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Parallel Programming Concepts
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What is concurrency? 

● What is a sequential program?

� A single thread of control that executes one instruction and when it is 
finished execute the next logical instruction

● What is a concurrent program? 

� A collection of autonomous sequential threads, executing (logically) in 
parallel 

● The implementation (i.e. execution) of a collection of threads can be:

Multiprogramming
– Threads multiplex their executions on a single processor.

Multiprocessing
– Threads multiplex their executions on a multiprocessor or a multicore system

Distributed Processing
– Processes multiplex their executions on several different machines 
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Concurrency and Parallelism

● Concurrency is not (only) parallelism

● Interleaved Concurrency

� Logically simultaneous processing

� Interleaved execution on a single 

processor

● Parallelism

� Physically simultaneous processing

� Requires a multiprocessor or a 

multicore system
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Recap

� Shared memory

– Ex: Intel Core 2 Duo/Quad

– One copy of data shared 

among many cores

– Atomicity, locking and 

synchronization

essential for correctness

– Many scalability issues

� Distributed memory

– Ex: Cell

– Cores primarily access local 

memory

– Explicit data exchange 

between cores

– Data distribution and 

communication orchestration 

is essential for performance

P1 P2 P3 Pn

Interconnection Network

Memory
Interconnection Network

P1 P2 P3 Pn

M1 M2 M3 Mn

● Two primary patterns of multicore architecture design
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Programming Distributed Memory Processors

● Processors 17n ask for X

● There are n places to look

� Each processor’s memory 

has its own X

� Xs may vary

● For Processor 1 to look at Processors 2’s X

� Processor 1 has to request X from Processor 2

� Processor 2 sends a copy of its own X to Processor 1

� Processor 1 receives the copy 

� Processor 1 stores the copy in its own memory

Interconnection Network

P1 P2 P3 Pn

M1 M2 M3 Mn

xxxx
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Message Passing

● Architectures with distributed memories use explicit 
communication to exchange data

� Data exchange requires synchronization (cooperation) 
between senders and receivers

– How is “data” described

– How are processes identified

– Will receiver recognize or screen messages

– What does it mean for a send or receive to complete

P1 P2

Send(data)

Receive(data)
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Example Message Passing Program

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

P1

M1

P2

M2

x

y

B

A

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to 

C[1 .. 4][1 .. 4]
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x

y

B

A
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M1

P2
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for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to 

C[1 .. 4][1 .. 4]
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P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to 

C[1 .. 4][1 .. 4]

● Can break up work

between the two 

processors

� P1 sends data to P2
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● Can break up work

between the two 

processors

� P1 sends data to P2

� P1 and P2 compute

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to 

C[1 .. 4][1 .. 4]
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● Can break up work

between the two 

processors

� P1 sends data to P2

� P1 and P2 compute

� P2 sends output to P1

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1 .. 4]
to every other point in B[1 .. 4] and store results to 

C[1 .. 4][1 .. 4]
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A[n] = {…}

B[n] = {…}

Send (A[n/2+1..n], B[1..n])

for (i = 1 to n/2)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

Receive(C[n/2+1..n][1..n])

A[n] = {…}

B[n] = {…}

Receive(A[n/2+1..n], B[1..n])

for (i = n/2+1 to n)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

Send (C[n/2+1..n][1..n])

processor 1 processor 2

processor 1

parallel with messages

sequential

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program



13
BilkentBilkent UniversityUniversity

Performance Analysis

● Distance calculations between points are

independent of each other

� Dividing the work between

two processors � 2x speedup

� Dividing the work between

four processors � 4x speedup

● Communication

� 1 copy of B[] sent to each processor

� 1 copy of subset of A[] to each processor

● Granularity of A[] subsets directly impact communication costs

� Communication is not free

x

y
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Programming Shared Memory Processors

● Processor 17n ask for X

● There is only one place to look

● Communication through
shared variables

● Race conditions possible

� Use synchronization to protect from conflicts

� Change how data is stored to minimize synchronization

P1 P2 P3 Pn

Interconnection Network

Memory

x
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Example Parallelization

● Data parallel

� Perform same computation 

but operate on different data

● A single process can fork 

multiple concurrent threads

� Each thread encapsulates its own execution path

� Each thread has local state and shared resources 

� Threads communicate through shared resources

such as global memory

for (i = 0; i < 12; i++) 
C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

join (barrier)

fork (threads)
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Types of Parallelism

● Data parallelism

� Perform same computation 

but operate on different data

● Control (task) parallelism

� Perform different functions

fork (threads)

join (barrier)
pthread_create(/* thread id */,

/* attributes */, 
/* any function */,
/* args to function */);
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Parallel Programming with OpenMP

● Start with a parallelizable algorithm

� SPMD model (same program, multiple data)

● Annotate the code with parallelization and 

synchronization directives (pragmas)

� Assumes programmers know what they are doing

� Code regions marked parallel are considered independent

� Programmer is responsibility for protection against races

● Test and Debug 
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Simple OpenMP Example

● (data) parallel pragma

execute as many as there 

are processors (threads)

● for pragma

loop is parallel, can divide 

work (work-sharing)

#pragma omp parallel
#pragma omp for

for(i = 0; i < 12; i++) 
C[i] = A[i] + B[i];

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

fork (threads)
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Understanding Performance

● What factors affect performance of parallel programs?

● Coverage or extent of parallelism in algorithm

● Granularity of partitioning among processors

● Locality of computation and communication
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Limits to Performance Scalability

● Not all programs are “embarrassingly” parallel

● Programs have sequential parts and parallel parts

a = b + c;
d = a + 1;
e = d + a;
for (i=0; i < e; i++) 

M[i] = 1;

Sequential part

(data dependence)

Parallel part

(no data dependence)
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Coverage

● Amdahl's Law: The performance improvement to 

be gained from using some faster mode of 

execution is limited by the fraction of the time the 

faster mode can be used.

� Demonstration of the law of diminishing returns
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Implications of Amdahl’s Law

● Speedup tends to        as number of processors 

tends to infinity

● Parallel programming is worthwhile when programs 

have a lot of work that is parallel in nature

p−1

1
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Performance Scalability

Typical speedup is 

less than linear
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Understanding Performance

● Coverage or extent of parallelism in algorithm

● Granularity of partitioning among processors

● Locality of computation and communication
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Granularity

● Granularity is a qualitative measure of the ratio of 

computation to communication 

● Computation stages are typically separated from 

periods of communication by synchronization events
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Fine vs. Coarse Granularity

● Fine-grain Parallelism

� Low computation to 

communication ratio

� Small amounts of 

computational work between 

communication stages 

� Less opportunity for 

performance enhancement

� High communication 

overhead

● Coarse-grain Parallelism

� High computation to 

communication ratio 

� Large amounts of 

computational work between 

communication events 

� More opportunity for 

performance increase 

� Harder to load balance 

efficiently 
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● Processors that finish early have to wait for the processor with

the largest amount of work to complete

� Leads to idle time, lowers utilization

The Load Balancing Problem

communication stage (synchronization)

// PPU tells all SPEs to start
for (int i = 0; i < n; i++) {

spe_write_in_mbox(id[i], <message>);
}

// PPU waits for SPEs to send completion message
for (int i = 0; i < n; i++) {

while (spe_stat_out_mbox(id[i]) == 0);
spe_read_out_mbox(id[i]);

}



28
BilkentBilkent UniversityUniversity

Static Load Balancing

● Programmer make decisions and assigns a fixed 

amount of work to each processing core a priori

● Works well for homogeneous multicores

� All core are the same 

� Each core has an equal amount of work 

● Not so well for heterogeneous multicores

� Some cores may be faster than others

� Work distribution is uneven

P2P1

work queue
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Dynamic Load Balancing

● When one core finishes its allocated work, it takes 

on work from core with the heaviest workload

● Ideal for codes where work is uneven, and in 

heterogeneous multicore

P2P1

work queue

P2P1

work queue
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Granularity and Performance Tradeoffs

1. Load balancing

� How well is work distributed among cores?

2. Synchronization

� Are there ordering constraints on execution?
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Data Dependence Graph
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Dependence and Synchronization

P1 P2 P3

P3

P3

P3

Synchronisation

Points
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Synchronization Removal

P2 P2 P3

P2 P3

P3

P3

Synchronisation

Points

P1
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Granularity and Performance Tradeoffs

1. Load balancing

� How well is work distributed among cores?

2. Synchronization

� Are there ordering constraints on execution?

3. Communication

� Communication is not cheap!
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Types of Communication

● Cores exchange data or control messages

� Cell examples: DMA vs. Mailbox

● Control messages are often short

● Data messages are relatively much larger
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Example: Parallel Numerical Integration

4.0

2.0

1.00.0

4.0

(1+x2)
f(x) =

X

static long num_steps = 100000; 

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;
for (i = 0; i < num_steps; i++){

x = (i + 0.5) ∗∗∗∗ step;
sum = sum + 4.0 / (1.0 + x ∗∗∗∗x);

}

pi = step ∗∗∗∗ sum;
printf(“Pi = %f\n”, pi);

}}
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static long num_steps = 100000; 

void main(int argc, char* argv[])
{

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗∗∗∗ (num_steps/numprocs)
i_end = i_start + (num_steps/numprocs)

step = 1.0 / (double) num_steps;

for (i = i_start; i < i_end; i++) {
x = (i + 0.5) ∗∗∗∗ step
sum = sum + 4.0 / (1.0 + x ∗∗∗∗x);

}
mypi = step * sum;

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0)
printf( “Pi = %f\n ”, pi);

MPI_Finalize();
}

Computing Pi With Integration (MPI)
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Computing Pi With Integration (OpenMP)

● Which variables are shared?

� step

● Which variables are private?

� x

● Which variables does 

reduction apply to?

� sum

static long num_steps = 100000; 

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;

for (i = 0; i < num_steps; i++){
x = (i + 0.5) ∗∗∗∗ step ;
sum = sum + 4.0 / (1.0 + x ∗∗∗∗x);

}

pi = step ∗∗∗∗ sum;
printf(“Pi = %f\n”, pi);

}

#pragma omp parallel for \
private(x) reduction(+:sum)
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Understanding Performance

● Coverage or extent of parallelism in algorithm

● Granularity of data partitioning among processors

● Locality of computation and communication
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Locality of Memory Accesses

(Shared Memory)

for (i = 0; i < 16; i++) 
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11
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Locality of Memory Accesses

(Shared Memory)

A[0]

A[4]

A[8]

A[12]

A[1]

A[5]

A[9]

A[13]

A[2]

A[6]

A[10]

A[14]

A[3]

A[7]

A[11]

A[15]

for (i = 0; i < 16; i++) 
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11

memory banks

memory interface
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Memory Access Latency in 

Shared Memory Architectures

● Uniform Memory Access (UMA)

� Centrally located memory

� All processors are equidistant (access times)

● Non-Uniform Access (NUMA)

� Physically partitioned but accessible by all

� Processors have the same address space

� Placement of data affects performance
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Summary of Parallel Performance Factors

● Coverage or extent of parallelism in algorithm

● Granularity of data partitioning among processors

● Locality of computation and communication

● 7 so how do I parallelize my program?


