
CS423 L03 Pipelining.1 Spring, 2012

CS 423
 Computer Architecture

Fall 2009

Lecture 03:
Pipelining Continued

Ozcan Ozturk

http://www.cs.bilkent.edu.tr/~ozturk/cs423/

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2005, UCB]

CS423 L03 Pipelining.2 Spring, 2012

Review: MIPS Pipeline Data and Control Paths

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

RegWrite

MemWrite MemRead

MemtoReg

RegDst

ALUOp

ALUSrc

Branch

PCSrc

CS423 L03 Pipelining.3 Spring, 2012

Control Settings

EX Stage MEM Stage WB Stage

Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src

Brch Mem
Read

Mem
Write

Reg
Write

Mem
toReg

R 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

CS423 L03 Pipelining.4 Spring, 2012

stall

stall

Review: One Way to “Fix” a Data Hazard

I

n

s

t

r.

O

r

d

e

r

add $1,

A
L

U

IM Reg DM Reg

sub $4,$1,$5

and $6,$7,$1

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Fix data hazard

by waiting –

stall – but

impacts CPI

CS423 L03 Pipelining.5 Spring, 2012

Review: Another Way to “Fix” a Data Hazard

I

n

s

t

r.

O

r

d

e

r

add $1,

A
L

U

IM Reg DM Reg

sub $4,$1,$5

and $6,$7,$1

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Fix data hazards

by forwarding

results as soon as

they are available

to where they are

needed

sw $4,4($1)

or $8,$1,$1

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

CS423 L03 Pipelining.6 Spring, 2012

Data Forwarding (aka Bypassing)

 Take the result from the earliest point that it exists in any

of the pipeline state registers and forward it to the

functional units (e.g., the ALU) that need it that cycle

 For ALU functional unit: the inputs can come from any

pipeline register rather than just from ID/EX by

 adding multiplexors to the inputs of the ALU

 connecting the Rd write data in EX/MEM or MEM/WB to either (or

both) of the EX’s stage Rs and Rt ALU mux inputs

 adding the proper control hardware to control the new muxes

 Other functional units may need similar forwarding logic

(e.g., the DM)

 With forwarding can achieve a CPI of 1 even in the

presence of data dependencies

CS423 L03 Pipelining.7 Spring, 2012

Data Forwarding Control Conditions

1. EX/MEM hazard:
if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 10

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 10

Forwards the

result from the

previous instr.

to either input

of the ALU

Forwards the

result from the

second

previous instr.

to either input

of the ALU

2. MEM/WB hazard:
if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 01

CS423 L03 Pipelining.8 Spring, 2012

Forwarding Illustration

I

n

s

t

r.

O

r

d

e

r

add $1,

sub $4,$1,$5

and $6,$7,$1

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

EX/MEM hazard

forwarding

MEM/WB hazard

forwarding

CS423 L03 Pipelining.9 Spring, 2012

Yet Another Complication!

I

n

s

t

r.

O

r

d

e

r

add $1,$1,$2

A
L

U

IM Reg DM Reg

add $1,$1,$3

add $1,$1,$4

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Another potential data hazard can occur when there is a

conflict between the result of the WB stage instruction

and the MEM stage instruction – which should be

forwarded?

CS423 L03 Pipelining.10 Spring, 2012

Corrected Data Forwarding Control Conditions

2. MEM/WB hazard:
if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (EX/MEM.RegisterRd != ID/EX.RegisterRs)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd != 0)

and (EX/MEM.RegisterRd != ID/EX.RegisterRt)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 01

CS423 L03 Pipelining.11 Spring, 2012

Datapath with Forwarding Hardware
PCSrc

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

Branch

Forward

Unit

CS423 L03 Pipelining.12 Spring, 2012

Memory-to-Memory Copies

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)
A

L
U

IM Reg DM Reg

sw $1,4($3)

A
L

U

IM Reg DM Reg

 For loads immediately followed by stores (memory-to-

memory copies) can avoid a stall by adding forwarding

hardware from the MEM/WB register to the data memory

input.

 Would need to add a Forward Unit and a mux to the memory

access stage

CS423 L03 Pipelining.13 Spring, 2012

Forwarding with Load-use Data Hazards

I

n

s

t

r.

O

r

d

e

r

lw $1,4($2)

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

A
L

U

IM Reg DM Reg
A

L
U

IM Reg DM

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg sub $4,$1,$5

CS423 L03 Pipelining.14 Spring, 2012

Load-use Hazard Detection Unit

 Need a Hazard detection Unit in the ID stage that inserts

a stall between the load and its use

2. ID Hazard Detection
if (ID/EX.MemRead

and ((ID/EX.RegisterRt = IF/ID.RegisterRs)

or (ID/EX.RegisterRt = IF/ID.RegisterRt)))

stall the pipeline

 The first line tests to see if the instruction now in the EX
stage is a lw; the next two lines check to see if the

destination register of the lw matches either source

register of the instruction in the ID stage (the load-use

instruction)

 After this one cycle stall, the forwarding logic can handle

the remaining data hazards

CS423 L03 Pipelining.15 Spring, 2012

Stall Hardware

 Along with the Hazard Unit, we have to implement the stall

 Prevent the instructions in the IF and ID stages from

progressing down the pipeline – done by preventing the

PC register and the IF/ID pipeline register from changing

 Hazard detection Unit controls the writing of the PC (PC.write)

and IF/ID (IF/ID.write) registers

 Insert a “bubble” between the lw instruction (in the EX

stage) and the load-use instruction (in the ID stage) (i.e.,
insert a noop in the execution stream)

 Set the control bits in the EX, MEM, and WB control fields of the
ID/EX pipeline register to 0 (noop). The Hazard Unit controls the

mux that chooses between the real control values and the 0’s.

 Let the lw instruction and the instructions after it in the

pipeline (before it in the code) proceed normally down the

pipeline

CS423 L03 Pipelining.16 Spring, 2012

Adding the Hazard Hardware

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

Branch

PCSrc

Forward

Unit

Hazard

Unit
0

1

CS423 L03 Pipelining.17 Spring, 2012

Review: Datapath with Data Hazard Control

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

Branch

PCSrc

Forward

Unit

Hazard

Unit
0

1

ID/EX.RegisterRt

0

ID/EX.MemRead

CS423 L03 Pipelining.18 Spring, 2012

Control Hazards

 When the flow of instruction addresses is not sequential
(i.e., PC = PC + 4); incurred by change of flow instructions

 Conditional branches (beq, bne)

 Unconditional branches (j, jal, jr)

 Exceptions

 Possible approaches

 Stall (impacts CPI)

 Move decision point as early in the pipeline as possible, thereby
reducing the number of stall cycles

 Delay decision (requires compiler support)

 Predict and hope for the best !

 Control hazards occur less frequently than data hazards,
but there is nothing as effective against control hazards as
forwarding is for data hazards

CS423 L03 Pipelining.19 Spring, 2012

Datapath Branch and Jump Hardware

ID/EX

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

EX/MEM

MEM/WB

Control

ALU

cntrl

Forward

Unit

CS423 L03 Pipelining.20 Spring, 2012

flush

Jumps Incur One Stall

I

n

s

t

r.

O

r

d

e

r

j

j target

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Fortunately, jumps are very infrequent – only 3% of the
SPECint instruction mix

 Jumps not decoded until ID, so one flush is needed

Fix jump

hazard by

waiting –

stall – but

affects CPI

A
L

U

IM Reg DM Reg

CS423 L03 Pipelining.21 Spring, 2012

Supporting ID Stage Jumps

ID/EX

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

EX/MEM

MEM/WB

Control

ALU

cntrl

Forward

Unit

Branch

PCSrc

Shift

left 2

Add

Shift

left 2

Jump

PC+4[31-28]

0

CS423 L03 Pipelining.22 Spring, 2012

Two “Types” of Stalls

 Noop instruction (or bubble) inserted between two
instructions in the pipeline (as done for load-use
situations)

 Keep the instructions earlier in the pipeline (later in the code)
from progressing down the pipeline for a cycle (“bounce” them in
place with write control signals)

 Insert noop by zeroing control bits in the pipeline register at the
appropriate stage

 Let the instructions later in the pipeline (earlier in the code)
progress normally down the pipeline

 Flushes (or instruction squashing) were an instruction in
the pipeline is replaced with a noop instruction (as done
for instructions located sequentially after j instructions)

 Zero the control bits for the instruction to be flushed

CS423 L03 Pipelining.23 Spring, 2012

flush

flush

flush

Review: Branches Incur Three Stalls

I

n

s

t

r.

O

r

d

e

r

beq

A
L

U

IM Reg DM Reg

beq target

A
L

U

IM Reg DM Reg

Fix branch

hazard by

waiting –

stall – but

affects CPI

CS423 L03 Pipelining.24 Spring, 2012

Moving Branch Decisions Earlier in Pipe

 Move the branch decision hardware back to the EX stage

 Reduces the number of stall (flush) cycles to two

 Adds an and gate and a 2x1 mux to the EX timing path

 Add hardware to compute the branch target address and
evaluate the branch decision to the ID stage

 Reduces the number of stall (flush) cycles to one
(like with jumps)

- But now need to add forwarding hardware in ID stage

 Computing branch target address can be done in parallel with
RegFile read (done for all instructions – only used when needed)

 Comparing the registers can’t be done until after RegFile read, so
comparing and updating the PC adds a mux, a comparator, and an
and gate to the ID timing path

 For deeper pipelines, branch decision points can be even
later in the pipeline, incurring more stalls

CS423 L03 Pipelining.25 Spring, 2012

ID Branch Forwarding Issues

 MEM/WB “forwarding”
is taken care of by the
normal RegFile write
before read operation

WB add3 $1,

MEM add2 $3,

EX add1 $4,

ID beq $1,$2,Loop

IF next_seq_instr

 Need to forward from the

EX/MEM pipeline stage to

the ID comparison

hardware for cases like

WB add3 $3,

MEM add2 $1,

EX add1 $4,

ID beq $1,$2,Loop

IF next_seq_instr
if (IDcontrol.Branch

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = IF/ID.RegisterRs))

 ForwardC = 1

if (IDcontrol.Branch

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = IF/ID.RegisterRt))

 ForwardD = 1

Forwards the

result from the

second

previous instr.

to either input

of the compare

CS423 L03 Pipelining.26 Spring, 2012

ID Branch Forwarding Issues, con’t

 If the instruction immediately

before the branch produces

one of the branch source

operands, then a stall needs

to be inserted (between the
beq and add1) since the EX stage ALU operation is

occurring at the same time as the ID stage branch

compare operation

WB add3 $3,

MEM add2 $4,

EX add1 $1,

ID beq $1,$2,Loop

IF next_seq_instr

 “Bounce” the beq (in ID) and next_seq_instr (in IF) in place

(ID Hazard Unit deasserts PC.Write and IF/ID.Write)

 Insert a stall between the add in the EX stage and the beq in

the ID stage by zeroing the control bits going into the ID/EX

pipeline register (done by the ID Hazard Unit)

 If the branch is found to be taken, then flush the
instruction currently in IF (IF.Flush)

CS423 L03 Pipelining.27 Spring, 2012

Supporting ID Stage Branches

Read

Address

Instruction

Memory

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

RegFile

Read Data 1

ReadData 2

16

32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

ALU

cntrl

Branch
PCSrc

Forward

Unit

Hazard

Unit

C
o

m
p

a
re

Forward

Unit

Add

IF
.F

lu
s

h

0

0

1 0

CS423 L03 Pipelining.28 Spring, 2012

Delayed Decision

 If the branch hardware has been moved to the ID stage,
then we can eliminate all branch stalls with delayed
branches which are defined as always executing the next
sequential instruction after the branch instruction – the
branch takes effect after that next instruction

 MIPS compiler moves an instruction to immediately after the
branch that is not affected by the branch (a safe instruction)
thereby hiding the branch delay

 With deeper pipelines, the branch delay grows requiring

more than one delay slot

 Delayed branches have lost popularity compared to more

expensive but more flexible (dynamic) hardware branch prediction

 Growth in available transistors has made hardware branch

prediction relatively cheaper

CS423 L03 Pipelining.29 Spring, 2012

Scheduling Branch Delay Slots

 A is the best choice, fills delay slot and reduces IC

 In B and C, the sub instruction may need to be copied, increasing IC

 In B and C, must be okay to execute sub when branch fails

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3

if $1=0 then

delay slot

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

add $1,$2,$3

if $1=0 then

sub $4,$5,$6

CS423 L03 Pipelining.30 Spring, 2012

Static Branch Prediction

 Resolve branch hazards by assuming a given outcome
and proceeding without waiting to see the actual branch
outcome

1. Predict not taken – always predict branches will not be
taken, continue to fetch from the sequential instruction
stream, only when branch is taken does the pipeline stall

 If taken, flush instructions after the branch (earlier in the pipeline)

- in IF, ID, and EX stages if branch logic in MEM – three stalls

- In IF and ID stages if branch logic in EX – two stalls

- in IF stage if branch logic in ID – one stall

 ensure that those flushed instructions haven’t changed the
machine state – automatic in the MIPS pipeline since machine
state changing operations are at the tail end of the pipeline
(MemWrite (in MEM) or RegWrite (in WB))

 restart the pipeline at the branch destination

CS423 L03 Pipelining.31 Spring, 2012

Flushing with Misprediction (Not Taken)

4 beq $1,$2,2 I

n

s

t

r.

O

r

d

e

r
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg 8 sub $4,$1,$5

 To flush the IF stage instruction, assert IF.Flush to
zero the instruction field of the IF/ID pipeline register
(transforming it into a noop)

CS423 L03 Pipelining.32 Spring, 2012

Branching Structures

 Predict not taken works well for “top of the loop”
branching structures

Loop: beq $1,$2,Out

 1nd loop instr

 .

 .

 .

 last loop instr

 j Loop

Out: fall out instr

 But such loops have jumps at the

bottom of the loop to return to the

top of the loop – and incur the

jump stall overhead

 Predict not taken doesn’t work well for “bottom of the

loop” branching structures Loop: 1st loop instr

 2nd loop instr

 .

 .

 .

 last loop instr

 bne $1,$2,Loop

 fall out instr

CS423 L03 Pipelining.33 Spring, 2012

Static Branch Prediction, con’t

 Resolve branch hazards by assuming a given outcome
and proceeding

2. Predict taken – predict branches will always be taken

 Predict taken always incurs one stall cycle (if branch

destination hardware has been moved to the ID stage)

 Is there a way to “cache” the address of the branch target

instruction ??

 As the branch penalty increases (for deeper pipelines),

a simple static prediction scheme will hurt performance.

With more hardware, it is possible to try to predict

branch behavior dynamically during program execution

3. Dynamic branch prediction – predict branches at run-

time using run-time information

CS423 L03 Pipelining.34 Spring, 2012

Dynamic Branch Prediction

 A branch prediction buffer (aka branch history table
(BHT)) in the IF stage addressed by the lower bits of the
PC, contains a bit passed to the ID stage through the
IF/ID pipeline register that tells whether the branch was
taken the last time it was execute

 Prediction bit may predict incorrectly (may be a wrong prediction
for this branch this iteration or may be from a different branch
with the same low order PC bits) but the doesn’t affect
correctness, just performance

- Branch decision occurs in the ID stage after determining that the
fetched instruction is a branch and checking the prediction bit

 If the prediction is wrong, flush the incorrect instruction(s) in
pipeline, restart the pipeline with the right instruction, and invert
the prediction bit

- A 4096 bit BHT varies from 1% misprediction (nasa7, tomcatv) to
18% (eqntott)

CS423 L03 Pipelining.35 Spring, 2012

Branch Target Buffer

 The BHT predicts when a branch is taken, but does not
tell where its taken to!

 A branch target buffer (BTB) in the IF stage can cache the branch
target address, but we also need to fetch the next sequential
instruction. The prediction bit in IF/ID selects which “next”
instruction will be loaded into IF/ID at the next clock edge

- Would need a two read port
instruction memory

 If the prediction is correct, stalls can be avoided no matter

which direction they go

 Or the BTB can cache the

branch taken instruction while the

instruction memory is fetching the

next sequential instruction
Read

Address

Instruction

Memory

P
C

 0

BTB

CS423 L03 Pipelining.36 Spring, 2012

1-bit Prediction Accuracy

 A 1-bit predictor will be incorrect twice when not taken

 For 10 times through the loop we have a 80% prediction

accuracy for a branch that is taken 90% of the time

 Assume predict_bit = 0 to start (indicating

branch not taken) and loop control is at

the bottom of the loop code

1. First time through the loop, the predictor

mispredicts the branch since the branch is

taken back to the top of the loop; invert

prediction bit (predict_bit = 1)

2. As long as branch is taken (looping),

prediction is correct

3. Exiting the loop, the predictor again

mispredicts the branch since this time the

branch is not taken falling out of the loop;

invert prediction bit (predict_bit = 0)

Loop: 1st loop instr

 2nd loop instr

 .

 .

 .

 last loop instr

 bne $1,$2,Loop

 fall out instr

CS423 L03 Pipelining.37 Spring, 2012

2-bit Predictors

 A 2-bit scheme can give 90% accuracy since a prediction
must be wrong twice before the prediction bit is changed

Predict

Taken

Predict

Not Taken

Predict

Taken

Predict

Not Taken

Taken

Not taken

Not taken

Not taken

Not taken

Taken

Taken

Taken

Loop: 1st loop instr

 2nd loop instr

 .

 .

 .

 last loop instr

 bne $1,$2,Loop

 fall out instr

CS423 L03 Pipelining.38 Spring, 2012

Dealing with Exceptions

 Exceptions (aka interrupts) are just another form of
control hazard. Exceptions arise from
 R-type arithmetic overflow

 Trying to execute an undefined instruction

 An I/O device request

 An OS service request (e.g., a page fault, TLB exception)

 A hardware malfunction

 The pipeline has to stop executing the offending
instruction in midstream, let all prior instructions
complete, flush all following instructions, set a register to
show the cause of the exception, save the address of the
offending instruction, and then jump to a prearranged
address (the address of the exception handler code)

 The software (OS) looks at the cause of the exception
and “deals” with it

CS423 L03 Pipelining.39 Spring, 2012

Two Types of Exceptions

 Interrupts – asynchronous to program execution

 caused by external events

 may be handled between instructions, so can let the
instructions currently active in the pipeline complete before
passing control to the OS interrupt handler

 simply suspend and resume user program

 Traps (Exception) – synchronous to program execution

 caused by internal events

 condition must be remedied by the trap handler for that
instruction, so much stop the offending instruction midstream
in the pipeline and pass control to the OS trap handler

 the offending instruction may be retried (or simulated by the
OS) and the program may continue or it may be aborted

CS423 L03 Pipelining.40 Spring, 2012

Where in the Pipeline Exceptions Occur

 Arithmetic overflow

 Undefined instruction

 TLB or page fault

 I/O service request

 Hardware malfunction
A

L
U

IM Reg DM Reg

Stage(s)? Synchronous?

CS423 L03 Pipelining.41 Spring, 2012

Multiple Simultaneous Exceptions

I

n

s

t

r.

O

r

d

e

r

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Hardware sorts the exceptions so that the earliest

instruction is the one interrupted first

CS423 L03 Pipelining.42 Spring, 2012

Multiple Simultaneous Exceptions

I

n

s

t

r.

O

r

d

e

r

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

D$ page fault

arithmetic overflow

undefined instruction

I$ page fault

 Hardware sorts the exceptions so that the earliest

instruction is the one interrupted first

CS423 L03 Pipelining.43 Spring, 2012

Additions to MIPS to Handle Exceptions (Fig 6.42)

 Cause register (records exceptions) – hardware to record
in Cause the exceptions and a signal to control writes to it
(CauseWrite)

 EPC register (records the addresses of the offending
instructions) – hardware to record in EPC the address of
the offending instruction and a signal to control writes to it
(EPCWrite)

 Exception software must match exception to instruction

 A way to load the PC with the address of the exception
handler

 Expand the PC input mux where the new input is hardwired to
the exception handler address - (e.g., 8000 0180hex for arithmetic
overflow)

 A way to flush offending instruction and the ones that
follow it

CS423 L03 Pipelining.44 Spring, 2012

Datapath with Controls for Exceptions

Read

Address

Instruction

Memory

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

RegFile

Read Data 1

ReadData 2

16

32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

0

1

ALU

cntrl

Branch
PCSrc

Forward

Unit

Hazard

Unit

0

1 0

C
o

m
p

a
re

Forward

Unit

Add

IF
.F

lu
s

h

0

ID.Flush 0

8000 0180hex

CS423 L03 Pipelining.45 Spring, 2012

Summary

 All modern day processors use pipelining for
performance (a CPI of 1 and fast a CC)

 Pipeline clock rate limited by slowest pipeline stage –
so designing a balanced pipeline is important

 Must detect and resolve hazards
 Structural hazards – resolved by designing the pipeline

correctly

 Data hazards
- Stall (impacts CPI)

- Forward (requires hardware support)

 Control hazards – put the branch decision hardware in as
early a stage in the pipeline as possible

- Stall (impacts CPI)

- Delay decision (requires compiler support)

- Static and dynamic prediction (requires hardware support)

CS423 L03 Pipelining.46 Spring, 2012

Next Lecture and Reminders

 Next lecture

 A MIPS superscalar execution model

 Reminders

