
CS423 L01 Introduction.1 Spring, 2012

CS 423
 Computer Architecture

Spring 2012

Lecture 01: Introduction

Ozcan Ozturk

http://www.cs.bilkent.edu.tr/~ozturk/cs423/

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2005, UCB]

CS423 L01 Introduction.2 Spring, 2012

Course Administration

 Instructor: Ozcan Ozturk ozturk@cs.bilkent
 EA421
 Office Hrs: T 08:40-10:30

 TA: Ismail Akturk
 Office Hrs: posted on the course web page

 URL: http://www.cs.bilkent.edu.tr/~ozturk/cs423/

 Text: Required: Computer Org and Design, 4th
 Edition, Patterson and Hennessy ©2006

 Slides: pdf on the course web page after lecture

CS423 L01 Introduction.3 Spring, 2012

Grading Information

 Grade determinates

 Midterm Exam ~25%

- March ??? , Location: TBD

 Final Exam ~35%

- May ???, Location TBD

 Homeworks (3-5) ~30%

- Due at the beginning of class (or, if its code to be submitted
electronically, by 17:00 on the due date). No late assignments
will be accepted.

 Class participation & pop quizzes ~10%

 Let me know about midterm exam conflicts ASAP

 Grades will be posted on the course homepage

 Must submit email request for change of grade after
discussions with the TA (Homeworks/Quizzes) or instructor
(Exams)

CS423 L01 Introduction.4 Spring, 2012

Course Content

 Content

 Principles of computer architecture: CPU datapath and control
unit design (single-issue pipelined, superscalar, VLIW),
memory hierarchies and design, I/O organization and design,
advanced processor design – chip multiprocessors

 Course goals

 To learn the organizational paradigms that determine the
capabilities and performance of computer systems. To
understand the interactions between the computer‟s
architecture and its software so that future software designers
(compiler writers, operating system designers, database
programmers, …) can achieve the best cost-performance
trade-offs and so that future architects understand the effects of
their design choices on software applications.

 Course prerequisites

 CS 224 Computer Organization

CS423 L01 Introduction.5 Spring, 2012

What You Should Know – CS223 and CS224

 Basic logic design & machine organization

 logical minimization, FSMs, component design

 processor, memory, I/O

 Create, assemble, run, debug programs in an
assembly language

 MIPS preferred

 Create, compile, and run C (C++, Java) programs

 Create, organize, and edit files and run programs on
Unix/Linux

CS423 L01 Introduction.6 Spring, 2012

Introduction

 This course is all about how computers work

 But what do we mean by a computer?

 Different types: desktop, servers, embedded devices

 Different uses: automobiles, graphics, finance, genomics…

 Different manufacturers: Intel, Apple, IBM, Microsoft, Sun…

 Different underlying technologies and different costs!

 Analogy: Consider a course on “automotive vehicles”

 Many similarities from vehicle to vehicle (e.g., wheels)

 Huge differences from vehicle to vehicle (e.g., gas vs. electric)

 Best way to learn:

 Focus on a specific instance and learn how it works

 While learning general principles and historical perspectives

CS423 L01 Introduction.7 Spring, 2012

Why learn this stuff?

 You want to call yourself a “computer engineer”

 You want to build software people use (need
performance)

 You need to make a purchasing decision or offer “expert”
advice

 Both Hardware and Software affect performance:

 Algorithm determines number of source-level statements

 Language/Compiler/Architecture determine machine instructions

 Processor/Memory determine how fast instructions are
executed

 Assessing and Understanding Performance

CS423 L01 Introduction.8 Spring, 2012

Course Structure

 Design focused class

 Various homework assignments throughout the semester

 Simulation of architecture alternatives using SimpleScalar

 Lectures:

 http://www.cs.bilkent.edu.tr/~ozturk/cs423/syllabus.htm

http://www.cs.bilkent.edu.tr/~ozturk/cs423/syllabus.htm

CS423 L01 Introduction.9 Spring, 2012

How Do the Pieces Fit Together?

I/O system Instr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

Instruction Set
 Architecture

Firmware

 Coordination of many levels of abstraction

 Under a rapidly changing set of forces

 Design, measurement, and evaluation

Datapath & Control

Memory

system

CS423 L01 Introduction.10 Spring, 2012

Where is the Market?

290

93

3

488

114

3

892

135

4

862

129

4

1122

131

5
0

200

400

600

800

1000

1200

1998 1999 2000 2001 2002

Embedded

Desktop

Servers

M
ill

io
n
s
 o

f
C

o
m

p
u
te

rs

CS423 L01 Introduction.11 Spring, 2012

Instruction Set Architecture (ISA)

 ISA: An abstract interface between the hardware and
the lowest level software of a machine that encompasses
all the information necessary to write a machine
language program that will run correctly, including
instructions, registers, memory access, I/O, and so on.

“... the attributes of a [computing] system as seen by the
programmer, i.e., the conceptual structure and functional
behavior, as distinct from the organization of the data flows and
controls, the logic design, and the physical implementation.”
 – Amdahl, Blaauw, and Brooks, 1964

 Enables implementations of varying cost and performance to run
identical software

 ABI (application binary interface): The user portion of the
instruction set plus the operating system interfaces used
by application programmers. Defines a standard for
binary portability across computers.

CS423 L01 Introduction.12 Spring, 2012

ISA Type Sales

0

200

400

600

800

1000

1200

1400

1998 1999 2000 2001 2002

Other

SPARC

Hitachi SH

PowerPC

Motorola 68K

MIPS

IA-32

ARM

PowerPoint “comic” bar chart with approximate values (see
text for correct values)

M
ill

io
n

s
 o

f
P

ro
c
e

s
s
o

r

CS423 L01 Introduction.13 Spring, 2012

Moore’s Law

 In 1965, Gordon Moore predicted that the number of
transistors that can be integrated on a die would double
every 18 to 24 months (i.e., grow exponentially with
time).

 Amazingly visionary – million transistor/chip barrier was
crossed in the 1980‟s.

 2300 transistors, 1 MHz clock (Intel 4004) - 1971

 16 Million transistors (Ultra Sparc III)

 42 Million transistors, 2 GHz clock (Intel Xeon) – 2001

 55 Million transistors, 3 GHz, 130nm technology, 250mm2 die
(Intel Pentium 4) - 2004

 140 Million transistor (HP PA-8500)

CS423 L01 Introduction.14 Spring, 2012

Historical Perspective

 ENIAC built in World War II was the first general purpose computer

 Used for computing artillery firing tables

 80 feet long by 8.5 feet high and several feet wide

 Each of the twenty 10 digit registers was 2 feet long

 Used 18,000 vacuum tubes

 Performed 1900 additions per second

–Since then:

Moore’s Law:

transistor capacity doubles
every 18-24 months

CS423 L01 Introduction.15 Spring, 2012

Processor Performance Increase

1

10

100

1000

10000

1987 1989 1991 1993 1995 1997 1999 2001 2003

Year

P
e
rf

o
rm

a
n

c
e
 (

S
P

E
C

 I
n

t)

SUN-4/260 MIPS M/120
MIPS M2000

IBM RS6000

HP 9000/750

DEC AXP/500 IBM POWER 100

DEC Alpha 4/266
DEC Alpha 5/500

DEC Alpha 21264/600

DEC Alpha 5/300

DEC Alpha 21264A/667
Intel Xeon/2000

Intel Pentium 4/3000

CS423 L01 Introduction.16 Spring, 2012

DRAM Capacity Growth

10

100

1000

10000

100000

1000000

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Year of introduction

K
b

it
 c

a
p

a
c
it

y

16K

64K

256K

1M

4M

16M

64M
128M

256M
512M

CS423 L01 Introduction.17 Spring, 2012

Impacts of Advancing Technology

 Processor

 logic capacity: increases about 30% per year

 performance: 2x every 1.5 years

 Memory

 DRAM capacity: 4x every 3 years, now 2x every 2 years

 memory speed: 1.5x every 10 years

 cost per bit: decreases about 25% per year

 Disk

 capacity: increases about 60% per year

ClockCycle = 1/ClockRate

500 MHz ClockRate = 2 nsec ClockCycle

1 GHz ClockRate = 1 nsec ClockCycle

4 GHz ClockRate = 250 psec ClockCycle

CS423 L01 Introduction.18 Spring, 2012

PC Motherboard Closeup

CS423 L01 Introduction.19 Spring, 2012

Inside the Pentium 4 Processor Chip

CS423 L01 Introduction.20 Spring, 2012

(vonNeumann) Processor Organization

 Control needs to

1. input instructions from Memory

2. issue signals to control the

information flow between the

Datapath components and to

control what operations they

perform

3. control instruction sequencing

Fetch

Decode Exec

 CPU

Control

Datapath

Memory Devices

Input

Output

 Datapath needs to have the

 components – the functional units and

storage (e.g., register file) needed to execute instructions

 interconnects - components connected so that the instructions can

be accomplished and so that data can be loaded from and stored

to Memory

CS423 L01 Introduction.21 Spring, 2012

RISC - Reduced Instruction Set Computer

 RISC philosophy

 fixed instruction lengths

 load-store instruction sets

 limited addressing modes

 limited operations

 MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC, Intel
(Compaq) Alpha, …

 Instruction sets are measured by how well compilers
use them as opposed to how well assembly language
programmers use them

Design goals: speed, cost (design, fabrication, test,

packaging), size, power consumption, reliability,

memory space (embedded systems)

CS423 L01 Introduction.22 Spring, 2012

MIPS R3000 Instruction Set Architecture (ISA)

 Instruction Categories

 Computational

 Load/Store

 Jump and Branch

 Floating Point

- coprocessor

 Memory Management

 Special

R0 - R31

PC

HI

LO

Registers

OP

OP

OP

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

CS423 L01 Introduction.23 Spring, 2012

Aside: Beyond Numbers

 American Std Code for Info Interchange (ASCII): 8-bit
bytes representing characters

ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char

0 Null 32 space 48 0 64 @ 96 ` 112 p

1 33 ! 49 1 65 A 97 a 113 q

2 34 “ 50 2 66 B 98 b 114 r

3 35 # 51 3 67 C 99 c 115 s

4 EOT 36 $ 52 4 68 D 100 d 116 t

5 37 % 53 5 69 E 101 e 117 u

6 ACK 38 & 54 6 70 F 102 f 118 v

7 39 „ 55 7 71 G 103 g 119 w

8 bksp 40 (56 8 72 H 104 h 120 x

9 tab 41) 57 9 73 I 105 i 121 y

10 LF 42 * 58 : 74 J 106 j 122 z

11 43 + 59 ; 75 K 107 k 123 {

12 FF 44 , 60 < 76 L 108 l 124 |

15 47 / 63 ? 79 O 111 o 127 DEL

CS423 L01 Introduction.24 Spring, 2012

MIPS Arithmetic Instructions

 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs only one

operation

 Each arithmetic instruction fits in 32 bits and specifies

exactly three operands

destination  source1 op source2

 Each arithmetic instruction performs only one

operation

 Each arithmetic instruction fits in 32 bits and specifies

exactly three operands

destination  source1 op source2

 Operand order is fixed (destination first)

 Those operands are all contained in the datapath‟s
register file ($t0,$s1,$s2) – indicated by $

CS423 L01 Introduction.25 Spring, 2012

Aside: MIPS Register Convention

Name Register
Number

Usage Preserve
on call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

CS423 L01 Introduction.26 Spring, 2012

MIPS Register File
Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

32 5

32

5

5

32

 Holds thirty-two 32-bit registers

 Two read ports and

 One write port

 Registers are

 Faster than main memory

- But register files with more locations
are slower (e.g., a 64 word file could
be as much as 50% slower than a 32 word file)

- Read/write port increase impacts speed quadratically

 Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

 Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

write control

CS423 L01 Introduction.27 Spring, 2012

 Instructions, like registers and words of data, are 32 bits
long

 Arithmetic Instruction Format (R format):

 add $t0, $s1, $s2

Machine Language - Add Instruction

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result‟s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

CS423 L01 Introduction.28 Spring, 2012

MIPS Memory Access Instructions

 MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3) #load word from memory

sw $t0, 8($s3) #store word to memory

 The data is loaded into (lw) or stored from (sw) a register
in the register file – a 5 bit address

 The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

 A 16-bit field meaning access is limited to memory locations
within a region of 213 or 8,192 words (215 or 32,768 bytes) of
the address in the base register

 Note that the offset can be positive or negative

CS423 L01 Introduction.29 Spring, 2012

 Load/Store Instruction Format (I format):

 lw $t0, 24($s2)

Machine Language - Load Instruction

op rs rt 16 bit offset

Memory

data word address (hex)

0x00000000
0x00000004
0x00000008
0x0000000c

0xf f f f f f f f

$s2 0x12004094

2410 + $s2 =

 . . . 0001 1000

+ . . . 1001 0100

 . . . 1010 1100 =

 0x120040ac

0x120040ac $t0

CS423 L01 Introduction.30 Spring, 2012

 MIPS conditional branch instructions:

 bne $s0, $s1, Lbl #go to Lbl if $s0$s1
beq $s0, $s1, Lbl #go to Lbl if $s0=$s1

 Ex: if (i==j) h = i + j;

 bne $s0, $s1, Lbl1

 add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

 Instruction Format (I format):

op rs rt 16 bit offset

 How is the branch destination address specified?

CS423 L01 Introduction.31 Spring, 2012

Specifying Branch Destinations

 Use a register (like in lw and sw) added to the 16-bit offset

 which register? Instruction Address Register (the PC)

- its use is automatically implied by instruction

- PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

 limits the branch distance to -215 to +215-1 instructions from the
(instruction after the) branch instruction, but most branches are
local anyway

PC
Add

32

32 32

32

32

offset

16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst

address

?
Add

4 32

CS423 L01 Introduction.32 Spring, 2012

 We have beq, bne, but what about other kinds of
brances (e.g., branch-if-less-than)? For this, we need yet
another instruction, slt

 Set on less than instruction:

 slt $t0, $s0, $s1 # if $s0 < $s1 then

 # $t0 = 1 else

 # $t0 = 0

 Instruction format (R format):

2

More Branch Instructions

op rs rt rd funct

CS423 L01 Introduction.33 Spring, 2012

More Branch Instructions, Con’t

 Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions

 less than blt $s1, $s2, Label

 less than or equal to ble $s1, $s2, Label

 greater than bgt $s1, $s2, Label

 great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 #$at set to 1 if

bne $at, $zero, Label # $s1 < $s2

 Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

 Its why the assembler needs a reserved register ($at)

CS423 L01 Introduction.34 Spring, 2012

 MIPS also has an unconditional branch instruction or
jump instruction:

 j label #go to label

Other Control Flow Instructions

 Instruction Format (J Format):

op 26-bit address

PC

4

32

26

32

00

from the low order 26 bits of the jump instruction

CS423 L01 Introduction.35 Spring, 2012

Aside: Branching Far Away

 What if the branch destination is further away than can
be captured in 16 bits?

 The assembler comes to the rescue – it inserts an
unconditional jump to the branch target and inverts the
condition

 beq $s0, $s1, L1

becomes

 bne $s0, $s1, L2

 j L1

 L2:

CS423 L01 Introduction.36 Spring, 2012

 MIPS procedure call instruction:

 jal ProcedureAddress #jump and link

 Saves PC+4 in register $ra to have a link to the next
instruction for the procedure return

 Machine format (J format):

 Then can do procedure return with a

 jr $ra #return

 Instruction format (R format):

Instructions for Accessing Procedures

op 26 bit address

op rs funct

CS423 L01 Introduction.37 Spring, 2012

Aside: Spilling Registers

 What if the callee needs more registers? What if the
procedure is recursive?

 uses a stack – a last-in-first-out queue – in memory for passing
additional values or saving (recursive) return address(es)

 One of the general registers,
$sp, is used to address the
stack (which “grows” from high
address to low address)

 add data onto the stack – push

 $sp = $sp – 4
data on stack at new $sp

 remove data from the stack – pop

 data from stack at $sp
$sp = $sp + 4

low addr

high addr

$sp top of stack

CS423 L01 Introduction.38 Spring, 2012

MIPS ISA So Far

Category Instr Op Code Example Meaning

Arithmetic

(R & I
format)

add 0 and 32 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract 0 and 34 sub $s1, $s2, $s3 $s1 = $s2 - $s3

add immediate 8 addi $s1, $s2, 6 $s1 = $s2 + 6

or immediate 13 ori $s1, $s2, 6 $s1 = $s2 v 6

Data
Transfer

(I format)

load word 35 lw $s1, 24($s2) $s1 = Memory($s2+24)

store word 43 sw $s1, 24($s2) Memory($s2+24) = $s1

load byte 32 lb $s1, 25($s2) $s1 = Memory($s2+25)

store byte 40 sb $s1, 25($s2) Memory($s2+25) = $s1

load upper imm 15 lui $s1, 6 $s1 = 6 * 216

Cond.
Branch
(I & R
format)

br on equal 4 beq $s1, $s2, L if ($s1==$s2) go to L

br on not equal 5 bne $s1, $s2, L if ($s1 !=$s2) go to L

set on less than 0 and 42 slt $s1, $s2, $s3 if ($s2<$s3) $s1=1 else
 $s1=0

set on less than
immediate

10 slti $s1, $s2, 6 if ($s2<6) $s1=1 else
 $s1=0

Uncond.
Jump
(J & R
format)

jump 2 j 2500 go to 10000

jump register 0 and 8 jr $t1 go to $t1

jump and link 3 jal 2500 go to 10000; $ra=PC+4

CS423 L01 Introduction.39 Spring, 2012

Review of MIPS Operand Addressing Modes

 Register addressing – operand is in a register

 Base (displacement) addressing – operand is at the
memory location whose address is the sum of a register
and a 16-bit constant contained within the instruction

 Register relative (indirect) with 0($a0)

 Pseudo-direct with addr($zero)

 Immediate addressing – operand is a 16-bit constant
contained within the instruction

op rs rt rd funct Register

word operand

base register

op rs rt offset Memory

word or byte operand

op rs rt operand

CS423 L01 Introduction.40 Spring, 2012

Review: MIPS Organization

Processor
Memory

32 bits

230

words

read/write

 addr

read data

write data

word address

(binary)

0…0000
0…0100
0…1000
0…1100

1…1100
Register File src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
registers

($zero - $ra)

32

32

32

32

32

32

5

5

5

PC

ALU

32 32

32

32

32

0 1 2 3

7 6 5 4

byte address

(big Endian)

Fetch

PC = PC+4

Decode Exec

Add
32

32
4

Add
32

32
branch offset

CS423 L01 Introduction.41 Spring, 2012

 32-bit signed numbers (2‟s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
...

1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

MIPS Number Representations

maxint

minint

 Converting <32-bit values into 32-bit values

 copy the most significant bit (the sign bit) into the “empty” bits
 0010 -> 0000 0010

 1010 -> 1111 1010

 sign extend versus zero extend (lb vs. lbu)

MSB

LSB

CS423 L01 Introduction.42 Spring, 2012

MIPS Arithmetic Logic Unit (ALU)

 Must support the Arithmetic/Logic
operations of the ISA

add, addi, addiu, addu

sub, subu, neg

mult, multu, div, divu

sqrt

and, andi, nor, or, ori, xor, xori

beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

 With special handling for

 sign extend – addi, addiu andi, ori, xori, slti,
sltiu

 zero extend – lbu, addiu, sltiu

 no overflow detected – addu, addiu, subu, multu,
divu, sltiu, sltu

CS423 L01 Introduction.43 Spring, 2012

Review: 2’s Complement Binary Representation
2‟sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7 23 - 1 =

-(23 - 1) =

-23 =

1010

complement all the bits

1011

and add a 1

 Note: negate and
invert are different!

 Negate

Bits are inverted whereas

numbers are negated!

CS423 L01 Introduction.44 Spring, 2012

Review: A Full Adder

1-bit

Full

Adder

A

B

S

carry_in

carry_out

 S = A  B  carry_in (odd parity function)

 carry_out = A&B | A&carry_in | B&carry_in

 (majority function)

 How can we use it to build a 32-bit adder?

 How can we modify it easily to build an adder/subtractor?

A B carry_in carry_out S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

CS423 L01 Introduction.45 Spring, 2012

 Need to support the logic operation (and,nor,or,xor)

 Bit wise operations (no carry operation involved)

 Need a logic gate for each function, mux to choose the output

 Need to support the set-on-less-than instruction (slt)

 Use subtraction to determine if (a – b) < 0 (implies a < b)

 Copy the sign bit into the low order bit of the result, set

remaining result bits to 0

 Need to support test for equality (bne, beq)

 Again use subtraction: (a - b) = 0 implies a = b

 Additional logic to “nor” all result bits together

 Immediates are sign extended outside the ALU with

wiring (i.e., no logic needed)

Tailoring the ALU to the MIPS ISA

CS423 L01 Introduction.46 Spring, 2012

Shift Operations

 Also need operations to pack and unpack 8-bit
characters into 32-bit words

 Shifts move all the bits in a word left or right

 sll $t2, $s0, 8 #$t2 = $s0 << 8 bits

 srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits

op rs rt rd shamt funct

 Notice that a 5-bit shamt field is enough to shift a 32-
bit value 25 – 1 or 31 bit positions

 Such shifts are logical because they fill with zeros

CS423 L01 Introduction.47 Spring, 2012

Shift Operations, con’t

 An arithmetic shift (sra) maintain the arithmetic
correctness of the shifted value (i.e., a number shifted
right one bit should be ½ of its original value; a number
shifted left should be 2 times its original value)

 so sra uses the most significant bit (sign bit) as the bit
shifted in

 note that there is no need for a sla when using two‟s
complement number representation

 sra $t2, $s0, 8 #$t2 = $s0 >> 8 bits

 The shift operation is implemented by hardware
separate from the ALU

 using a barrel shifter (which would takes lots of gates in
discrete logic, but is pretty easy to implement in VLSI)

CS423 L01 Introduction.48 Spring, 2012

Multiply

 Binary multiplication is just a bunch of right shifts and
adds

multiplicand

multiplier

partial

product

array

double precision product

n

2n

n
can be formed in parallel

and added in parallel for

faster multiplication

CS423 L01 Introduction.49 Spring, 2012

 Multiply produces a double precision product

 mult $s0, $s1 # hi||lo = $s0 * $s1

 Low-order word of the product is left in processor register lo
and the high-order word is left in register hi

 Instructions mfhi rd and mflo rd are provided to move
the product to (user accessible) registers in the register file

MIPS Multiply Instruction

op rs rt rd shamt funct

 Multiplies are done by fast, dedicated hardware and
are much more complex (and slower) than adders

 Hardware dividers are even more complex and even
slower; ditto for hardware square root

CS423 L01 Introduction.50 Spring, 2012

 Divide generates the reminder in hi and the quotient
in lo

 div $s0, $s1 # lo = $s0 / $s1

 # hi = $s0 mod $s1

 Instructions mfhi rd and mflo rd are provided to move
the quotient and reminder to (user accessible) registers in the
register file

MIPS Divide Instruction

 As with multiply, divide ignores overflow so software
must determine if the quotient is too large. Software
must also check the divisor to avoid division by 0.

op rs rt rd shamt funct

CS423 L01 Introduction.51 Spring, 2012

Representing Big (and Small) Numbers

 What if we want to encode the approx. age of the earth?

 4,600,000,000 or 4.6 x 109

 or the weight in kg of one a.m.u. (atomic mass unit)

 0.0000000000000000000000000166 or 1.6 x 10-27

 There is no way we can encode either of the above in a
32-bit integer.

 Floating point representation (-1)sign x F x 2E

 Still have to fit everything in 32 bits (single precision)

s E (exponent) F (fraction)

1 bit 8 bits 23 bits

 The base (2, not 10) is hardwired in the design of the FPALU

 More bits in the fraction (F) or the exponent (E) is a trade-off
between precision (accuracy of the number) and range (size of
the number)

CS423 L01 Introduction.52 Spring, 2012

Scientific Notation (in Decimal)

6.0210 x 1023

radix (base) decimal point

mantissa exponent

Normalized form: no leadings 0s
(exactly one digit to left of decimal point)

Alternatives to representing 1/1,000,000,000

Normalized: 1.0 x 10-9

Not normalized: 0.1 x 10-8,10.0 x 10-10

CS423 L01 Introduction.53 Spring, 2012

Scientific Notation (in Binary)

1.0two x 2-1

radix (base) “binary point”

exponent

Computer arithmetic that supports it called floating
point, because it represents numbers where the binary
point is not fixed, as it is for integers

Declare such variable in C as float

mantissa

CS423 L01 Introduction.54 Spring, 2012

Floating Point Representation

 Normal format: +1.xxxxxxxxxxtwo*2
yyyytwo

 Multiple of Word Size (32 bits)

0 31
S Exponent
30 23 22

Significand

1 bit 8 bits 23 bits

S represents Sign

Exponent represents y‟s

Significand represents x‟s

Represent numbers ranging from 2-126(1.0) to
2+127(2-2-23) ie. from 1.18 x 10-38 to 3.40 x 1038

CS423 L01 Introduction.55 Spring, 2012

Next Lecture and Reminders

 Next lecture

 Addressing and understanding performance

