
CS423 L02 Performance.1 Spring, 2012

CS 423
 Computer Architecture

Spring 2012

Lecture 02:
Performance,

MIPS Datapath, MIPS Pipeline
Ozcan Ozturk

http://www.cs.bilkent.edu.tr/~ozturk/cs423/

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2005, UCB]

CS423 L02 Performance.2 Spring, 2012

Performance Metrics

 Purchasing perspective
 given a collection of machines, which has the

- best performance ?

- least cost ?

- best cost/performance?

 Design perspective

 faced with design options, which has the
- best performance improvement ?

- least cost ?

- best cost/performance?

 Both require
 basis for comparison

 metric for evaluation

 Our goal is to understand what factors in the architecture

contribute to overall system performance and the relative

importance (and cost) of these factors

CS423 L02 Performance.3 Spring, 2012

Defining (Speed) Performance

 Normally interested in reducing

 Response time (aka execution time) – the time between the start
and the completion of a task

- Important to individual users

 Thus, to maximize performance, need to minimize execution time

 Throughput – the total amount of work done in a given time

- Important to data center managers

 Decreasing response time almost always improves throughput

performanceX = 1 / execution_timeX

If X is n times faster than Y, then

performanceX execution_timeY
 -------------------- = --------------------- = n

performanceY execution_timeX

CS423 L02 Performance.4 Spring, 2012

Performance Factors

 Want to distinguish elapsed time and the time spent on
our task

 CPU execution time (CPU time) – time the CPU spends
working on a task

 Does not include time waiting for I/O or running other programs

CPU execution time # CPU clock cycles

 for a program for a program
 = x clock cycle time

CPU execution time # CPU clock cycles for a program

 for a program clock rate
 = ---

 Can improve performance by reducing either the length
of the clock cycle or the number of clock cycles required
for a program

 or

CS423 L02 Performance.5 Spring, 2012

Review: Machine Clock Rate

 Clock rate (MHz, GHz) is inverse of clock cycle time
(clock period)

CC = 1 / CR

one clock period

 10 nsec clock cycle => 100 MHz clock rate

 5 nsec clock cycle => 200 MHz clock rate

 2 nsec clock cycle => 500 MHz clock rate

 1 nsec clock cycle => 1 GHz clock rate

500 psec clock cycle => 2 GHz clock rate

250 psec clock cycle => 4 GHz clock rate

200 psec clock cycle => 5 GHz clock rate

CS423 L02 Performance.6 Spring, 2012

Clock Cycles per Instruction

 Not all instructions take the same amount of time to
execute

 One way to think about execution time is that it equals the
number of instructions executed multiplied by the average time
per instruction

 Clock cycles per instruction (CPI) – the average number
of clock cycles each instruction takes to execute

 A way to compare two different implementations of the same ISA

CPU clock cycles # Instructions Average clock cycles

 for a program for a program per instruction
 = x

CPI for this instruction class

A B C

CPI 1 2 3

CS423 L02 Performance.7 Spring, 2012

Effective CPI

 Computing the overall effective CPI is done by looking at
the different types of instructions and their individual
cycle counts and averaging

Overall effective CPI = (CPIi x ICi)
i = 1

n

 Where ICi is the count (percentage) of the number of instructions
of class i executed

 CPIi is the (average) number of clock cycles per instruction for
that instruction class

 n is the number of instruction classes

 The overall effective CPI varies by instruction mix – a
measure of the dynamic frequency of instructions across
one or many programs

CS423 L02 Performance.8 Spring, 2012

THE Performance Equation

 Our basic performance equation is then

 CPU time = Instruction_count x CPI x clock_cycle

 Instruction_count x CPI

 clock_rate
 CPU time = ---

 or

 These equations separate the three key factors that
affect performance

 Can measure the CPU execution time by running the program

 The clock rate is usually given

 Can measure overall instruction count by using profilers/
simulators without knowing all of the implementation details

 CPI varies by instruction type and ISA implementation for which
we must know the implementation details

CS423 L02 Performance.10 Spring, 2012

Determinates of CPU Performance

 CPU time = Instruction_count x CPI x clock_cycle

Instruction_
count

CPI clock_cycle

Algorithm

Programming
language

Compiler

ISA

Processor
organization

Technology
X

X X

X X

X X

X

X

X

X

X

CS423 L02 Performance.12 Spring, 2012

A Simple Example

 How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?

 How does this compare with using branch prediction to shave
a cycle off the branch time?

 What if two ALU instructions could be executed at once?

Op Freq CPIi Freq x CPIi

ALU 50% 1

Load 20% 5

Store 10% 3

Branch 20% 2

 =

.5

1.0

.3

.4

2.2

CPU time new = 1.6 x IC x CC so 2.2/1.6 means 37.5% faster

1.6

.5

 .4

.3

.4

.5

1.0

.3

.2

2.0

CPU time new = 2.0 x IC x CC so 2.2/2.0 means 10% faster

.25

1.0

.3

.4

1.95

CPU time new = 1.95 x IC x CC so 2.2/1.95 means 12.8% faster

CS423 L02 Performance.13 Spring, 2012

SPEC Benchmarks www.spec.org

Integer benchmarks FP benchmarks

gzip compression wupwise Quantum chromodynamics

vpr FPGA place & route swim Shallow water model

gcc GNU C compiler mgrid Multigrid solver in 3D fields

mcf Combinatorial optimization applu Parabolic/elliptic pde

crafty Chess program mesa 3D graphics library

parser Word processing program galgel Computational fluid dynamics

eon Computer visualization art Image recognition (NN)

perlbmk perl application equake Seismic wave propagation
simulation

gap Group theory interpreter facerec Facial image recognition

vortex Object oriented database ammp Computational chemistry

bzip2 compression lucas Primality testing

twolf Circuit place & route fma3d Crash simulation fem

sixtrack Nuclear physics accel

apsi Pollutant distribution

http://www.spec.org/

CS423 L02 Performance.14 Spring, 2012

Example SPEC Ratings

CS423 L02 Performance.15 Spring, 2012

Other Performance Metrics

 Power consumption – especially in the embedded market
where battery life is important (and passive cooling)

 For power-limited applications, the most important metric is
energy efficiency

CS423 L02 Performance.16 Spring, 2012

MIPS Basic Architecture

CS423 L02 Performance.17 Spring, 2012

 Our implementation of the MIPS is simplified

 memory-reference instructions: lw, sw

 arithmetic-logical instructions: add, sub, and, or, slt

 control flow instructions: beq, j

 Generic implementation

 use the program counter (PC) to supply
the instruction address and fetch the
instruction from memory (and update the PC)

 decode the instruction (and read registers)

 execute the instruction

 All instructions (except j) use the ALU after reading the
registers

How? memory-reference? arithmetic? control flow?

The Processor: Datapath & Control

Fetch

PC = PC+4

Decode Exec

CS423 L02 Performance.18 Spring, 2012

Clocking Methodologies

 The clocking methodology defines when signals can be
read and when they are written

 An edge-triggered methodology

 Typical execution

 read contents of state elements

 send values through combinational logic

 write results to one or more state elements

State

element

1

State

element

2

Combinational

logic

clock

one clock cycle

 Assumes state elements are written on every clock
cycle; if not, need explicit write control signal

 write occurs only when both the write control is asserted and the
clock edge occurs

CS423 L02 Performance.19 Spring, 2012

Fetching Instructions

 Fetching instructions involves

 reading the instruction from the Instruction Memory

 updating the PC to hold the address of the next instruction

Read

Address
Instruction

Instruction

Memory

Add

PC

4

 PC is updated every cycle, so it does not need an explicit

write control signal

 Instruction Memory is read every cycle, so it doesn’t need an

explicit read control signal

CS423 L02 Performance.20 Spring, 2012

Decoding Instructions

 Decoding instructions involves

 sending the fetched instruction’s opcode and function field

bits to the control unit

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

Control

Unit

 reading two values from the Register File

- Register File addresses are contained in the instruction

CS423 L02 Performance.21 Spring, 2012

Executing R Format Operations
 R format operations (add, sub, slt, and, or)

 perform the (op and funct) operation on values in rs and rt

 store the result back into the Register File (into location rd)

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

overflow

zero

ALU control RegWrite

R-type:

31 25 20 15 5 0

op rs rt rd funct shamt

10

 The Register File is not written every cycle (e.g. sw), so we need

an explicit write control signal for the Register File

CS423 L02 Performance.22 Spring, 2012

Executing Load and Store Operations
 Load and store operations involves

 compute memory address by adding the base register (read from

the Register File during decode) to the 16-bit signed-extended

offset field in the instruction

 store value (read from the Register File during decode) written to

the Data Memory

 load value, read from the Data Memory, written to the Register

File

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

overflow

zero

ALU control RegWrite

Data

Memory

Address

Write Data

Read Data

Sign

Extend

MemWrite

MemRead

16 32

CS423 L02 Performance.23 Spring, 2012

Executing Branch Operations
 Branch operations involves

 compare the operands read from the Register File during decode
for equality (zero ALU output)

 compute the branch target address by adding the updated PC to

 the 16-bit signed-extended offset field in the instr

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

zero

ALU control

Sign

Extend 16 32

Shift

left 2

Add

4
Add

PC

Branch

target

address

(to branch

control logic)

CS423 L02 Performance.24 Spring, 2012

Executing Jump Operations

 Jump operation involves

 replace the lower 28 bits of the PC with the lower 26 bits of the

fetched instruction shifted left by 2 bits

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Shift

left 2

Jump

address

26

4

28

CS423 L02 Performance.25 Spring, 2012

Creating a Single Datapath from the Parts

 Assemble the datapath segments and add control lines

and multiplexors as needed

 Single cycle design – fetch, decode and execute each

instructions in one clock cycle

 no datapath resource can be used more than once per

instruction, so some must be duplicated (e.g., separate

Instruction Memory and Data Memory, several adders)

 multiplexors needed at the input of shared elements with

control lines to do the selection

 write signals to control writing to the Register File and Data

Memory

 Cycle time is determined by length of the longest path

CS423 L02 Performance.26 Spring, 2012

Fetch, R, and Memory Access Portions

MemtoReg

Read

Address
Instruction

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

ALU control RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead
Sign

Extend 16 32

ALUSrc

CS423 L02 Performance.27 Spring, 2012

Adding the Control
 Selecting the operations to perform (ALU, Register File

and Memory read/write)

 Controlling the flow of data (multiplexor inputs)

I-Type: op rs rt address offset

31 25 20 15 0

R-type:

31 25 20 15 5 0

op rs rt rd funct shamt

10

 Observations

 op field always

in bits 31-26

 addr of registers

to be read are

always specified by the

rs field (bits 25-21) and rt field (bits 20-16); for lw and sw rs is the base

register

 addr. of register to be written is in one of two places – in rt (bits 20-16)

for lw; in rd (bits 15-11) for R-type instructions

 offset for beq, lw, and sw always in bits 15-0

J-type:

31 25 0

op target address

CS423 L02 Performance.28 Spring, 2012

Single Cycle Datapath with Control Unit

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

CS423 L02 Performance.29 Spring, 2012

R-type Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

CS423 L02 Performance.30 Spring, 2012

Load Word Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

CS423 L02 Performance.31 Spring, 2012

Load Word Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

CS423 L02 Performance.32 Spring, 2012

Branch Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

CS423 L02 Performance.33 Spring, 2012

Branch Instruction Data/Control Flow

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

CS423 L02 Performance.34 Spring, 2012

Adding the Jump Operation

Read

Address
Instr[31-0]

Instruction

Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

ovf

zero

RegWrite

Data

Memory

Address

Write Data

Read Data

MemWrite

MemRead

Sign

Extend 16 32

MemtoReg

ALUSrc

Shift

left 2

Add

PCSrc

RegDst

ALU

control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15

-11]

Control

Unit
Instr[31-26]

Branch

Shift

left 2

0

1

Jump

32

Instr[25-0]

26
PC+4[31-28]

28

CS423 L02 Performance.35 Spring, 2012

Single Cycle Disadvantages & Advantages

 Uses the clock cycle inefficiently – the clock cycle must

be timed to accommodate the slowest instruction

 especially problematic for more complex instructions like

floating point multiply

 May be wasteful of area since some functional units

(e.g., adders) must be duplicated since they can not be

shared during a clock cycle

but

 Is simple and easy to understand

Clk

lw sw Waste

Cycle 1 Cycle 2

CS423 L02 Performance.36 Spring, 2012

Multicycle Datapath Approach

 Let an instruction take more than 1 clock cycle to

complete

 Break up instructions into steps where each step takes a cycle

while trying to

- balance the amount of work to be done in each step

- restrict each cycle to use only one major functional unit

 Not every instruction takes the same number of clock cycles

 In addition to faster clock rates, multicycle allows

functional units that can be used more than once per

instruction as long as they are used on different clock

cycles, as a result

 only need one memory – but only one memory access per cycle

 need only one ALU/adder – but only one ALU operation per

cycle

CS423 L02 Performance.37 Spring, 2012

 At the end of a cycle
 Store values needed in a later cycle by the current instruction in an internal

register (not visible to the programmer). All (except IR) hold data only

between a pair of adjacent clock cycles (no write control signal needed)

IR – Instruction Register MDR – Memory Data Register

A, B – regfile read data registers ALUout – ALU output register

Multicycle Datapath Approach, con’t

Address

Read Data

(Instr. or Data)

Memory

P
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

Write Data

IR

M
D

R

A

B

A
L

U
o

u
t

 Data used by subsequent instructions are stored in programmer visible

registers (i.e., register file, PC, or memory)

CS423 L02 Performance.38 Spring, 2012

The Multicycle Datapath with Control Signals

Address

Read Data

(Instr. or Data)

Memory

P
C

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

ALU

Write Data

IR

M
D

R

A

B
 A

L
U

o
u

t

Sign

Extend

Shift

left 2 ALU

control

Shift

left 2

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite

PCWriteCond

RegDst
RegWrite

ALUSrcA
ALUSrcB

zero

PCSource

1

1

1

1

1

1

0

0

0

0

0

0

2

2

3

4

Instr[5-0]

Instr[25-0]

PC[31-28]

Instr[15-0]

In
s
tr[3

1
-2

6
]

32

28

CS423 L02 Performance.39 Spring, 2012

 Multicycle datapath control signals are not determined

solely by the bits in the instruction

 e.g., op code bits tell what operation the ALU should be doing,

but not what instruction cycle is to be done next

 Must use a finite state machine (FSM) for control

 a set of states (current state stored in State Register)

 next state function (determined

by current state and the input)

 output function (determined by

current state and the input)

Multicycle Control Unit

Combinational

control logic

State Reg
Inst

Opcode

Datapath

control

points

Next State

. . .
. . .

. . .

CS423 L02 Performance.40 Spring, 2012

The Five Steps of the Load Instruction

 IFetch: Instruction Fetch and Update PC

 Dec: Instruction Decode, Register Read, Sign
Extend Offset

 Exec: Execute R-type; Calculate Memory Address;
Branch Comparison; Branch and Jump Completion

 Mem: Memory Read; Memory Write Completion; R-
type Completion (RegFile write)

 WB: Memory Read Completion (RegFile write)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WB lw

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

CS423 L02 Performance.41 Spring, 2012

Multicycle Advantages & Disadvantages

 Uses the clock cycle efficiently – the clock cycle is
timed to accommodate the slowest instruction step

 Multicycle implementations allow functional units to be
used more than once per instruction as long as they
are used on different clock cycles

but

 Requires additional internal state registers, more
muxes, and more complicated (FSM) control

Clk

Cycle 1

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

CS423 L02 Performance.42 Spring, 2012

Single Cycle vs. Multiple Cycle Timing

Clk Cycle 1

Multiple Cycle Implementation:

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

multicycle clock

slower than 1/5th of

single cycle clock

due to state register

overhead

CS423 L02 Performance.43 Spring, 2012

How Can We Make It Even Faster?

 Split the multiple instruction cycle into smaller and

smaller steps

 There is a point of diminishing returns where as much time is

spent loading the state registers as doing the work

 Start fetching and executing the next instruction before

the current one has completed

 Pipelining – modern processors are pipelined for performance

 Remember the performance equation:

 CPU time = CPI * CC * IC

 Fetch (and execute) more than one instruction at a time

 Superscalar processing – stay tuned

CS423 L02 Performance.44 Spring, 2012

A Pipelined MIPS Processor

 Start the next instruction before the current one has
completed

 improves throughput - total amount of work done in a given time

 instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WB lw

Cycle 7 Cycle 6 Cycle 8

sw IFetch Dec Exec Mem WB

R-type IFetch Dec Exec Mem WB

- clock cycle (pipeline stage time) is limited by the slowest stage

- for some instructions, some stages are wasted cycles

CS423 L02 Performance.45 Spring, 2012

Single Cycle, Multiple Cycle, vs. Pipeline

Multiple Cycle Implementation:

Clk

Cycle 1

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

lw IFetch Dec Exec Mem WB

Pipeline Implementation:

IFetch Dec Exec Mem WB sw

IFetch Dec Exec Mem WB R-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

CS423 L02 Performance.46 Spring, 2012

MIPS Pipeline Datapath Modifications
 What do we need to add/modify in our MIPS datapath?

 State registers between each pipeline stage to isolate them

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data IF
e

tc
h

/D
e

c

D
e
c

/E
x

e
c

E
x

e
c

/M
e
m

M
e

m
/W

B

IF:IFetch ID:Dec EX:Execute MEM:

MemAccess

WB:

WriteBack

System Clock

Sign

Extend

CS423 L02 Performance.47 Spring, 2012

Pipelining the MIPS ISA

 What makes it easy
 all instructions are the same length (32 bits)

- can fetch in the 1st stage and decode in the 2nd stage

 few instruction formats (three) with symmetry across formats

- can begin reading register file in 2nd stage

 memory operations can occur only in loads and stores

- can use the execute stage to calculate memory addresses

 each MIPS instruction writes at most one result (i.e.,

changes the machine state) and does so near the end of the

pipeline (MEM and WB)

 What makes it hard
 structural hazards: what if we had only one memory?

 control hazards: what about branches?

 data hazards: what if an instruction’s input operands depend

on the output of a previous instruction?

CS423 L02 Performance.48 Spring, 2012

Graphically Representing MIPS Pipeline

 Can help with answering questions like:

 How many cycles does it take to execute this code?

 What is the ALU doing during cycle 4?

 Is there a hazard, why does it occur, and how can it be fixed?
A

L
U

IM Reg DM Reg

CS423 L02 Performance.49 Spring, 2012

Why Pipeline? For Performance!

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Once the

pipeline is full,

one instruction

is completed

every cycle, so

CPI = 1

Time to fill the pipeline

CS423 L02 Performance.50 Spring, 2012

Can Pipelining Get Us Into Trouble?

 Yes: Pipeline Hazards

 structural hazards: attempt to use the same resource by two

different instructions at the same time

 data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior

instruction still in the pipeline

 control hazards: attempt to make a decision about program

control flow before the condition has been evaluated and the

new PC target address calculated

- branch instructions

 Can always resolve hazards by waiting

 pipeline control must detect the hazard

 and take action to resolve hazards

CS423 L02 Performance.51 Spring, 2012

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from

memory

Reading instruction

from memory

 Fix with separate instr and data memories (I$ and D$)

CS423 L02 Performance.53 Spring, 2012

How About Register File Access?

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 1

Inst 2

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Fix register file

access hazard by

doing reads in the

second half of the

cycle and writes in

the first half

add $1,

add $2,$1,

clock edge that controls

register writing

clock edge that controls

loading of pipeline state

registers

CS423 L02 Performance.55 Spring, 2012

Register Usage Can Cause Data Hazards

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

 Read before write data hazard

CS423 L02 Performance.56 Spring, 2012

Loads Can Cause Data Hazards

I

n

s

t

r.

O

r

d

e

r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

 Load-use data hazard

CS423 L02 Performance.57 Spring, 2012

stall

stall

One Way to “Fix” a Data Hazard

I

n

s

t

r.

O

r

d

e

r

add $1,

A
L

U

IM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Can fix data

hazard by

waiting – stall –

but impacts CPI

CS423 L02 Performance.59 Spring, 2012

Another Way to “Fix” a Data Hazard

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Fix data hazards

by forwarding

results as soon as

they are available

to where they are

needed
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

I

n

s

t

r.

O

r

d

e

r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

CS423 L02 Performance.61 Spring, 2012

Forwarding with Load-use Data Hazards

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Will still need one stall cycle even with forwarding

I

n

s

t

r.

O

r

d

e

r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

CS423 L02 Performance.62 Spring, 2012

Branch Instructions Cause Control Hazards

I

n

s

t

r.

O

r

d

e

r

lw

Inst 4

Inst 3

beq

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

CS423 L02 Performance.63 Spring, 2012

stall

stall

stall

One Way to “Fix” a Control Hazard

I

n

s

t

r.

O

r

d

e

r

beq

A
L

U

IM Reg DM Reg

lw

A
L

U

IM Reg DM Reg

A
L

U
 Inst 3

IM Reg DM

Fix branch

hazard by

waiting –

stall – but

affects CPI

CS423 L02 Performance.65 Spring, 2012

Corrected Datapath to Save RegWrite Addr
 Need to preserve the destination register address in

the pipeline state registers

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX EX/MEM

MEM/WB

CS423 L02 Performance.66 Spring, 2012

MIPS Pipeline Control Path Modifications
 All control signals can be determined during Decode

 and held in the state registers between pipeline stages

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

CS423 L02 Performance.67 Spring, 2012

Other Pipeline Structures Are Possible

 What about the (slow) multiply operation?

 Make the clock twice as slow or …

 let it take two cycles (since it doesn’t use the DM stage)

A
L

U

IM Reg DM Reg

MUL

A
L

U

IM Reg DM1 Reg DM2

 What if the data memory access is twice as slow as
the instruction memory?

 make the clock twice as slow or …

 let data memory access take two cycles (and keep the same
clock rate)

CS423 L02 Performance.68 Spring, 2012

Sample Pipeline Alternatives

 ARM7

 StrongARM-1

 XScale

A
L

U

IM1 IM2 DM1 Reg

DM2

IM Reg EX

PC update

IM access

decode

reg

 access

ALU op

DM access

shift/rotate

commit result

 (write back)

A
L

U

IM Reg DM Reg

Reg SHFT

PC update

BTB access

start IM access

IM access

decode

reg 1 access

shift/rotate

reg 2 access

ALU op

start DM access

exception

DM write

reg write

CS423 L02 Performance.69 Spring, 2012

Summary

 All modern day processors use pipelining

 Pipelining doesn’t help latency of single task, it helps

throughput of entire workload

 Potential speedup: a CPI of 1 and fast a CC

 Pipeline rate limited by slowest pipeline stage

 Unbalanced pipe stages makes for inefficiencies

 The time to “fill” pipeline and time to “drain” it can impact

speedup for deep pipelines and short code runs

 Must detect and resolve hazards

 Stalling negatively affects CPI (makes CPI less than the ideal

of 1)

