
1

CS 541

Parallel Programming Concepts

2
BilkentBilkent UniversityUniversity

What is concurrency?

● What is a sequential program?

� A single thread of control that executes one instruction and when it is
finished execute the next logical instruction

● What is a concurrent program?

� A collection of autonomous sequential threads, executing (logically) in
parallel

● The implementation (i.e. execution) of a collection of threads can be:

Multiprogramming
– Threads multiplex their executions on a single processor.

Multiprocessing
– Threads multiplex their executions on a multiprocessor or a multicore system

Distributed Processing
– Processes multiplex their executions on several different machines

3
BilkentBilkent UniversityUniversity

Concurrency and Parallelism

● Concurrency is not (only) parallelism

● Interleaved Concurrency

� Logically simultaneous processing

� Interleaved execution on a single

processor

● Parallelism

� Physically simultaneous processing

� Requires a multiprocessor or a

multicore system

A

Time

B

C

A

Time

B

C

4
BilkentBilkent UniversityUniversity

Recap

� Shared memory

– Ex: Intel Core 2 Duo/Quad

– One copy of data shared

among many cores

– Atomicity, locking and

synchronization

essential for correctness

– Many scalability issues

� Distributed memory

– Ex: Cell

– Cores primarily access local

memory

– Explicit data exchange

between cores

– Data distribution and

communication orchestration

is essential for performance

P1 P2 P3 Pn

Interconnection Network

Memory
Interconnection Network

P1 P2 P3 Pn

M1 M2 M3 Mn

● Two primary patterns of multicore architecture design

5
BilkentBilkent UniversityUniversity

Programming Distributed Memory Processors

● Processors 17n ask for X

● There are n places to look

� Each processor’s memory

has its own X

� Xs may vary

● For Processor 1 to look at Processors 2’s X

� Processor 1 has to request X from Processor 2

� Processor 2 sends a copy of its own X to Processor 1

� Processor 1 receives the copy

� Processor 1 stores the copy in its own memory

Interconnection Network

P1 P2 P3 Pn

M1 M2 M3 Mn

xxxx

6
BilkentBilkent UniversityUniversity

Message Passing

● Architectures with distributed memories use explicit
communication to exchange data

� Data exchange requires synchronization (cooperation)
between senders and receivers

– How is “data” described

– How are processes identified

– Will receiver recognize or screen messages

– What does it mean for a send or receive to complete

P1 P2

Send(data)

Receive(data)

7
BilkentBilkent UniversityUniversity

Example Message Passing Program

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

P1

M1

P2

M2

x

y

B

A

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to

C[1 .. 4][1 .. 4]

8
BilkentBilkent UniversityUniversity

x

y

B

A

P1

M1

P2

M2

C

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to

C[1 .. 4][1 .. 4]

9
BilkentBilkent UniversityUniversity

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to

C[1 .. 4][1 .. 4]

● Can break up work

between the two

processors

� P1 sends data to P2

10
BilkentBilkent UniversityUniversity

● Can break up work

between the two

processors

� P1 sends data to P2

� P1 and P2 compute

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to

C[1 .. 4][1 .. 4]

11
BilkentBilkent UniversityUniversity

● Can break up work

between the two

processors

� P1 sends data to P2

� P1 and P2 compute

� P2 sends output to P1

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to

C[1 .. 4][1 .. 4]

12
BilkentBilkent UniversityUniversity

A[n] = {…}

B[n] = {…}

Send (A[n/2+1..n], B[1..n])

for (i = 1 to n/2)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

Receive(C[n/2+1..n][1..n])

A[n] = {…}

B[n] = {…}

Receive(A[n/2+1..n], B[1..n])

for (i = n/2+1 to n)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

Send (C[n/2+1..n][1..n])

processor 1 processor 2

processor 1

parallel with messages

sequential

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

13
BilkentBilkent UniversityUniversity

Performance Analysis

● Distance calculations between points are

independent of each other

� Dividing the work between

two processors � 2x speedup

� Dividing the work between

four processors � 4x speedup

● Communication

� 1 copy of B[] sent to each processor

� 1 copy of subset of A[] to each processor

● Granularity of A[] subsets directly impact communication costs

� Communication is not free

x

y

14
BilkentBilkent UniversityUniversity

Programming Shared Memory Processors

● Processor 17n ask for X

● There is only one place to look

● Communication through
shared variables

● Race conditions possible

� Use synchronization to protect from conflicts

� Change how data is stored to minimize synchronization

P1 P2 P3 Pn

Interconnection Network

Memory

x

15
BilkentBilkent UniversityUniversity

Example Parallelization

● Data parallel

� Perform same computation

but operate on different data

● A single process can fork

multiple concurrent threads

� Each thread encapsulates its own execution path

� Each thread has local state and shared resources

� Threads communicate through shared resources

such as global memory

for (i = 0; i < 12; i++)
C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

join (barrier)

fork (threads)

16
BilkentBilkent UniversityUniversity

Types of Parallelism

● Data parallelism

� Perform same computation

but operate on different data

● Control (task) parallelism

� Perform different functions

fork (threads)

join (barrier)
pthread_create(/* thread id */,

/* attributes */,
/* any function */,
/* args to function */);

17
BilkentBilkent UniversityUniversity

Parallel Programming with OpenMP

● Start with a parallelizable algorithm

� SPMD model (same program, multiple data)

● Annotate the code with parallelization and

synchronization directives (pragmas)

� Assumes programmers know what they are doing

� Code regions marked parallel are considered independent

� Programmer is responsibility for protection against races

● Test and Debug

18
BilkentBilkent UniversityUniversity

Simple OpenMP Example

● (data) parallel pragma

execute as many as there

are processors (threads)

● for pragma

loop is parallel, can divide

work (work-sharing)

#pragma omp parallel
#pragma omp for

for(i = 0; i < 12; i++)
C[i] = A[i] + B[i];

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

fork (threads)

19
BilkentBilkent UniversityUniversity

Understanding Performance

● What factors affect performance of parallel programs?

● Coverage or extent of parallelism in algorithm

● Granularity of partitioning among processors

● Locality of computation and communication

20
BilkentBilkent UniversityUniversity

Limits to Performance Scalability

● Not all programs are “embarrassingly” parallel

● Programs have sequential parts and parallel parts

a = b + c;
d = a + 1;
e = d + a;
for (i=0; i < e; i++)

M[i] = 1;

Sequential part

(data dependence)

Parallel part

(no data dependence)

21
BilkentBilkent UniversityUniversity

Coverage

● Amdahl's Law: The performance improvement to

be gained from using some faster mode of

execution is limited by the fraction of the time the

faster mode can be used.

� Demonstration of the law of diminishing returns

22
BilkentBilkent UniversityUniversity

Implications of Amdahl’s Law

● Speedup tends to as number of processors

tends to infinity

● Parallel programming is worthwhile when programs

have a lot of work that is parallel in nature

p−1

1

23
BilkentBilkent UniversityUniversity

Performance Scalability

Typical speedup is

less than linear

lin
ea

r
sp

ee
dup (1

00
%

 e
ff
ic

ie
ncy

)

number of processors

s
p
e
e
d

u
p

24
BilkentBilkent UniversityUniversity

Understanding Performance

● Coverage or extent of parallelism in algorithm

● Granularity of partitioning among processors

● Locality of computation and communication

25
BilkentBilkent UniversityUniversity

Granularity

● Granularity is a qualitative measure of the ratio of

computation to communication

● Computation stages are typically separated from

periods of communication by synchronization events

26
BilkentBilkent UniversityUniversity

Fine vs. Coarse Granularity

● Fine-grain Parallelism

� Low computation to

communication ratio

� Small amounts of

computational work between

communication stages

� Less opportunity for

performance enhancement

� High communication

overhead

● Coarse-grain Parallelism

� High computation to

communication ratio

� Large amounts of

computational work between

communication events

� More opportunity for

performance increase

� Harder to load balance

efficiently

27
BilkentBilkent UniversityUniversity

● Processors that finish early have to wait for the processor with

the largest amount of work to complete

� Leads to idle time, lowers utilization

The Load Balancing Problem

communication stage (synchronization)

// PPU tells all SPEs to start
for (int i = 0; i < n; i++) {

spe_write_in_mbox(id[i], <message>);
}

// PPU waits for SPEs to send completion message
for (int i = 0; i < n; i++) {

while (spe_stat_out_mbox(id[i]) == 0);
spe_read_out_mbox(id[i]);

}

28
BilkentBilkent UniversityUniversity

Static Load Balancing

● Programmer make decisions and assigns a fixed

amount of work to each processing core a priori

● Works well for homogeneous multicores

� All core are the same

� Each core has an equal amount of work

● Not so well for heterogeneous multicores

� Some cores may be faster than others

� Work distribution is uneven

P2P1

work queue

29
BilkentBilkent UniversityUniversity

Dynamic Load Balancing

● When one core finishes its allocated work, it takes

on work from core with the heaviest workload

● Ideal for codes where work is uneven, and in

heterogeneous multicore

P2P1

work queue

P2P1

work queue

30
BilkentBilkent UniversityUniversity

Granularity and Performance Tradeoffs

1. Load balancing

� How well is work distributed among cores?

2. Synchronization

� Are there ordering constraints on execution?

31
BilkentBilkent UniversityUniversity

Data Dependence Graph

-

C[4]

C[3]

C[2]

A 2 3 C[0] C[1]B

+ + +

∗ +

+

+

32
BilkentBilkent UniversityUniversity

Dependence and Synchronization

P1 P2 P3

P3

P3

P3

Synchronisation

Points

33
BilkentBilkent UniversityUniversity

Synchronization Removal

P2 P2 P3

P2 P3

P3

P3

Synchronisation

Points

P1

34
BilkentBilkent UniversityUniversity

Granularity and Performance Tradeoffs

1. Load balancing

� How well is work distributed among cores?

2. Synchronization

� Are there ordering constraints on execution?

3. Communication

� Communication is not cheap!

35
BilkentBilkent UniversityUniversity

Types of Communication

● Cores exchange data or control messages

� Cell examples: DMA vs. Mailbox

● Control messages are often short

● Data messages are relatively much larger

36
BilkentBilkent UniversityUniversity

Example: Parallel Numerical Integration

4.0

2.0

1.00.0

4.0

(1+x2)
f(x) =

X

static long num_steps = 100000;

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;
for (i = 0; i < num_steps; i++){

x = (i + 0.5) ∗∗∗∗ step;
sum = sum + 4.0 / (1.0 + x ∗∗∗∗x);

}

pi = step ∗∗∗∗ sum;
printf(“Pi = %f\n”, pi);

}}

37
BilkentBilkent UniversityUniversity

static long num_steps = 100000;

void main(int argc, char* argv[])
{

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗∗∗∗ (num_steps/numprocs)
i_end = i_start + (num_steps/numprocs)

step = 1.0 / (double) num_steps;

for (i = i_start; i < i_end; i++) {
x = (i + 0.5) ∗∗∗∗ step
sum = sum + 4.0 / (1.0 + x ∗∗∗∗x);

}
mypi = step * sum;

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0)
printf(“Pi = %f\n ”, pi);

MPI_Finalize();
}

Computing Pi With Integration (MPI)

38
BilkentBilkent UniversityUniversity

Computing Pi With Integration (OpenMP)

● Which variables are shared?

� step

● Which variables are private?

� x

● Which variables does

reduction apply to?

� sum

static long num_steps = 100000;

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;

for (i = 0; i < num_steps; i++){
x = (i + 0.5) ∗∗∗∗ step ;
sum = sum + 4.0 / (1.0 + x ∗∗∗∗x);

}

pi = step ∗∗∗∗ sum;
printf(“Pi = %f\n”, pi);

}

#pragma omp parallel for \
private(x) reduction(+:sum)

39
BilkentBilkent UniversityUniversity

Understanding Performance

● Coverage or extent of parallelism in algorithm

● Granularity of data partitioning among processors

● Locality of computation and communication

40
BilkentBilkent UniversityUniversity

Locality of Memory Accesses

(Shared Memory)

for (i = 0; i < 16; i++)
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11

41
BilkentBilkent UniversityUniversity

Locality of Memory Accesses

(Shared Memory)

A[0]

A[4]

A[8]

A[12]

A[1]

A[5]

A[9]

A[13]

A[2]

A[6]

A[10]

A[14]

A[3]

A[7]

A[11]

A[15]

for (i = 0; i < 16; i++)
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11

memory banks

memory interface

42
BilkentBilkent UniversityUniversity

Memory Access Latency in

Shared Memory Architectures

● Uniform Memory Access (UMA)

� Centrally located memory

� All processors are equidistant (access times)

● Non-Uniform Access (NUMA)

� Physically partitioned but accessible by all

� Processors have the same address space

� Placement of data affects performance

43
BilkentBilkent UniversityUniversity

Summary of Parallel Performance Factors

● Coverage or extent of parallelism in algorithm

● Granularity of data partitioning among processors

● Locality of computation and communication

● 7 so how do I parallelize my program?

