each section must contain a structured block: cannot branch 
into or out of a section.
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Parallel section (cont)

Shorthand form:

Fortran:

!$OMP PARALLEL SECTIONS [clauses]

. . .

!$OMP END PARALLEL SECTIONS

C/C++:

#pragma omp parallel sections [clauses]

{

. . .

}
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SINGLE directive

● Indicates that a  block of code is to be executed by a single 
thread only.

● The first thread to reach the SINGLE directive will execute the 
block

● Other threads wait until block has been executed.
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SINGLE directive (cont)

Syntax:

Fortran:

!$OMP SINGLE [clauses]

block 

!$OMP END SINGLE

C/C++:

#pragma omp single [clauses]

structured block
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SINGLE directive (cont)

Example: 

#pragma omp parallel

{

setup(x);

#pragma omp single

{

input(y); 

}

work(x,y); 

}



54
BilkentBilkent UniversityUniversity

SINGLE directive (cont)

● SINGLE directive can take PRIVATE and FIRSTPRIVATE 
clauses.

● Directive must contain a structured block: cannot branch into 
or out of it.
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MASTER directive

● Indicates that a block of code should be executed by the 
master thread (thread 0) only.

● Other threads skip the block and continue executing: different 
from SINGLE in this respect. 

● Most often used for I/O. 
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MASTER directive (cont)

Syntax: 

Fortran:

!$OMP MASTER

block 

!$OMP END MASTER

C/C++:

#pragma omp master

structured block
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More about parallel do/for loops
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LASTPRIVATE clause

● Sometimes need the value a private variable would have had 
on exit from loop (normally undefined).

Syntax:

Fortran: LASTPRIVATE(list)

C/C++: lastprivate(list)

● Also applies to sections directive (variable has value assigned 
to it in the last section.)
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LASTPRIVATE clause (cont)

Example:

!$OMP PARALLEL 

!$OMP DO LASTPRIVATE(i)

do i=1,func(l,m,n)

d(i)=d(i)+e*f(i)

end do

ix = i-1 

. . . 

!$OMP END PARALLEL
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SCHEDULE clause

● The SCHEDULE clause gives a variety of options for 
specifying which loops iterations are executed by which 
thread. 

● Syntax:

Fortran:  SCHEDULE (kind[, chunksize])

C/C++:   schedule ( kind[, chunksize])

where kind is one of

STATIC, DYNAMIC, GUIDED or RUNTIME

and chunksize is an integer expression with positive value.

● E.g. !$OMP DO SCHEDULE(DYNAMIC,4)
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STATIC schedule

● With no chunksize specified, the iteration space is divided into 
(approximately) equal chunks, and one chunk is assigned to 
each thread (block schedule).

● If chunksize is specified, the iteration space is divided into 
chunks, each of chunksize iterations, and the chunks are 
assigned cyclically to each thread (block cyclic schedule)
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STATIC schedule
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DYNAMIC schedule

● DYNAMIC schedule divides the iteration space up into chunks 
of size chunksize, and assigns them to threads on a first-
come-first-served basis. 

● i.e. as a thread finish a chunk, it is assigned the next chunk in 
the list. 

● When no chunksize is specified, it defaults to 1. 
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GUIDED schedule

● GUIDED schedule is similar to DYNAMIC, but the chunks 
start off large and get smaller exponentially. 

● The size of the next chunk is (roughly) the number of 
remaining iterations divided by the number of threads. 

● The chunksize specifies the minimum size of the chunks.

● When no chunksize is specified it defaults to 1. 
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DYNAMIC and GUIDED schedules
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Choosing a schedule

When to use which schedule?

● STATIC best for load balanced loops - least overhead. 

● DYNAMIC useful if iterations have widely varying loads, but 
ruins data locality.

● GUIDED often less expensive than DYNAMIC, but beware of 
loops where the first iterations are the most expensive!

● Use RUNTIME for convenient experimentation.
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ORDERED directive

● Can specify code within a loop which must be done in the 
order it would be done if executed sequentially.

● Syntax: 

Fortran: !$OMP ORDERED

block

!$OMP END ORDERED

C/C++: #pragma omp ordered

structured block

● Can only appear inside a DO/FOR directive which has the 
ORDERED clause specified. 
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ORDERED directive (cont)

Example:

#pragma omp for ordered [clauses...]

(loop region)

#pragma omp ordered

structured_block

(endo of loop region)



69

CS 426

Synchronization
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Why is it required?

Recall:

● Need to synchronise actions on shared variables. 

● Need to ensure correct ordering of reads and writes. 

● Need to protect updates to shared variables (not atomic by 
default) 
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BARRIER directive

● No thread can proceed past a barrier until all the other 
threads have arrived. 

● Note that there is an implicit barrier at the end of DO/FOR, 
SECTIONS and SINGLE directives. 

● Syntax:

Fortran:  !$OMP BARRIER

C/C++:  #pragma omp barrier

● Either all threads or none must encounter the barrier: 
otherwise DEADLOCK!!
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BARRIER directive (cont)

Example:

!$OMP PARALLEL PRIVATE(I,MYID,NEIGHB)

myid = omp_get_thread_num()

neighb = myid - 1

if (myid.eq.0) neighb = omp_get_num_threads()-1

...       

a(myid) = a(myid)*3.5 

b(myid) = a(neighb) + c

...

!$OMP END PARALLEL
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NOWAIT clause

● The NOWAIT clause can be used to suppress the implicit 
barriers at the end of DO/FOR, SECTIONS and SINGLE 
directives. (Barriers are expensive!) 

● Syntax:

Fortran: !$OMP DO

do loop

!$OMP END DO NOWAIT

C/C++:  #pragma omp for nowait

for loop

● Similarly for SECTIONS and SINGLE .
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NOWAIT clause (cont)

Example: Two loops with no dependencies

!$OMP PARALLEL 

!$OMP DO 

do j=1,n

a(j) = c * b(j)

end do

!$OMP END DO NOWAIT 

!$OMP DO 

do i=1,m

x(i) = sqrt(y(i)) * 2.0

end do 

!$OMP END PARALLEL
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NOWAIT clause

● Use with EXTREME CAUTION! 

● All too easy to remove a barrier which is necessary. 

● This results in the worst sort of bug: non-deterministic 
behaviour (sometimes get right result, sometimes wrong, 
behaviour changes under debugger, etc.).

● May be good coding style to use NOWAIT everywhere and 
make all barriers explicit.
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NOWAIT clause (cont) 

Example:

!$OMP DO

do j=1,n

a(j) = b(j) + c(j) 

end do 

!$OMP DO

do j=1,n

d(j) = e(j) * f

end do 

!$OMP DO

do j=1,n

z(j) = (a(j)+a(j+1)) * 0.5

end do 
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Critical sections

● A critical section is a block of code which can be executed by 
only one thread at a time. 

● Can be used to protect updates to shared variables.

● The CRITICAL directive allows critical sections to be named. 

● If one thread is in a critical section with a given name, no 
other thread may be in a critical section with the same name 

(though they can be in critical sections with other names).
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CRITICAL directive

● Syntax:

Fortran: !$OMP CRITICAL [( name ) ]

block

!$OMP END CRITICAL [( name ) ]

C/C++:   #pragma omp critical [( name ) ]

structured block 

● In Fortran, the names on the directive pair must match. 

● If the name is omitted, a null name is assumed (all unnamed 
critical sections effectively have the same null name). 
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CRITICAL directive (cont)

Example: pushing and popping a task stack

!$OMP PARALLEL SHARED(STACK),PRIVATE(INEXT,INEW)

...

!$OMP CRITICAL (STACKPROT)

inext = getnext(stack)

!$OMP END CRITICAL (STACKPROT)

call work(inext,inew)

!$OMP CRITICAL (STACKPROT)

if (inew .gt. 0) call putnew(inew,stack)

!$OMP END CRITICAL (STACKPROT)

...

!$OMP END PARALLEL
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ATOMIC directive

● Used to protect a single update to a shared variable.

● Applies only to a single statement.

● Syntax: 

Fortran: !$OMP ATOMIC

statement

where statement must have one of these forms:

x = x  op  expr,    x = expr op x,  x = intr ( x, expr) or

x = intr( expr, x)

op is one of +, * , - , / , .and. , .or. , .eqv. , or .neqv.

intr is one of MAX, MIN, IAND, IOR or IEOR
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ATOMIC directive (cont) 

C/C++: #pragma omp atomic

statement

where statement must have one of the forms:

x binop = expr, x++, ++x, x-- , or -- x

and binop is one of +, * , - , / , &, ^ , <<, or >>

● Note that the evaluation of expr is not atomic.

● May be more efficient than using CRITICAL directives, e.g. if 
different array elements can be protected separately.
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ATOMIC directive (cont)

Example (compute degree of each vertex in a graph):

#pragma omp parallel for

for (j=0; j<nedges; j++){

#pragma omp atomic

degree[edge[j].vertex1]++;  

#pragma omp atomic

degree[edge[j].vertex2]++; 

}
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Choosing synchronisation

● As a rough guide, use ATOMIC directives if possible, as these 
allow most optimisation. 

● If this is not possible, use CRITICAL directives. Make sure 
you use different names wherever possible.

● As a last resort you may need to use the lock routines, but 
this should be quite a rare occurrence. 
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FLUSH directive

● The FLUSH directive ensures that a variable is written to/read 
from main memory. 

● The variable will be flushed out of the register file (and out of 
cache on a system without sequentially consistent caches). 
Also sometimes called a memory fence.
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FLUSH directive (cont)

● Syntax:

Fortran: !$OMP FLUSH [( list) ]

C/C++: #pragma omp flush [( list) ]

● list specifies a list of variables to be flushed. If no list is 
specified, all shared variables are flushed. 

● A FLUSH directive is implied by a BARRIER, at entry and exit 
to CRITICAL and ORDERED sections, and at the end of 
PARALLEL, DO/FOR, SECTIONS and SINGLE directives 
(except when a NOWAIT clause is present).
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FLUSH directive (cont)

Example (point-to-point synchronisation):

!$OMP PARALLEL PRIVATE(MYID,I, NEIGHB) 

. . . 

do j = 1, niters

do i = lb(myid), ub(myid) 

a(i) = (a(i-1) + a(i))*0.5

end do 

ndone (myid) = ndone (myid) + 1 

!$OMP FLUSH (NDONE) 

do while (ndone(neighb).lt. ndone(myid)) 

!$OMP FLUSH (NDONE)

end do

end do

Must wait for 
previous iteration to 
finish on neighbour

Make sure write is to 
main memory

Make sure read is 
from main memory
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Additional features

● Nested parallelism

● Orphaned directives and binding rules

● Dynamic parallelism 

● Thread private global variables

● Conditional compilation

● I/O
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Nested parallelism

● Unlike most previous directive systems, nested parallelism is 
permitted in OpenMP. 

● This is enabled with the OMP_NESTEDenvironment variable 
or the OMP_SET_NESTEDroutine.

● If a PARALLEL directive is encountered within another 
PARALLEL directive, a new team of threads will be created.

● The new team will contain only one thread unless nested 
parallelism is enabled. 
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Nested parallelism (cont)

Example:

!$OMP PARALLEL 

!$OMP SECTIONS 

!$OMP SECTION 

!$OMP PARALLEL DO 

do i = 1,n

x(i) = 1.0

end do 

!$OMP SECTION

!$OMP PARALLEL DO 

do j = 1,n

y(j) = 2.0

end do

!$OMP END SECTIONS

!$OMP END PARALLEL
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Nested parallelism (cont)

● Not often needed, but can be useful to exploit non-scalable 
parallelism (SECTIONS). 

● Note: nested parallelism isn’t supported in many current 
implementations (the code will execute, but as if 
OMP_NESTED was not set). 

● This was an unsatisfactory area in the original standard. 

� there was no way to control how many threads are used at 
each level of nesting 

� this was fixed in 2.0, but still not many implementations
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Lock  routines

● Occasionally we may require more flexibility than is provided 
by CRITICAL and ATOMIC directions. 

● A lock is a special variable that may be set by a thread. No 
other thread may set the lock until the thread which set the 
lock has unset it. 

● Setting  a lock can either be blocking or non-blocking.  

● A lock must be initialised before it is used, and may be 
destroyed when it is not longer required. 

● Lock variables should not be used for any other purpose. 
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Lock routines - syntax

Fortran:

SUBROUTINE OMP_INIT_LOCK(var)

SUBROUTINE OMP_SET_LOCK(var) 

LOGICAL FUNCTION OMP_TEST_LOCK(var) 

SUBROUTINE OMP_UNSET_LOCK(var) 

SUBROUTINE OMP_DESTROY_LOCK(var)

var should be an INTEGER of the same size as addresses (e.g. 
INTEGER*8 on a 64-bit machine) 
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Lock routines - syntax

C/C++:

#include <omp.h> 

void omp_init_lock(omp_lock_t *lock);

void omp_set_lock(omp_lock_t *lock);

int omp_test_lock(omp_lock_t *lock);

void omp_unset_lock(omp_lock_t *lock);

void omp_destroy_lock(omp_lock_t *lock);

There are also nestable lock routines which allow the same 
thread to set a lock multiple times before unsetting it the same 
number of times.
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Lock routines (cont)

Example:
// omp_test_lock.cpp
// compile with: /openmp
#include <stdio.h>
#include <omp.h>                    
omp_lock_t simple_lock;                      
int main() {

omp_init_lock(&simple_lock);                   
#pragma omp parallel num_threads(4)
{

int tid = omp_get_thread_num();

while (!omp_test_lock(&simple_lock))
printf_s("Thread %d - failed to acquire simple_lock\n ",tid );          

printf_s("Thread %d - acquired simple_lock\n", tid );                      

printf_s("Thread %d - released simple_lock\n", tid);
omp_unset_lock(&simple_lock);

}                    
omp_destroy_lock(&simple_lock);

}
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Orphaned directives

● Directives are active in the dynamic scope of a parallel region, 

not just its lexical scope. 

● Example:
!$OMP PARALLEL 

call fred()

!$OMP END PARALLEL 

subroutine fred()

!$OMP DO 

do i = 1,n 

a(i) = a(i) + 23.5 

end do 

return 

end
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Orphaned directives (cont)

● This is very useful, as it allows a modular programming 
styleQ.

● But it can also be rather confusing if the call tree is 
complicated (what happens if fred is also called from outside 

a parallel region?) 

● There are some extra rules about data scope attributesQ.
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Data scoping rules

When we call a subroutine from inside a parallel region:

● Variables in the argument list inherit their data scope attribute 
from the calling subroutine.

● Global variables and COMMON blocks are shared, unless 
declared THREADPRIVATE (see later). 

● static local variables in C/C++ and SAVEvariables in 

Fortran are shared.

● All other local variables are private. 
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Orphaned directives (cont)

● We can find out if we are in a parallel region or not with the 
OMP_IN_PARALLEL function:

Fortran: LOGICAL FUNCTION OMP_IN_PARALLEL()

C/C++:  #include <omp.h>

int omp_in_parallel(void);
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Binding rules

● There could be ambiguity about which parallel region 
directives refer to, so we need some rulesQ.

● DO/FOR, SECTIONS, SINGLE, MASTER and BARRIER 
directives always bind to the nearest enclosing PARALLEL 
directive. 

● ORDERED directive binds to nearest enclosing DO directive. 
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Dynamic parallelism

● It is possible to let the system choose how many threads 
execute each parallel region, to let it optimise resource 
allocation. 

● The number of threads will be equal to or less than that set by 
the user, and remains fixed for the duration of each parallel 
region. 

● Can be set by OMP_SET_DYNAMIC routine or by the 
OMP_DYNAMIC environment variable. 

● Its default value is implementation dependent: if your code 
relies on using a certain number of threads (not 
recommended) you should disable dynamic parallelism. 
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Thread private global variables

● It can be convenient for each thread to have its own copy of 
variables with global scope (COMMON blocks in Fortran, or 

file-scope and namespace-scope variables in C/C++).

● Outside parallel regions and in MASTER directives, accesses 
to these variables refer to the master thread’s copy.
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Thread private globals (cont)

Syntax: 

Fortran: !$OMP THREADPRIVATE (/ cb/ [,/ cb/ ])

where cb is a named common block.

This directive must come after all the declarations for the 
common blocks. 

C/C++: #pragma omp threadprivate ( list)

This directive must be a file or namespace scope, after all 
declarations of variables in list and before any references to 
variables in list. See standard document for other restrictions. 
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COPYIN clause

● Allows the values of the master thread’s THREADPRIVATE 
data to be copied to all other threads at the start of a parallel 
region. 

Syntax:

Fortran: COPYIN(list)

C/C++: copyin( list)

In Fortran the list can contain both COMMON blocks and

variables in COMMON blocks.
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COPYIN clause

Example:

common /junk/ nx

common /stuff/ a,b,c

!$OMP THREADPRIVATE (/JUNK/,/STUFF/)

nx = 32

c = 17.9 

. . .

!$OMP PARALLEL PRIVATE(NX2,CSQ) COPYIN(/JUNK/,C)

nx2 = nx * 2

csq = c*c 

. . . 
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Conditional compilation

● Allows source lines to be recognised by an OpenMP compiler 
and  ignored (treated as comments) by other compilers. 

● In C/C++ this is done in the traditional way with the 
preprocessor macro _OPENMP

● In Fortran, in addition to this macro, any line beginning with 
the sentinels !$, C$ or *$ (latter two only in fixed source form), 
is conditionally compiled. 

● The sentinel is replaced with two spaces. 
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Conditional compilation (cont)

Example (read value of OMP_NUM_THREADS):

nthreads = 1

!$OMP PARALLEL

!$OMP MASTER

!$    nthreads = omp_get_num_threads()

!$OMP END MASTER

!$OMP END PARALLEL

print *, “No. of threads = “, nthreads
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I/O

● Should assume that I/O is not thread-safe. 

● Need to synchronise multiple threads writing to or reading 

from the same file. 

� Note that there is no way for multiple threads to have private 
file positions.

● OK to have multiple threads reading/writing to different files. 
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Directives

● General format:
#pragma omp directive-name [clause, '] newline

● #pragma omp
� Required for all OpenMP C/C++ directives

● directive-name
� A valid OpenMP directive. Must appear after pragma and before clauses

● [clause, ']
� Optional. Clauses can be in any order, and repeated as necessary

unless otherwise restricted.

● newline
� Required. Followed by structured block
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Directives

● General Rules:
� Case sensitive
� Follow conventions of C/C++ standards for compile direvtives
� Only one directive name may be specified per directive
� Each directive applies to at most one succeeding statement, 

which must be a structured block
� Long directive lines can be continued by succeeding lines by 

excaping the newline character with a backslash (‘\’ ) at the 
end of a directive line
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Syntax – atomic

● #pragma omp atomic ‘statement’
● ‘statement’ can be:

� x bin_op= expr
– bin_op: {+ * - / & ^ | << >>}
– expr: an expression of scalar type that does not 

reference x
� x++
� ++x
� x--
� --x

● Indicates that the specified memory location must be updated 
atomically and not be exposed to multiple, simultaneous writing 
threads.



114
BilkentBilkent UniversityUniversity

Syntax – parallel

● #pragma omp parallel ‘clause’
● ‘clause’ can be:

� if( exp)
� private( list)
� firstprivate( list)
� num_threads( int_exp)
� shared( list)
� default(shared|none)
� copyin( list)
� reduction( operator: list)

● Indicates that the code section is to be parallelized
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Syntax – for

● #pragma omp for ‘clause’
● ‘clause’ can be:

� private( list)
� firstprivate( list)
� lastprivate( list)
� reduction( operator: list)
� ordered
� schedule( type)
� Nowait

● Compiler distributes loop iterations within team of threads
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Syntax – ordered

● #pragma omp ordered

� Indicates that the code section must be executed in 
sequential order
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Syntax – parallel for

● #pragma omp parallel for ‘clause’
● ‘clause’ can be:

� if( exp)
� private( list)
� firstprivate( list)
� lastprivate( list)
� num_threads( int_exp)
� shared( list)
� default(shared|none)
� copyin( list)
� reduction( operator: list)
� ordered
� schedule( type)

● Combines the omp parallel and omp for directives
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Syntax – sections

● #pragma omp sections ‘clause’

● ‘clause’ can be:
� private( list)

� firstprivate( list)

� lastprivate( list)

� reduction( operator: list)

� nowait

● In structured block following the directive, an opm section 
directive will indicate that the following sub-block can be distributed 
for parallel execution.
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Syntax – parallel sections

● #pragma omp parallel sections ‘clause’
● ‘clause’ can be:

� if( exp)
� private( list)
� firstprivate( list)
� lastprivate( list)
� shared( list)
� default(shared|none)
� copyin( list)
� reduction( operator: list)
� Nowait

● Combines the omp parallel and omp sections directives
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Syntax – single

● #pragma omp single ‘clause’

● ‘clause’ can be:

� private( list)

� copyprivate( list)

� firstprivate( list)

� Nowait

● Indicates that the code section must only be run by a single 
available thread.
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Syntax – master

● #pragma omp master

� Indicates that the code section must only be run by 
master thread
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Syntax – critical

● #pragma omp critical 

� Indicates that the code section can only be executed by 
a single thread at any given time
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Syntax – barrier

● #pragma omp barrier

� Identifies a synchronization point at which threads in a 
parallel region will not continue until all other threads in 
that section reach the same spot

� Explicit for a few directives
– omp parallel

– omp for
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Syntax – flush

● #pragma omp flush ( list)
� Identifies a point at which the compiler ensures that all 

threads in a parallel region have the same view of specified 
objects in memory. If no list is given, then all shared objects 
are synchronized.

� flush is implicit for the following directives:
– omp barrier
– Entrance and exit of omp critical
– Exit of omp parallel
– Exit of omp for
– Exit of omp sections
– Exit of omp single
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Syntax – threadprivate

● #pragma omp threadprivate ( var)

� omp threadprivate makes the variable private to a 

thread
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OpenMP Functions

● void omp_set_num_threads ( int )
� Called inside serial section. Can exceed available processors

● int omp_get_num_threads ( void )
� Returns number of active threads

● int omp_get_max_threads ( void )
� Returns max system allowed threads

● int omp_get_thread_num ( void )
� Returns thread’s ID number (ranges from 0 to t-1 )

● int omp_get_num_procs ( void )
� Returns number of processors available to the program
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OpenMP Functions

● int omp_in_parallel ( void )
� Returns 1 if called inside a parallel block

● void omp_set_dynamic ( int )
� Enable (1) or disable (0) dynamic threads

● int omp_get_dynamic ( void )
� Returns 1 if dynamic threads enabled

● void omp_set_nested ( int )
� Enable (1) or disable (0) nested parallelism

● int omp_get_nested ( void )
� Returns 1 if nested parallelism enabled (default 0)



128
BilkentBilkent UniversityUniversity

OpenMP Functions

● void omp_init_lock ( omp_lock_t* )
� Initializes a lock associated with the lock variable

● void omp_destroy_lock ( omp_lock_t* )
� Disassociates the given lock variable from any locks

● void omp_set_lock ( omp_lock_t* )
� Wait until specified lock is available

● void omp_unset_lock ( omp_lock_t* )
� Releases the lock from executing routine

● int omp_test_lock ( omp_lock_t* )
� Attempts to set a lock, but does not wait if the lock is unavailable

� Returns non-zero value on success
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OpenMP Functions

● double omp_get_wtime ( void )

� Returns the number of elapsed seconds since some 
point in the past

● double omp_get_wtick ( void )

� Returns the number of elapsed seconds between 
successive clock ticks
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Environment Variables

● OMP_SCHEDULE
� Applies only to parallel for directives with their schedule clause set to 

RUNTIME

� Determines how iterations of the loop are scheduled

● OMP_NUM_THREADS
� Maximum number of threads to use for execution

● OMP_DYNAMIC
� Enable (1) or disable (0) dynamic adjustment of threads available for 

execution

● OMP_NESTED
� Enable (1) or disable (0) nested parallelism
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Clause - list

● list
� private( list)

� firstprivate( list)

� lastprivate( list)

� shared( list)

� copyin( list)

● List of variables
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Clause – operator: list

● operator: list
� reduction( operator: list)

● Operators includes:

� +

� *

� &

� |

� ^

� &&

� ||
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Clause – schedule(type , size)

● schedule(type, size)
� schedule(static)

– Allocates n / t contiguous iterations to each thread

� schedule(static, C)
– Allocates C contiguous iterations to each thread

� schedule(dynamic)
– Allocates 1 iteration at a time, dynamically

� schedule(dynamic, C)
– Allocates C iterations at a time, dynamically

� schedule(guided, C)
– Allocates decreasingly large iterations to each thread until size reaches C

� schedule(guided)
– Same as (guided, C) , with C = 1

� schedule(runtime)
– Based on environment variable OMP_SCHEDULE
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Examples – Reduction

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[]) {

int i, n;
float a[100], b[100], sum; 

n = 100; /* Some initializations */
for (i=0; i < n; i++)

a[i] = b[i] = i * 1.0;
sum = 0.0;
#pragma omp parallel for reduction(+:sum)

for (i=0; i < n; i++)
sum = sum + (a[i] * b[i]);

printf("   Sum = %f\n",sum);
}
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Examples – OpenMP Functions

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]){
int nthreads, tid, procs, maxt, inpar, 

dynamic, nested;

/* Start parallel region */
#pragma omp parallel private(nthreads, tid) {

/* Obtain thread number */
tid = omp_get_thread_num() ;

/* Only master thread does this */
if (tid == 0) {

printf("Thread %d getting info...\n", tid);

/* Get environment information */
procs = omp_get_num_procs() ;
nthreads = omp_get_num_threads() ;
maxt = omp_get_max_threads() ;
inpar = omp_in_parallel() ;
dynamic = omp_get_dynamic() ;
nested = omp_get_nested() ;

/* Print environment information */
printf("Number of processors = %d\n", procs);
printf("Number of threads = %d\n", nthreads);
printf("Max threads = %d\n", maxt);
printf("In parallel? = %d\n", inpar);
printf("Dynamic threads? = %d\n", dynamic);
printf("Nested parallelism? = %d\n", nested);
}

}  /* Done */
}
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New features in Fortran 2.0

● Fuller support for Fortran 90/95:

� WORKSHARE directive for array syntax.

� THREADPRIVATE/COPYIN on variables (e.g. for 
module data).

� In-line comment in directives.
● Reductions on arrays.

● COPYPRIVATE on END SINGLE (propagates value to all threads). 

● NUM_THREADS clause on parallel regions.

● Timing routines.

● Q. plus some clarifications (e.g. reprivatisation of variables is
allowed.)
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New features in C/C++ 2.0

● COPYPRIVATE on END SINGLE (propagates value 
to all threads). 

● NUM_THREADS clause on parallel regions.

● Timing routines.

● ...plus a lot of correction/clarifications. 
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Workshare directive

● A worksharing directive (!) which allows parallelisation of 
Fortran 90 array operations, WHERE and FORALL 
constructs. 

● Syntax:

!$OMP WORKSHARE

block

!$OMP END WORKSHARE [NOWAIT]
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Workshare directive (cont.)

● Simple example

REAL A(100,200), B(100,200), C(100,200)

...

!$OMP PARALLEL

!$OMP WORKSHARE

A=B+C

!$OMP END WORKSHARE

!$OMP END PARALLEL

● N.B. No schedule clause: distribution of work units to threads 
is entirely up to the compiler! 
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Workshare directive (cont.)

● Can also contain array intrinsic functions,  WHERE and 
FORALL constructs, scalar assignment to shared variables, 
ATOMIC and CRITICAL directives.

● No branches in or out of block.

● No function calls except array intrinsics and those declared 
ELEMENTAL. 

● Combined directive:

!$OMP PARALLEL WORKSHARE

block

!$OMP END PARALLEL WORKSHARE
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Workshare directive (cont.)

● Example:

!$OMP PARALLEL WORKSHARE

A = B + C 

WHERE (D .ne. 0) E = 1/D

!$OMP ATOMIC

t = t + SUM(F) 

FORALL (i=1:n, X(i)=0) X(i)= 1

!$OMP END PARALLEL WORKSHARE
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THREADPRIVATE variables                                  

● THREADPRIVATE directive (and COPYIN) clause can be 
applied to variables not in COMMON. 

● Useful for module data and SAVEd variables. 

Example: 

SUBROUTINE DAISY
USE FRED
!$OMP PARALLEL
....
XX = YY 
...
!$OMP END PARALLEL

MODULE FRED
REAL XX(100) 
!$OMP THREADPRIVATE (XX)
END MODULE FRED
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Array reductions

● Arrays may be used as reduction variables (previously only 
scalars and array elements).

Example:

!$OMP PARALLEL DO PRIVATE(I) REDUCTION(+:B)  

DO J = 1,N 

DO I = 1,M 

B(I) = B(I) + A(I,J) 

END DO 

END DO 
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COPYPRIVATE clause

● Broadcasts the value of a private variable to all threads at 
the end of a SINGLE directive.

● Perhaps most useful for reading in the value of private 
variables.

● Syntax: 

Fortran:

!$OMP END SINGLE COPYPRIVATE( list)

C/C++:

#pragma omp single copyprivate( list)
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COPYPRIVATE clause

Example:

!$OMP PARALLEL PRIVATE(A,B)

...

!$OMP SINGLE 

READ(24) A

!$OMP END SINGLE COPYPRIVATE(A) 

B = A*A 

...

!$OMP END PARALLEL
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Nested parallelism again

● OpenMP 1.0/1.1 specification of nested parallelism has a 
serious omission: there is no way to specify how many 
threads should execute each level. 

e.g. 2-d decomposition of 2-d loop nest: 

!$OMP PARALLEL DO 

DO I = 1,4 

!$OMP PARALLEL DO 

DO J = 1,N

A(I,J) = B(I,J)

END DO 

END DO
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NUMTHREADS  clause

● This is addressed in OpenMP 2.0 (Fortran and C/C++) with the 
NUM_THREADS clause. 

e.g.:

!$OMP PARALLEL DO NUM_THREADS(4)

DO I = 1,4 

!$OMP PARALLEL DO NUM_THREADS(TOTALTHREADS/4)

DO J = 1,N

A(I,J) = B(I,J)

END DO 

END DO

Note: The value set in the clause supersedes the value

in the environment variable OMP_NUM_THREADS 

(or that set by omp_set_num_threads() )
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Nested parallelism

● However, even 2.0 compliant compilers still may not 
implement nested parallelism......

● Turns out to be very hard to do correctly without impacting 

performance significantly.
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Other things

● Inline comments in directives

!$OMP PARALLEL DO      !Directive added by JMB 1/8/ 01

● Timing routines:

� return current wall clock time (relative to arbitrary origin) 
with: 

DOUBLE PRECISION FUNCTION OMP_GET_WTIME()

double omp_get_wtime(void);

� return clock precision with

DOUBLE PRECISION FUNCTION OMP_GET_WTICK()

double omp_get_wtick(void); 
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Using timers

DOUBLE PRECISION STARTTIME, TIME

STARTTIME = OMP_GET_WTIME()

......(work to be timed)

TIME = OMP_GET_WTIME()- STARTTIME

Note: timers are local to a thread: must make both calls on the 
same thread.

Also note: no guarantees about resolution!
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Clarifications

● Both Fortran and  C/C++ 2.0 standards contain quite a 
number of corrections and clarifications. 

● If something is not clear in the 1.0/1.1 standard, it is worth 
reading the relevant section of 2.0, even if you are not using a
2.0 compliant compiler.... 


