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Memory Issues in 3D Architectures

● Benefits of a 3D chip over 
a 2D design
� Reduction on global 

interconnect
– Performance: reduced 

average interconnect 
length

– Power: reduction in total 
wiring length

� Higher packing density 
and smaller footprint 

� Support for realization of 
mixed-technology chips
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Heterogeneous Chip Multiprocessors

● Alpha Cores

● EV8 is 80X bigger

● Only 2X – 3X performance 
improvement

● A chip multiprocessor

� High-complexity cores

� Low-complexity cores

● Better resource-to-

application mapping

� Speed of a large core

� Efficiency of a small core
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NoC Architecture

● M × N mesh architecture

● Node in the mesh

� Processor

� Memory module

� Switch
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Background

● Intel Many Integrated Core (Intel MIC) architecture

� Processing highly parallel workloads

� Standard programming models (OpenMP and Cilk with a 

few extensions) 

Photo source: ZDNet

Knights Ferry

Packaged as a co-processor in a 

PCI-e card. With 32 cores running 

four threads apiece, this can 

process 128 threads at 1.2GHz.
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Background
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Problems with current parallelization techniques

● Developed in context of high performance parallel 

machines

● Most of them parallelize one loop nest at a time

� Cannot capture inter-nest relations well 

● Their main goal is to minimize inter-processor 

communication

� Not very suitable for chip multiprocessors

● What we need is data reuse oriented whole program 

parallelization 
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i loop is parallelized

j loop is parallelized

for(i=1;i≤n; i++)

for(j=1;j ≤n; j++)

A[i][j] += B[j][i]+C[i][j]

for(i=1;i≤n; i++)

for(j=1;j ≤n; j++)

D[i][j] = D[i][j]+B[i][j]

for(i=1;i≤n; i++)

for(j=1;j ≤n; j++)

B[j][i] = B[j][i]+C[i][j]

i loop is parallelized

j loop is parallelized

i loop is parallelized

j loop is parallelized
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Resource Allocation

● Prior OS-based resource partition approaches

� Advantage: transparent to applications and programmers

� Drawback: application oblivious and reactive

● Our goal : Proactive resource partitioning scheme 
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Architecture and Resource Partition 

Schemes
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(b) Equal partitioning 

of resource across two 

applications

(c) Nonuniform

partitioning of 

resources across two 

applications

(d) Nonuniform

partitioning of 

resources across 

three applications
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Components of Our Approach

Profiler
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Scenario with no energy saving scheme

P0 P2P1 P3 P4 P5

Processor Busy Processor Idle
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Energy Reduction Schemes

● There are two primary groups

� Voltage scaling techniques

� Processor shutdown schemes

● They can be applied using hardware or an 

optimizing compiler

● They are applied independently

● They are applied in disjoint manner
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Our Approach

● When no errors

� Determined by the successful termination of the primary copy

� Terminate the replica

� Since the replica has operated with lower voltage/frequency so far, we 
save energy, compared to the case where the replica is executing with 
the highest voltage/frequency available

● When an error occurs in the primary copy

� Primary copy is aborted

� Replica is switched to the highest voltage/frequency level to minimize 
the time to complete the task
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Our Approach
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Memory Hierarchy Design (2/5)

● Memory hierarchy management has been well studied 
� Caches 

� From the performance perspective

● Relatively less attention
� Software managed memories 

� Optimizing energy behavior 

● Software-managed hierarchies can be preferable against hardware 
counterparts
� Able to design a customized memory hierarchy that suits the needs 

of the application 

� Data flow is managed by software
– Energy-efficient � Dynamic lookup in hardware
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Program Representation

● Our approach works on 

a control flow graph 

(CFG).

� Nodes: Basic blocks

� Edges: Control flow 

(conservative)
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