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Performance Metrics 

 Purchasing perspective  
 given a collection of machines, which has the  

- best performance ? 

- least cost ? 

- best cost/performance? 

 Design perspective 

 faced with design options, which has the  
- best performance improvement ? 

- least cost ? 

- best cost/performance? 

 Both require 
 basis for comparison 

 metric for evaluation 

 Our goal is to understand what factors in the architecture 

contribute to overall system performance and the relative 

importance (and cost) of these factors 
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Defining (Speed) Performance 

 Normally interested in reducing 

 Response time (aka execution time) – the time between the start 
and the completion of a task 

- Important to individual users 

 Thus, to maximize performance, need to minimize execution time 

 

 Throughput – the total amount of work done in a given time 

- Important to data center managers 

 Decreasing response time almost always improves throughput 

performanceX = 1 / execution_timeX 

If X is n times faster than Y, then 

performanceX         execution_timeY  
    --------------------   =    ---------------------  = n 

performanceY         execution_timeX  
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Performance Factors 

 Want to distinguish elapsed time and the time spent on 
our task 

 CPU execution time (CPU time) – time the CPU spends 
working on a task 

 Does not include time waiting for I/O or running other programs 

CPU execution time      # CPU clock cycles 

     for a program               for a program 
                                  =                                 x  clock cycle time 

CPU execution time      # CPU clock cycles for a program 

     for a program                             clock rate    
                                  =   ------------------------------------------- 

 Can improve performance by reducing either the length 
of the clock cycle or the number of clock cycles required 
for a program 

 or 
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Review:  Machine Clock Rate 

 Clock rate (MHz, GHz) is inverse of clock cycle time 
(clock period) 

CC   =  1 / CR 

one clock period 

 10 nsec clock cycle  =>  100 MHz clock rate 

   5 nsec clock cycle  =>  200 MHz clock rate 

   2 nsec clock cycle  =>  500 MHz clock rate 

  1 nsec clock cycle   =>      1 GHz clock rate 

500 psec clock cycle =>     2 GHz clock rate 

250 psec clock cycle =>     4 GHz clock rate 

200 psec clock cycle =>     5 GHz clock rate 
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Clock Cycles per Instruction 

 Not all instructions take the same amount of time to 
execute 

 One way to think about execution time is that it equals the 
number of instructions executed multiplied by the average time 
per instruction 

 Clock cycles per instruction (CPI) – the average number 
of clock cycles each instruction takes to execute 

 A way to compare two different implementations of the same ISA 

# CPU clock cycles      # Instructions     Average clock cycles 

     for a program           for a program          per instruction    
                                  =                          x 

CPI for this instruction class 

A B C 

CPI 1 2 3 
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Effective CPI 

 Computing the overall effective CPI is done by looking at 
the different types of instructions and their individual 
cycle counts and averaging 

Overall effective CPI   =       (CPIi  x  ICi) 
i = 1 

n 

 Where ICi is the count (percentage) of the number of instructions 
of class i executed 

 CPIi is the (average) number of clock cycles per instruction for 
that instruction class 

 n is the number of instruction classes 

 The overall effective CPI varies by instruction mix – a 
measure of the dynamic frequency of instructions across 
one or many programs 



CS423  L02 Performance.8 Spring, 2012 

THE Performance Equation 

 Our basic performance equation is then 

      CPU time      =  Instruction_count  x  CPI  x   clock_cycle 

                                     Instruction_count    x      CPI 

                                                        clock_rate    
      CPU time      =      ----------------------------------------------- 

 or 

 These equations separate the three key factors that 
affect performance 

 Can measure the CPU execution time by running the program 

 The clock rate is usually given 

 Can measure overall instruction count by using profilers/ 
simulators without knowing all of the implementation details 

 CPI varies by instruction type and ISA implementation for which 
we must know the implementation details 
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Determinates of CPU Performance 

      CPU time      =  Instruction_count  x  CPI  x   clock_cycle 

Instruction_
count 

CPI clock_cycle 

Algorithm 

Programming 
language 

Compiler 

ISA 

Processor 
organization 

Technology 
X 

X X 

X X 

X X 

X 

X 

X 

X 

X 
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A Simple Example 

 How much faster would the machine be if a better data cache 
reduced the average load time to 2 cycles? 

 How does this compare with using branch prediction to shave 
a cycle off the branch time? 

 What if two ALU instructions could be executed at once? 

Op Freq CPIi Freq x CPIi 

ALU 50% 1 

Load 20% 5 

Store 10% 3 

Branch 20% 2 

 = 

.5 

1.0 

.3 

.4 

2.2 

CPU time new = 1.6 x IC x CC   so   2.2/1.6  means 37.5% faster 

1.6 

.5 

 .4 

.3 

.4 

.5 

1.0 

.3 

.2 

2.0 

CPU time new = 2.0 x IC x CC   so   2.2/2.0  means 10% faster 

.25 

1.0 

.3 

.4 

1.95 

CPU time new = 1.95 x IC x CC   so   2.2/1.95  means 12.8% faster 
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SPEC Benchmarks  www.spec.org 

Integer benchmarks FP benchmarks 

gzip compression wupwise Quantum chromodynamics 

vpr FPGA place & route swim Shallow water model 

gcc GNU C compiler mgrid Multigrid solver in 3D fields 

mcf Combinatorial optimization applu Parabolic/elliptic pde 

crafty Chess program mesa 3D graphics library 

parser Word processing program galgel Computational fluid dynamics 

eon Computer visualization art Image recognition (NN) 

perlbmk perl application equake Seismic wave propagation 
simulation 

gap Group theory interpreter facerec Facial image recognition 

vortex Object oriented database ammp Computational chemistry 

bzip2 compression lucas Primality testing 

twolf Circuit place & route  fma3d Crash simulation fem 

sixtrack Nuclear physics accel 

apsi Pollutant distribution 

http://www.spec.org/
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Example SPEC Ratings 
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Other Performance Metrics 

 Power consumption – especially in the embedded market 
where battery life is important (and passive cooling) 

 For power-limited applications, the most important metric is 
energy efficiency 
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MIPS Basic Architecture 
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 Our implementation of the MIPS is simplified 

 memory-reference instructions:  lw, sw  

 arithmetic-logical instructions:  add, sub, and, or, slt 

 control flow instructions:  beq, j 

 Generic implementation 

 use the program counter (PC) to supply                                              
the instruction address and fetch the                                            
instruction from memory (and update the PC) 

 decode the instruction (and read registers) 

 execute the instruction 

 All instructions (except j) use the ALU after reading the 
registers 

 
How?  memory-reference?  arithmetic?  control flow? 

The Processor:  Datapath & Control 

Fetch 

PC = PC+4 

Decode Exec 
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Clocking Methodologies 

 The clocking methodology defines when signals can be 
read and when they are written 

 An edge-triggered methodology 

 Typical execution 

 read contents of state elements  

 send values through combinational logic 

 write results to one or more state elements 

 
 

 

 

 

 

State 

element 

1 

State 

element 

2 

Combinational 

logic 

clock 

one clock cycle 

 Assumes state elements are written on every clock 
cycle; if not, need explicit write control signal 

 write occurs only when both the write control is asserted and the 
clock edge occurs 
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Fetching Instructions 

 Fetching instructions involves 

 reading the instruction from the Instruction Memory 

 updating the PC to hold the address of the next instruction 

Read 

Address 
Instruction 

Instruction 

Memory 

Add 

PC 

4 

 PC is updated every cycle, so it does not need an explicit 

write control signal 

 Instruction Memory is read every cycle, so it doesn’t need an 

explicit read control signal 
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Decoding Instructions 

 Decoding instructions involves 

 sending the fetched instruction’s opcode and function field 

bits to the control unit 

Instruction 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

Control 

Unit 

 reading two values from the Register File 

- Register File addresses are contained in the instruction 
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Executing R Format Operations 
 R format operations (add, sub, slt, and, or) 

 

 

 

 perform the (op and funct) operation on values in rs and rt 

 store the result back into the Register File (into location rd) 

Instruction 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

overflow 

zero 

ALU control RegWrite 

R-type: 

31 25 20 15 5 0 

op rs rt rd funct shamt 

10 

 The Register File is not written every cycle (e.g. sw), so we need 

an explicit write control signal for the Register File 
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Executing Load and Store Operations 
 Load and store operations involves 

 compute memory address by adding the base register (read from 

the Register File during decode) to the 16-bit signed-extended 

offset field in the instruction 

 store value (read from the Register File during decode) written to 

the Data Memory 

 load value, read from the Data Memory, written to the Register 

File 

Instruction 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

overflow 

zero 

ALU control RegWrite 

Data 

Memory 

Address 

Write Data 

Read Data 

Sign 

Extend 

MemWrite 

MemRead 

16 32 
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Executing Branch Operations 
 Branch operations involves 

 compare the operands read from the Register File during decode 
for equality (zero ALU output) 

 compute the branch target address by adding the updated PC to  

   the 16-bit signed-extended offset field in the instr 

Instruction 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

zero 

ALU control 

Sign 

Extend 16 32 

Shift 

left 2 

Add 

4 
Add 

PC 

Branch 

target 

address 

(to branch 

control logic) 
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Executing Jump Operations 

 Jump operation involves 

 replace the lower 28 bits of the PC with the lower 26 bits of the 

fetched instruction shifted left by 2 bits 

Read 

Address 
Instruction 

Instruction 

Memory 

Add 

PC 

4 

Shift 

left 2 

Jump 

address 

26 

4 

28 
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Creating a Single Datapath from the Parts 

 Assemble the datapath segments and add control lines 

and multiplexors as needed 

 Single cycle design – fetch, decode and execute each 

instructions in one clock cycle 

 no datapath resource can be used more than once per 

instruction, so some must be duplicated (e.g., separate 

Instruction Memory and Data Memory, several adders) 

 multiplexors needed at the input of shared elements with 

control lines to do the selection 

 write signals to control writing to the Register File and Data 

Memory 

 

 Cycle time is determined by length of the longest path 
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Fetch, R, and Memory Access Portions 

MemtoReg 

Read 

Address 
Instruction 

Instruction 

Memory 

Add 

PC 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

ovf 

zero 

ALU control RegWrite 

Data 

Memory 

Address 

Write Data 

Read Data 

MemWrite 

MemRead 
Sign 

Extend 16 32 

ALUSrc 
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Adding the Control 
 Selecting the operations to perform (ALU, Register File 

and Memory read/write) 

 Controlling the flow of data (multiplexor inputs) 

I-Type: op rs rt address offset 

31 25 20 15 0 

R-type: 

31 25 20 15 5 0 

op rs rt rd funct shamt 

10 

 Observations 

 op field always                                                                                        

in bits 31-26 

 addr of registers                                                                                            

to be read are                                                                                               

always specified by the                                                                                  

rs field (bits 25-21) and rt field (bits 20-16); for lw and sw rs is the base 

register 

 addr. of register to be written is in one of two places – in rt (bits 20-16) 

for lw; in rd (bits 15-11) for R-type instructions 

 offset for beq, lw, and sw always in bits 15-0 

J-type: 

31 25 0 

op target address 
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Single Cycle Datapath with Control Unit 

Read 

Address 
Instr[31-0] 

Instruction 

Memory 

Add 

PC 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

ovf 

zero 

RegWrite 

Data 

Memory 

Address 

Write Data 

Read Data 

MemWrite 

MemRead 

Sign 

Extend 16 32 

MemtoReg 

ALUSrc 

Shift 

left 2 

Add 

PCSrc 

RegDst 

ALU 

control 

1 

1 

1 

0 

0 
0 

0 

1 

ALUOp 

Instr[5-0] 

Instr[15-0] 

Instr[25-21] 

Instr[20-16] 

Instr[15  

-11] 

Control 

Unit 
Instr[31-26] 

Branch 
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R-type Instruction Data/Control Flow 

Read 

Address 
Instr[31-0] 

Instruction 

Memory 

Add 

PC 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

ovf 

zero 

RegWrite 

Data 

Memory 

Address 

Write Data 

Read Data 

MemWrite 

MemRead 

Sign 

Extend 16 32 

MemtoReg 

ALUSrc 

Shift 

left 2 

Add 

PCSrc 

RegDst 

ALU 

control 

1 

1 

1 

0 

0 
0 

0 

1 

ALUOp 

Instr[5-0] 

Instr[15-0] 

Instr[25-21] 

Instr[20-16] 

Instr[15  

-11] 

Control 

Unit 
Instr[31-26] 

Branch 
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Load Word Instruction Data/Control Flow 

Read 

Address 
Instr[31-0] 

Instruction 

Memory 

Add 

PC 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

ovf 

zero 

RegWrite 

Data 

Memory 

Address 

Write Data 

Read Data 

MemWrite 

MemRead 

Sign 

Extend 16 32 

MemtoReg 

ALUSrc 

Shift 

left 2 

Add 

PCSrc 

RegDst 

ALU 

control 

1 

1 

1 

0 

0 
0 

0 

1 

ALUOp 

Instr[5-0] 

Instr[15-0] 

Instr[25-21] 

Instr[20-16] 

Instr[15  

-11] 

Control 

Unit 
Instr[31-26] 

Branch 
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Load Word Instruction Data/Control Flow 

Read 

Address 
Instr[31-0] 

Instruction 

Memory 

Add 

PC 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

ovf 

zero 

RegWrite 

Data 

Memory 

Address 

Write Data 

Read Data 

MemWrite 

MemRead 

Sign 

Extend 16 32 

MemtoReg 

ALUSrc 

Shift 

left 2 

Add 

PCSrc 

RegDst 

ALU 

control 

1 

1 

1 

0 

0 
0 

0 

1 

ALUOp 

Instr[5-0] 

Instr[15-0] 

Instr[25-21] 

Instr[20-16] 

Instr[15  

-11] 

Control 

Unit 
Instr[31-26] 

Branch 
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Branch Instruction Data/Control Flow 

Read 

Address 
Instr[31-0] 

Instruction 

Memory 

Add 

PC 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

ovf 

zero 

RegWrite 

Data 

Memory 

Address 

Write Data 

Read Data 

MemWrite 

MemRead 

Sign 

Extend 16 32 

MemtoReg 

ALUSrc 

Shift 

left 2 

Add 

PCSrc 

RegDst 

ALU 

control 

1 

1 

1 

0 

0 
0 

0 

1 

ALUOp 

Instr[5-0] 

Instr[15-0] 

Instr[25-21] 

Instr[20-16] 

Instr[15  

-11] 

Control 

Unit 
Instr[31-26] 

Branch 
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Branch Instruction Data/Control Flow 

Read 

Address 
Instr[31-0] 

Instruction 

Memory 

Add 

PC 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

ovf 

zero 

RegWrite 

Data 

Memory 

Address 

Write Data 

Read Data 

MemWrite 

MemRead 

Sign 

Extend 16 32 

MemtoReg 

ALUSrc 

Shift 

left 2 

Add 

PCSrc 

RegDst 

ALU 

control 

1 

1 

1 

0 

0 
0 

0 

1 

ALUOp 

Instr[5-0] 

Instr[15-0] 

Instr[25-21] 

Instr[20-16] 

Instr[15  

-11] 

Control 

Unit 
Instr[31-26] 

Branch 
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Adding the Jump Operation  

Read 

Address 
Instr[31-0] 

Instruction 

Memory 

Add 

PC 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 

ovf 

zero 

RegWrite 

Data 

Memory 

Address 

Write Data 

Read Data 

MemWrite 

MemRead 

Sign 

Extend 16 32 

MemtoReg 

ALUSrc 

Shift 

left 2 

Add 

PCSrc 

RegDst 

ALU 

control 

1 

1 

1 

0 

0 
0 

0 

1 

ALUOp 

Instr[5-0] 

Instr[15-0] 

Instr[25-21] 

Instr[20-16] 

Instr[15  

-11] 

Control 

Unit 
Instr[31-26] 

Branch 

Shift 

left 2 

0 

1 

Jump 

32 

Instr[25-0] 

26 
PC+4[31-28] 

28 
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Single Cycle Disadvantages & Advantages 

 Uses the clock cycle inefficiently – the clock cycle must 

be timed to accommodate the slowest instruction 

 especially problematic for more complex instructions like 

floating point multiply 

 

 

 

 

 

 May be wasteful of area since some functional units 

(e.g., adders) must be duplicated since they can not be 

shared during a clock cycle 

but 

 Is simple and easy to understand 

Clk 

lw sw Waste 

Cycle 1 Cycle 2 
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Multicycle Datapath Approach 

 Let an instruction take more than 1 clock cycle to 

complete 

 Break up instructions into steps where each step takes a cycle 

while trying to 

- balance the amount of work to be done in each step 

- restrict each cycle to use only one major functional unit 

 Not every instruction takes the same number of clock cycles 

 

 In addition to faster clock rates, multicycle allows 

functional units that can be used more than once per 

instruction as long as they are used on different clock 

cycles, as a result 

 only need one memory – but only one memory access per cycle 

 need only one ALU/adder – but only one ALU operation per 

cycle 
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 At the end of a cycle 
 Store values needed in a later cycle by the current instruction in an internal 

register (not visible to the programmer). All (except IR) hold data only 

between a pair of adjacent clock cycles (no write control signal needed) 

 
 

 

 

 

 

 

 

 

 

 

 

 

IR – Instruction Register  MDR – Memory Data Register 

A, B – regfile read data registers ALUout – ALU output register 

Multicycle Datapath Approach, con’t 

 

Address 

Read Data 

(Instr. or Data) 

Memory 

P
C

 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 
 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 
 

Write Data 

IR
 

M
D

R
 

A
 

B
 

A
L

U
o

u
t 

 Data used by subsequent instructions are stored in programmer visible 

registers (i.e., register file, PC, or memory) 
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The Multicycle Datapath with Control Signals 

 

Address 

Read Data 

(Instr. or Data) 

Memory 

P
C

 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

ALU 
 

Write Data 

IR
 

M
D

R
 

A
 

B
 A

L
U

o
u

t 

Sign 

Extend 

Shift 

left 2 ALU 

control 

Shift 

left 2 

ALUOp 
Control 

IRWrite 
MemtoReg 

MemWrite 
MemRead 

IorD 

PCWrite 

PCWriteCond 

RegDst 
RegWrite 

ALUSrcA 
ALUSrcB 

zero 

PCSource 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

2 

2 

3 

4 

Instr[5-0] 

Instr[25-0] 

PC[31-28] 

Instr[15-0] 

In
s
tr[3

1
-2

6
] 

32 

28 
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 Multicycle datapath control signals are not determined 

solely by the bits in the instruction 

 e.g., op code bits tell what operation the ALU should be doing, 

but not what instruction cycle is to be done next 

 Must use a finite state machine (FSM) for control 

 a set of states (current state stored in State Register) 

 next state function  (determined                                                           

by current state and the input) 

 output function (determined by                                                       

current state and the input) 

Multicycle Control Unit 

Combinational 

control logic 

State Reg 
Inst 

Opcode 

Datapath 

control 

points 

Next State 

. . . 
. . . 

. . . 
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The Five Steps of the Load Instruction 

 IFetch: Instruction Fetch and Update PC 

 Dec: Instruction Decode, Register Read, Sign 
Extend Offset 

 Exec: Execute R-type; Calculate Memory Address; 
Branch Comparison; Branch and Jump Completion 

 Mem: Memory Read; Memory Write Completion; R-
type Completion (RegFile write) 

 WB:  Memory Read Completion (RegFile write) 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

IFetch Dec Exec Mem WB lw 

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES! 
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Multicycle Advantages & Disadvantages 

 Uses the clock cycle efficiently – the clock cycle is 
timed to accommodate the slowest instruction step 

 

 

 

 

 Multicycle implementations allow functional units to be 
used more than once per instruction as long as they 
are used on different clock cycles 

but 

 Requires additional internal state registers, more 
muxes, and more complicated (FSM) control 

Clk 

Cycle 1 

IFetch Dec Exec Mem WB 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

IFetch Dec Exec Mem 

lw sw 

IFetch 

R-type 
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Single Cycle vs. Multiple Cycle Timing 

Clk Cycle 1 

Multiple Cycle Implementation: 

IFetch Dec Exec Mem WB 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

IFetch Dec Exec Mem 

lw sw 

IFetch 

R-type 

Clk 

Single Cycle Implementation: 

lw sw Waste 

Cycle 1 Cycle 2 

multicycle clock 

slower than 1/5th of 

single cycle clock 

due to state register  

overhead 
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How Can We Make It Even Faster? 

 Split the multiple instruction cycle into smaller and 

smaller steps 

 There is a point of diminishing returns where as much time is 

spent loading the state registers as doing the work 

 Start fetching and executing the next instruction before 

the current one has completed 

 Pipelining – modern processors are pipelined for performance 

 Remember the performance equation:                                              

     CPU time = CPI * CC * IC 

 Fetch (and execute) more than one instruction at a time 

 Superscalar processing – stay tuned 
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A Pipelined MIPS Processor 

 Start the next instruction before the current one has 
completed 

 improves throughput - total amount of work done in a given time 

 instruction latency (execution time, delay time, response time - 
time from the start of an instruction to its completion) is not 
reduced 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 

IFetch Dec Exec Mem WB lw 

Cycle 7 Cycle 6 Cycle 8 

sw IFetch Dec Exec Mem WB 

R-type IFetch Dec Exec Mem WB 

- clock cycle (pipeline stage time) is limited by the slowest stage 

- for some instructions, some stages are wasted cycles 
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Single Cycle, Multiple Cycle, vs. Pipeline 

Multiple Cycle Implementation: 

Clk 

Cycle 1 

IFetch Dec Exec Mem WB 

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 

IFetch Dec Exec Mem 

lw sw 

IFetch 

R-type 

lw IFetch Dec Exec Mem WB 

Pipeline Implementation: 

IFetch Dec Exec Mem WB sw 

IFetch Dec Exec Mem WB R-type 

Clk 

Single Cycle Implementation: 

lw sw Waste 

Cycle 1 Cycle 2 
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MIPS Pipeline Datapath Modifications 
 What do we need to add/modify in our MIPS datapath? 

 State registers between each pipeline stage to isolate them 

Read 

Address 

Instruction 

Memory 

Add 

P
C

 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

16 32 

ALU 

Shift 

left 2 
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Data 

Memory 

Address 

Write Data 

Read 

Data IF
e
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h

/D
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D
e
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x

e
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e
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M
e

m
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B
 

IF:IFetch ID:Dec EX:Execute MEM: 

MemAccess 

WB: 

WriteBack 

System Clock 

Sign 

Extend 
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Pipelining the MIPS ISA 

 What makes it easy 
 all instructions are the same length (32 bits) 

- can fetch in the 1st stage and decode in the 2nd stage 

 few instruction formats (three) with symmetry across formats 

- can begin reading register file in 2nd stage 

 memory operations can occur only in loads and stores 

- can use the execute stage to calculate memory addresses 

 each MIPS instruction writes at most one result (i.e., 

changes the machine state) and does so near the end of the 

pipeline (MEM and WB) 

 What makes it hard 
 structural hazards:   what if we had only one memory? 

 control hazards:  what about branches? 

 data hazards:  what if an instruction’s input operands depend 

on the output of a previous instruction? 
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Graphically Representing MIPS Pipeline 

 
 
 
 
 
 
 

 Can help with answering questions like: 

 How many cycles does it take to execute this code? 

 What is the ALU doing during cycle 4? 

 Is there a hazard, why does it occur, and how can it be fixed? 
A

L
U

 

IM Reg DM Reg 
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Why Pipeline? For Performance! 
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r 

Time (clock cycles) 

Inst 0 

Inst 1 

Inst 2 

Inst 4 

Inst 3 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

Once the 

pipeline is full, 

one instruction 

is completed 

every cycle, so 

CPI = 1 

Time to fill the pipeline 
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Can Pipelining Get Us Into Trouble? 

 Yes:  Pipeline Hazards 

 structural hazards: attempt to use the same resource by two 

different instructions at the same time 

 data hazards: attempt to use data before it is ready 

- An instruction’s source operand(s) are produced by a prior 

instruction still in the pipeline 

 control hazards: attempt to make a decision about program 

control flow before the condition has been evaluated and the 

new PC target address calculated 

- branch instructions 

 Can always resolve hazards by waiting 

 pipeline control must detect the hazard 

 and take action to resolve hazards 
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Time (clock cycles) 

lw 

Inst 1 

Inst 2 

Inst 4 

Inst 3 

A
L

U
 

Mem Reg Mem Reg 

A
L

U
 

Mem Reg Mem Reg 

A
L

U
 

Mem Reg Mem Reg 

A
L

U
 

Mem Reg Mem Reg 

A
L

U
 

Mem Reg Mem Reg 

A Single Memory Would Be a Structural Hazard 

Reading data from 

memory 

Reading instruction 

from memory 

 Fix with separate instr and data memories (I$ and D$) 
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How About Register File Access? 

I 

n 
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r. 
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Time (clock cycles) 

Inst 1 

Inst 2 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

Fix register file 

access hazard by 

doing reads in the 

second half of the 

cycle and writes in 

the first half 

add $1, 

add $2,$1, 

clock edge that controls 

register writing 

clock edge that controls 

loading of pipeline state 

registers 
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Register Usage Can Cause Data Hazards 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

 Dependencies backward in time cause hazards 

add $1, 

sub $4,$1,$5 

and $6,$1,$7 

xor $4,$1,$5 

or  $8,$1,$9 

 Read before write data hazard 
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Loads Can Cause Data Hazards 

I 

n 
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t 

r. 
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e 

r 

lw  $1,4($2) 

sub $4,$1,$5 

and $6,$1,$7 

xor $4,$1,$5 

or  $8,$1,$9 
A

L
U

 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L
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IM Reg DM Reg 

 Dependencies backward in time cause hazards 

 Load-use data hazard 
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stall 

stall 

One Way to “Fix” a Data Hazard 

I 

n 

s 

t 

r. 
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add $1, 

A
L

U
 

IM Reg DM Reg 

sub $4,$1,$5 

and $6,$1,$7 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

Can fix data 

hazard by 

waiting – stall – 

but impacts CPI 
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Another Way to “Fix” a Data Hazard 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

Fix data hazards 

by forwarding 

results as soon as 

they are available 

to where they are 

needed 
A

L
U

 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

I 
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add $1, 

sub $4,$1,$5 

and $6,$1,$7 

xor $4,$1,$5 

or  $8,$1,$9 



CS423  L02 Performance.61 Spring, 2012 

Forwarding with Load-use Data Hazards 

A
L
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IM Reg DM Reg 

A
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IM Reg DM Reg 

A
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IM Reg DM Reg 

A
L
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IM Reg DM Reg 

A
L
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IM Reg DM Reg 

 Will still need one stall cycle even with forwarding 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

lw  $1,4($2) 

sub $4,$1,$5 

and $6,$1,$7 

xor $4,$1,$5 

or  $8,$1,$9 
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Branch Instructions Cause Control Hazards 
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lw 

Inst 4 

Inst 3 

beq 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

 Dependencies backward in time cause hazards 
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stall 

stall 

stall 

One Way to “Fix” a Control Hazard 

I 
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beq 

A
L

U
 

IM Reg DM Reg 

lw 

A
L

U
 

IM Reg DM Reg 

A
L

U
  Inst 3 

IM Reg DM 

Fix branch 

hazard by 

waiting – 

stall – but 

affects CPI 
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Corrected Datapath to Save RegWrite Addr 
 Need to preserve the destination register address in 

the pipeline state registers 

Read 

Address 

Instruction 

Memory 

Add 

P
C

 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

16 32 

ALU 

Shift 

left 2 

Add 

Data 

Memory 

Address 

Write Data 

Read 

Data 

IF/ID 

Sign 

Extend 

ID/EX EX/MEM 

MEM/WB 
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MIPS Pipeline Control Path Modifications 
 All control signals can be determined during Decode 

 and held in the state registers between pipeline stages 

Read 

Address 

Instruction 

Memory 

Add 

P
C

 

4 

Write Data 

Read Addr 1 

Read Addr 2 

Write Addr 

Register 

 

File 

Read 

 Data 1 

Read 

 Data 2 

16 32 

ALU 

Shift 

left 2 

Add 

Data 

Memory 

Address 

Write Data 

Read 

Data 

IF/ID 

Sign 

Extend 

ID/EX 

EX/MEM 

MEM/WB 

Control 
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Other Pipeline Structures Are Possible 

 What about the (slow) multiply operation? 

 Make the clock twice as slow or … 

 let it take two cycles (since it doesn’t use the DM stage) 

 

A
L

U
 

IM Reg DM Reg 

MUL 

A
L

U
 

IM Reg DM1 Reg DM2 

 What if the data memory access is twice as slow as 
the instruction memory? 

 make the clock twice as slow or … 

 let data memory access take two cycles (and keep the same 
clock rate) 
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Sample Pipeline Alternatives 

 ARM7 

 

 

 

 

 StrongARM-1 

 

 

 XScale 

A
L

U
 

IM1 IM2 DM1 Reg 

DM2 

IM Reg EX 

PC update 

IM access 

decode 

reg 

   access 

ALU op 

DM access 

shift/rotate 

commit result 

   (write back) 

A
L

U
 

IM Reg DM Reg 

Reg SHFT 

PC update 

BTB access 

start IM access 

IM access 

decode 

reg 1 access 

shift/rotate 

reg 2 access 

ALU op 

start DM access 

exception 

DM write 

reg write 
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Summary 

 All modern day processors use pipelining 

 Pipelining doesn’t help latency of single task, it helps 

throughput of entire workload 

 Potential speedup:  a CPI of 1 and fast a CC 

 Pipeline rate limited by slowest pipeline stage 

 Unbalanced pipe stages makes for inefficiencies 

 The time to “fill” pipeline and time to “drain” it can impact 

speedup for deep pipelines and short code runs 

 Must detect and resolve hazards 

 Stalling negatively affects CPI (makes CPI less than the ideal 

of 1) 


