
CS423 L04 SS.1 Spring 2012

CS 423
 Computer Architecture

Spring 2012

Lecture 04:
 A Superscalar Pipeline

Ozcan Ozturk

http://www.cs.bilkent.edu.tr/~ozturk/cs423/

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2005, UCB]

CS423 L04 SS.2 Spring 2012

Review: Pipeline Hazards

 Structural hazards

 Design pipeline to eliminate structural hazards

 Data hazards – read before write

 Use data forwarding inside the pipeline

 For those cases that forwarding won’t solve (e.g., load-use)
include hazard hardware to insert stalls in the instruction stream

 Control hazards – beq, bne,j,jr,jal

 Stall – hurts performance

 Move decision point as early in the pipeline as possible – reduces
number of stalls at the cost of additional hardware

 Delay decision (requires compiler support) – not feasible for
deeper pipes requiring more than one delay slot to be filled

 Predict – with even more hardware, can reduce the impact of
control hazard stalls even further if the branch prediction (BHT) is
correct and if the branched-to instruction is cached (BTB)

CS423 L04 SS.3 Spring 2012

Extracting Yet More Performance

 Two options:

 Increase the depth of the pipeline to increase the clock rate –
superpipelining (more details to come)

 Fetch (and execute) more than one instructions at one time
(expand every pipeline stage to accommodate multiple
instructions) – multiple-issue

 Launching multiple instructions per stage allows the
instruction execution rate, CPI, to be less than 1

 So instead we use IPC: instructions per clock cycle

- E.g., a 6 GHz, four-way multiple-issue processor can execute at a
peak rate of 24 billion instructions per second with a best case CPI
of 0.25 or a best case IPC of 4

 If the datapath has a five stage pipeline, how many instructions
are active in the pipeline at any given time?

CS423 L04 SS.4 Spring 2012

Superpipelined Processors

 Increase the depth of the pipeline leading to shorter clock
cycles (and more instructions “in flight” at one time)

 The higher the degree of superpipelining, the more
forwarding/hazard hardware needed, the more pipeline latch
overhead (i.e., the pipeline latch accounts for a larger and larger
percentage of the clock cycle time), and the bigger the clock
skew issues (i.e., because of faster and faster clocks)

Superpipelined vs Superscalar

 Superpipelined processors have longer instruction
latency than the SS processors which can degrade
performance in the presence of true dependencies

 Superscalar processors are more susceptible to resource
conflicts – but we can fix this with hardware !

CS423 L04 SS.5 Spring 2012

Branch Misprediction

PC Next PC Fetch Drive Alloc Rename Queue Schedule Dispatch Reg File Exec Flags Br Resolve

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Single Issue

CS423 L04 SS.6 Spring 2012

Instruction vs Machine Parallelism

 Instruction-level parallelism (ILP) of a program – a
measure of the average number of instructions in a
program that a processor might be able to execute at the
same time

 Mostly determined by the number of true (data) dependencies
and procedural (control) dependencies in relation to the number
of other instructions

 Data-level parallelism (DLP) DO I = 1 TO 100

 A[I] = A[I] + 1

CONTINUE

 Machine parallelism of a

processor – a measure of the ability of the processor to

take advantage of the ILP of the program

 Determined by the number of instructions that can be fetched

and executed at the same time

 To achieve high performance, need both ILP and

machine parallelism

CS423 L04 SS.7 Spring 2012

Multiple-Issue Processor Styles

 Static multiple-issue processors (aka VLIW)

 Decisions on which instructions to execute simultaneously are
being made statically (at compile time by the compiler)

 E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC
(Explicit Parallel Instruction Computer)

 Dynamic multiple-issue processors (aka superscalar)

 Decisions on which instructions to execute simultaneously are
being made dynamically (at run time by the hardware)

 E.g., IBM Power 2, Pentium 4, MIPS R10K, HP PA 8500

CS423 L04 SS.8 Spring 2012

Multiple-Issue Datapath Responsibilities

 Must handle, with a combination of hardware and software
fixes, the fundamental limitations of

 Storage (data) dependencies – aka data hazards

- Limitation more severe in a SS/VLIW processor due to (usually) low
ILP

 Procedural dependencies – aka control hazards

- Ditto, but even more severe

- Use dynamic branch prediction to help resolve the ILP issue

 Resource conflicts – aka structural hazards

- A SS/VLIW processor has a much larger number of potential
resource conflicts

- Functional units may have to arbitrate for result buses and register-
file write ports

- Resource conflicts can be eliminated by duplicating the resource or
by pipelining the resource

CS423 L04 SS.9 Spring 2012

Instruction Issue and Completion Policies

 Instruction-issue – initiate execution

 Instruction lookahead capability – fetch, decode and issue
instructions beyond the current instruction

 Instruction-completion – complete execution

 Processor lookahead capability – complete issued instructions
beyond the current instruction

 Instruction-commit – write back results to the RegFile or
D$ (i.e., change the machine state)

In-order issue with in-order completion

In-order issue with out-of-order completion

Out-of-order issue with out-of-order completion

Out-of-order issue with out-of-order completion and in-order
commit

CS423 L04 SS.10 Spring 2012

In-Order Issue with In-Order Completion

 Simplest policy is to issue instructions in exact program
order and to complete them in the same order they were
fetched (i.e., in program order)

 Example:

 Assume a pipelined processor that can fetch and decode two
instructions per cycle, that has three functional units (a single
cycle adder, a single cycle shifter, and a two cycle multiplier),
and that can complete (and write back) two results per cycle

 And an instruction sequence with the following characteristics

I1 – needs two execute cycles (a multiply)

I2

I3

I4 – needs the same function unit as I3

I5 – needs data value produced by I4

I6 – needs the same function unit as I5

CS423 L04 SS.11 Spring 2012

In-Order Issue, In-Order Completion Example

E
X

IF

ID
WB

I

n

s

t

r.

O

r

d

e

r

I1

I2

I3

I4

I5

I6
E

X

I1 –two execute cycles

I2

I3

I4 –same function unit as I3

I5 –data value produced by I4

I6 –same function unit as I5

CS423 L04 SS.12 Spring 2012

In-Order Issue with Out-of-Order Completion

 With out-of-order completion, a later instruction may
complete before a previous instruction

 Out-of-order completion is used in single-issue pipelined
processors to improve the performance of long-latency
operations such as divide

 When using out-of-order completion instruction issue is
stalled when there is a resource conflict (e.g., for a
functional unit) or when the instructions ready to issue
need a result that has not yet been computed

CS423 L04 SS.13 Spring 2012

IOI-OOC Example

E
X

IF

ID
WB

I

n

s

t

r.

O

r

d

e

r

I1

I2

I3

I4

I5

I6
E

X

I1 –two execute cycles

I2

I3

I4 –same function unit as I3

I5 –data value produced by I4

I6 –same function unit as I5

CS423 L04 SS.14 Spring 2012

Handling Output Dependencies

 There is one more situation that stalls instruction issuing
with IOI-OOC, assume I1 – writes to R3

I2 – writes to R3

I5 – reads R3

 If the I1 write occurs after the I2 write, then I5 reads an incorrect

value for R3

 I2 has an output dependency on I1 – write before write

- The issuing of I2 would have to be stalled if its result might later be

overwritten by an previous instruction (i.e., I1) that takes longer to

complete – the stall happens before instruction issue

 While IOI-OOC yields higher performance, it requires

more dependency checking hardware

 Dependency checking needed to resolve both read before write

and write before write

CS423 L04 SS.15 Spring 2012

Out-of-Order Issue with Out-of-Order Completion

 With in-order issue the processor stops decoding
instructions whenever a decoded instruction has a
resource conflict or a data dependency on an issued, but
uncompleted instruction

 The processor is not able to look beyond the conflicted
instruction even though more downstream instructions might
have no conflicts and thus be issueable

 Fetch and decode instructions beyond the conflicted one,
store them in an instruction buffer (as long as there’s
room), and flag those instructions in the buffer that don’t
have resource conflicts or data dependencies

 Flagged instructions are then issued from the buffer
without regard to their program order

CS423 L04 SS.16 Spring 2012

Antidependencies

 With OOI also have to deal with data antidependencies –
when a later instruction (that completes earlier) produces
a data value that destroys a data value used as a source
in an earlier instruction (that issues later)

R3 := R3 * R5

R4 := R3 + 1

R3 := R5 + 1

 The constraint is similar to that of true data

dependencies, except reversed

 Instead of the later instruction using a value (not yet) produced

by an earlier instruction (read before write), the later instruction

produces a value that destroys a value that the earlier instruction

(has not yet) used (write before read)

True data dependency

Output dependency

Antidependency

CS423 L04 SS.17 Spring 2012

Dependencies Review

 Each of the three data dependencies

 True data dependencies (read before write)

 Antidependencies (write before read)

 Output dependencies (write before write)

 manifests itself through the use of registers (or other
storage locations)

 True dependencies represent the flow of data and
information through a program

 Anti- and output dependencies arise because the limited
number of registers mean that programmers reuse
registers for different computations

 When instructions are issued out-of-order, the
correspondence between registers and values breaks
down and the values conflict for registers

storage conflicts

CS423 L04 SS.18 Spring 2012

Storage Conflicts and Register Renaming

 Storage conflicts can be reduced (or eliminated) by
increasing or duplicating the troublesome resource

 Provide additional registers that are used to reestablish the
correspondence between registers and values

- Allocated dynamically by the hardware in SS processors

 Register renaming – the processor renames the original
register identifier in the instruction to a new register (one
not in the visible register set)

R3b := R3a * R5a

R4a := R3b + 1

R3c := R5a + 1

 The hardware that does renaming assigns a “replacement”

register from a pool of free registers and releases it back to the

pool when its value is superseded and there are no outstanding

references to it

R3 := R3 * R5

R4 := R3 + 1

R3 := R5 + 1

CS423 L04 SS.19 Spring 2012

Review: Extracting More Performance

 To achieve high performance, need both machine
parallelism and instruction level parallelism (ILP) by

 Superpipelining

 Static multiple-issue (VLIW)

 Dynamic multiple-issue (superscalar)

 A processor’s instruction issue and completion policies
impact available ILP

 In-order issue with in-order completion

 In-order issue with out-of-order completion

- Creates output dependencies (write before write)

 Out-of-order issue with out-of-order completion

- Creates antidependency (write before read)

 Out-of-order issue with out-of-order completion and in-order commit

 Register renaming can solve these storage dependencies

CS423 L04 SS.21 Spring 2012

Speedup Measurements

 The speedup of the SS processor is

- Assumes scalar and superscalar machines have the same IC & CR

scalar cycles

superscalar cycles
speedup = sn = --------------------------------

 To compute average speedup performance can use

 Arithmetic mean

 Harmonic mean

- assigns a larger weighting to the programs with the smallest

speedup

 EX: two programs with same scalar cycles, with a SS speedup

of 2 for program1 and 25 for program2

- AM =

- HM =

 AM = 1/n si
i = 1

n

 HM = n / (1/si)

i = 1

n

½ * (2 + 25) = 13.5

2 / (.5 + .04) = 2 /.54 = 3.7

CS423 L04 SS.22 Spring 2012

Maximum (Theoretical) SS Speedups

 The highest speedup that can be achieved with “ideal”
machine parallelism (ignoring resource conflicts, storage
dependencies, and procedural dependencies)

 HM of 5.4 is the highest average speedup for these benchmarks
that can be achieved even with ideal machine parallelism!

0

2

4

6

8

10

12

5d
iff

cc
om

doduc

gnuch
es

s

irs
im

lin
pac

k

si
m

ple

tr
off

tw
olf

S
p

e
e
d

u
p

From Johnson, 1992

CS423 L04 SS.23 Spring 2012

Tomasulo Algorithm

 For IBM 360/91 about 3 years after CDC 6600

 Goal: High Performance without special compilers

 Tomasulo Algorithm

 Control & buffers distributed with Function Units called
“reservation stations”

 Registers in instructions replaced by pointers to reservation
station buffer

 HW renaming of registers to avoid WAW hazards

 Buffer operand values to avoid WAR hazards

 Common Data Bus broadcasts results to all FUs

 Load and Stores treated as FUs as well

 Why study? Lead to Alpha 21264, HP 8000, MIPS
10000, Pentium II, Power PC 604 …

CS423 L04 SS.24 Spring 2012

FP unit and load-store unit using Tomasulo’s alg.

CS423 L04 SS.25 Spring 2012

Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue

 Stall if structural hazard, ie. no space in the rs. If reservation station (rs)
is free, the issue logic issues instr to rs & read operands into rs if ready
(Register renaming => Solves WAR). Make status of destination
register waiting for this latest instn even if the previous instn writing to
this register hasn’t completed => Solves WAW hazards.

2. Execution—operate on operands (EX)

 When both operands are ready then execute;
 if not ready, watch CDB for result – Solves RAW

3. Write result—finish execution (WB)

 Write on Common Data Bus to all awaiting units;
mark reservation station available. Write result into dest. reg. if its status
is r. => Solves WAW.

 CDB: data + source (“come from” bus)

 64 bits of data + 4 bits of Functional Unit source address

 Write if matches expected Functional Unit (produces result)

 Does broadcast

CS423 L04 SS.26 Spring 2012

Reservation Station Components

 Op—Operation to perform in the unit (e.g., + or –)

 Vj, Vk— Value of the source operand.

 Qj, Qk— Name of the RS that would provide the source
operands. Value zero means the source operands
already available in Vj or Vk, or is not necessary.

 Busy—Indicates reservation station or FU is busy

 Register File Status Qi:

 Qi —Indicates which functional unit will write each
register, if one exists. Blank (0) when no pending
instructions that will write that register meaning that the
value is already available.

CS423 L04 SS.27 Spring 2012

Tomasulo Example Cycle 0

Instruction status Execution Write

Instruction j k Issue complete Result Busy

LD F6 34+ R2 Load1 No

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations S1 S2 RS for j RS for k

Time Name Busy Op Vj Vk Qj Qk

0 Add1 No

0 Add2 No

Add3 No

0 Mult1 No

0 Mult2 No

Register result status
Clock F0 F2 F4 F6 F8 F10 F12 ... F30

0 FU

Address

CS423 L04 SS.28 Spring 2012

Tomasulo Drawbacks

 Complexity

 Many associative stores (CDB) at high speed

 Performance limited by Common Data Bus

 Each CDB must go to multiple functional units
high capacitance, high wiring density

 Number of functional units that can complete per cycle
limited to one!

- Multiple CDBs more FU logic for parallel assoc stores

CS423 L04 SS.29 Spring 2012

Dependency Resolution

 Introduction to Tomasulo's Dependency-resolution Algorithm

 When an instruction enters the decode and issue stage and its operands are not available, it
is forwarded to a Reservation Station (RS) associated with the functional unit that it will be
using.

- If a source register is busy, the tag for the source register is obtained.

- If the sink register (destination register) is busy, the instruction fetches a new tag,
updates the tag of the sink register and proceeds to a RS.

 It waits in the RS until its data dependencies have been resolved.

 Once at a reservation station, an instruction can resolve its dependencies by monitoring the
Common Data Bus (the Result Bus). When all the operands for an instruction are available, it
is dispatched to the appropriate functional unit for execution.

 Problem: Each register needs a tag. Associative comparison is needed.

CS423 L04 SS.30 Spring 2012

Dependency Resolution

 Extensions to Tomasulo's Algorithm

 Major improvement: Consolidate the tags from all currently active registers into one Tag Unit.
Each register has only a single busy bit.

 If a source register is busy, the current tag is got from the TU.

 For the destination register, a new tag is obtained.

- If the destination register is not busy, it is easy to just get a new tag

- If the destination register is busy, a new tag is obtained and the instruction holding the old
tag is informed.

 The result from a functional unit (along with its tag) is broadcast to all reservation stations and is
also forwarded to the TU. The TU then forwards the result to the appropriate register.

CS423 L04 SS.31 Spring 2012

L

I

N

I

FP

RegFile

Baseline Superscalar MIPS Processor Model

Integer

RegFile

I$

BHT

BTB

RUU

Decode &

Dispatch

Fetch

IALU

IMULT

IALU

FPALU

D$

 LSQ

Result Bus

Issue &

Execute
Commit

Register Update Unit

(managed as a queue)

L

I

N

I P

C

RUU_Head

RUU_Tail

1

3

4

5

6

2

Writeback

Load/Store Queue

CS423 L04 SS.32 Spring 2012

Typical Functional Unit Latencies

Issue

Latency

Result

Latency

Integer ALU 1 1

Integer multiply 1 2

Load (on hit) 1 1

Load (on miss) 1 40

Store 1 n/a

FltPt Add 1 2

FltPt Multiply 1 4

FltPt Divide 12 12

FltPt Convert 1 2

 Result latency –

number of cycles

taken by a

functional unit (FU)

to produce a result

 Issue latency –

minimum number of

cycles between the

issuing of an

instruction to a FU

and the issuing of

the next instruction

to the same FU

CS423 L04 SS.33 Spring 2012

Additional RegFile Fields

 Each register in the general purpose RegFile has two
associated n-bit counters (n of 3 is typical)

 NI (number of instances) – the number of instances of a register
as a destination register in the RUU

 LI (latest instance) – the number of the latest instance

 When an instruction with destination register address Ri
is dispatched to the RUU, both its NI and LI are
incremented

 Dispatch is blocked if a destination register’s NI is 2n -1, so only
up to 2n – 1 instances of a register can be present in the RUU at
any one time

 When an instruction is committed (updates the Ri value)
the associated NI is decremented

 When NI = 0 the register is “free” (there are no instruction in the
RUU that are going to write to that register) and LI is cleared

CS423 L04 SS.34 Spring 2012

Register Update Unit (RUU)

 A hardware data structure that is used to resolve data
dependencies by keeping track of an instruction’s data
and execution needs and that commits completed
instructions in program order

 An entry in the RUU

src operand 1 src operand 2 destination

is
s
u
e
d

fu
n
c
ti
o
n
a
l
u
n
it

e
x
e
c
u
te

d

PC

R
e
a
d
y

R
e
a
d
y

Y
e
s
/N

o

Y
e
s
/N

o

U
n

it
 N

u
m

b
e
r

T
a
g

T
a
g

C
o
n
te

n
t

C
o
n
te

n
t

C
o
n
te

n
t

A
d
d
re

s
s

Y
e
s
/N

o

S
p
e
c
 I
n

s
tr

 A
d
d
r

T
a
g

speculative

Tag = RegFile addr || LI

CS423 L04 SS.35 Spring 2012

Basic Instruction Flow Overview

 Fetch (in program order): Fetch multiple instructions in
parallel from the I$

 Decode & Dispatch (in program order):

 In parallel, decode the instr’s just fetched and schedule them for
execution by dispatching them to the RUU

 Loads and stores are dispatched as two (micro)instr’s – one to
compute the effective addr and one to do the memory operation

 Issue & Execute (out of program order): As soon as the
RUU has the instr’s source data and the FU is free, the
instr’s are issued to the FU for execution

 Writeback (out of program order): When done the FU
puts its results on the Result Bus which allows the RUU
and the LSQ to be updated – the instr completes

 Commit (in program order): When appropriate, commit
the instr’s result data to the state locations (i.e., update
D$ and RegFile)

CS423 L04 SS.36 Spring 2012

Managing the RUU as a Queue

 By managing the RUU as a queue, and committing
instruction from RUU_Head, instruction are committed
(aka retired) in the order they were received from the
Decode & Dispatch logic (in program order)

 Stores to state locations (RegFile and D$) are buffered (in the
RUU and LSQ) until commit time

 Supports precise interrupts (the only state locations updated are
those written by instructions before the interrupting instr)

 The counter (LI) allows multiple instances of a specific
destination register to exist in the RUU at the same time
via register renaming

 Solves write before write hazards if results from the RUU are
returned to the RegFile in program order

 Managing the RUU as a queue and committing from the
head of the queue provides just this!

CS423 L04 SS.37 Spring 2012

Major Functions of the RUU

1. Accepts new instructions from the Decode & Dispatch
logic

2. Monitors the Result Bus to resolve true dependencies
and to do write back of result data to the RUU

3. Determines which instructions are ready for execution,
reserves the Result Bus, and issues the instruction to
the appropriate FU

4. Determines if an instruction can commit (i.e., change
the machine state) and commits the instruction if
appropriate

 Each of the tasks are done in parallel every cycle

CS423 L04 SS.38 Spring 2012

The First Function of the RUU
1. Accepts new instructions from the Decode & Dispatch

logic – for each instruction in the fetch packet
 The dispatch logic gets an entry in the RUU (a circular queue)

- The RUU_Tail entry (currently empty) is allocated to the instruction
and RUU_Tail is updated

- Then if RUU_Head = RUU_Tail, the RUU is full and further
instruction fetch stalls until the RUU_Head advances (as a result of
a commit)

 For each source operand, if the contents of the source register is
available, then it is copied to the source Content field of the RUU
entry and its Ready bit is set. If not, the source RegFile addr || LI
is copied to the source Tag field and the Ready bit is reset.

 For the destination operand, the RegFile destination addr || LI is
copied to the allocated RUU destination Tag field

 The issued bit and executed bit are set to No, the number of the
FU needed for the operation is entered, and the PC address of
the instruction is copied to the PC Address field

CS423 L04 SS.39 Spring 2012

Aside: Content Addressable Memories (CAMs)

 Memories that are addressed by their content. Typical
applications include RUU source tag field comparison
logic, cache tags, and translation lookaside buffers

Match

Field

Data

Field

Hit Match Data

Search Data

 Memory hardware that compares the

Search Data to the Match Field

entries for each word in the CAM in

parallel !

 On a match the Data Field for that

entry is output to Match Data on read

or Match Data is written into the Data

Field on write and the Hit bit is set.

 If no match occurs, the Hit bit is reset.

 CAMs can be designed to

accommodate multiple hits.

CS423 L04 SS.40 Spring 2012

The Second Function of the RUU
2. Monitors the Result Bus to resolve true dependencies

and to do write back of result data to the RUU

 The Result Bus destination addr || LI is compared associatively
to the source Tag fields (for those source operands that are not
Ready). If a match occurs, the data on the Result Bus is gated
into the Content field for matching source operands.

- The Result Bus contains the result data, its RUU entry address,
and its RegFile destination addr || LI

 The result data is gated into the destination Content field of the
RUU entry that matches the RUU entry addr on the Result Bus

 The executed bit is set to Yes

 Resolves true dependencies through the Ready bit (i.e.,

must wait for the source operands before issue)

 Solves anti-dependencies through LI (making sure that

the source fields get updated only for the correct version

of the data)

CS423 L04 SS.41 Spring 2012

The Third Function of the RUU

3. Determines which instructions are ready for execution,
reserves the Result Bus, and issues the ready
instructions to the appropriate FU’s for execution

 When both source operands of an RUU entry are Ready, the
RUU issues the highest priority instruction – priority is given to
load and store instr’s and then to the instr’s that entered the RUU
the earliest (i.e., the ones closest to RUU_Head).

 Reserves the Result Bus

 Issues the instruction (sends to the FU the source operands,
RUU entry addr, and the destination’s RegFile addr || LI) and sets
the issued bit to Yes

 Multiple instructions can be issued in parallel, if they are

ready, if they can reserve the Result Bus, and if they are

destined for different FU’s

CS423 L04 SS.42 Spring 2012

The Fourth Function of the RUU
4. Determines if an instruction can commit (i.e., change the

machine state) and commits the instruction if appropriate
 Monitors the executed bit of the RUU_Head entry. If the bit is

set, the destination content data is written into the RegFile at the
destination’s RegFile address

 Matches the destination RegFile addr || LI against the RUU’s
source Tag fields and on match copies the destination content
data into source Content fields

 Decrements the associated RegFile entry’s NI counter

 Releases the RUU entry by incrementing the RUU_Head pointer

 Solves output dependencies by writing to RegFile in

program order

 Multiple instructions can commit in parallel if they are

ready to commit, if they are writing to different RegFile

registers, and if there are multiple RegFile write ports

CS423 L04 SS.43 Spring 2012

MicroOperations of Load and Store

 Recall that loads and stores are dispatched to the RUU
as two (micro)instr’s – one to compute the effective addr
and one to do the memory operation

 Load lw R1,2(R2) becomes addi R0,R2,2

 lw R1,R0

 Store sw R1,6(R2) becomes addi R0,R2,6

 sw R1,R0

 At the same time a LSQ entry is allocated

 Each LSQ entry consists of a Tag field (RegFile addr || LI) and a
Content field. The LI counter allows for multiple instances of
stores (writes) to a memory address

 When a load completes (the D$ returns the data on the Result
Bus) or a store commits (in program order) the LSQ entry is
released

 Instruction dispatch is blocked if there is not a free LSQ entry
and two free RUU entries

CS423 L04 SS.44 Spring 2012

Loads from Memory

 When a load’s address becomes known, the address is
compared (associatively) to see if it matches an entry
already in the LSQ (i.e., if there is a pending operation to
the same memory address)

 If the match in the LSQ is for a load, the current load does not need
to be issued (or executed) since the matching pending load will
load in the data

 If the match in the LSQ is for a store, the current load does not
need to be issued (or executed) since the matching pending store
can directly supply the destination Content for the current load

 If there is no match, the load is issued to the LSQ and
executed when the D$ is next available

 When the RUU# of the load instr appears on the Result
Bus (along with the memory data), the load completes by
updating the RUU and releasing the LSQ entry (the RUU
entry is released on load commit)

CS423 L04 SS.45 Spring 2012

Stores to Memory

 When a store’s address (and the store data) becomes
known, the address is compared (associatively) to see if it
matches an entry already in the LSQ (i.e., if there is a
pending operation to the same memory address)

 If the match in the LSQ is for a load, the current store is issued to
the LSQ

 If the match in the LSQ is for a store, the current store is issued to
the LSQ with an incremented LI

 If there is no match, the store is dispatched to the LSQ

 Stores are held in the LSQ until the store is ready to
commit (i.e., until its partner instr reaches the RUU_Head)
at which time the store is executed (i.e., the data and
address are sent to the D$) and the RUU and LSQ entries
are released

CS423 L04 SS.46 Spring 2012

SimpleScalar Structure

 sim-outorder: supports out-of-order issue and
execution (with in-order commit) with a Register
Update Unit (RUU)

 Uses a RUU for register renaming and to hold the results of
pending instructions. The RUU (aka reorder buffer (ROB))
retires completed instructions in program order to the RegFile

 Uses a LSQ for store instructions not ready to commit and
load instructions waiting for access to the D$

 Loads are satisfied by either the memory or by an earlier store
value residing in the LSQ if their addresses match

- Loads are issued to the memory system only when addresses of
all previous loads and stores are known

CS423 L04 SS.47 Spring 2012

Simulated SimpleScalar Pipeline

 ruu_fetch(): fetches instr’s from one I$ line, puts them
in the fetch queue, probes the cache line predictor to
determine the next I$ line to access in the next cycle

- fetch:ifqsize<size>: fetch width (default is 4)

- fetch:speed<ratio>: ratio of the front end speed to the execution core
(<ratio> times as many instructions fetched as decoded per cycle)

- fetch:mplat<cycles>: branch misprediction latency (default is 3)

 ruu_dispatch(): decodes instr’s in the fetch queue,
puts them in the dispatch (scheduler) queue, enters and
links instr’s into the RUU and the LSQ, splits memory
access instructions into two separate instr’s (one to
compute the effective addr and one to access the
memory), notes branch mispredictions

- decode:width<insts>: decode width (default is 4)

CS423 L04 SS.48 Spring 2012

SimpleScalar Pipeline, con’t
 ruu_issue()and lsq_refresh(): locates and marks

the instr’s ready to be issued by tracking register and
memory dependencies, ready loads issued to D$ unless
there are earlier stores in LSQ with unresolved addr’s,
forwards store values with matching addr to ready loads

- issue:width<insts>: maximum issue width (default is 4)

- ruu:size<insts>: RUU capacity in instr’s (default is 16, min is 2)

- lsq:size<insts>: LSQ capacity in instr’s (default is 8, min is 2)

 and handles instr’s execution – collects all the ready
instr’s from the scheduler queue (up to the issue width),
check on FU availability, checks on access port
availability, schedules writeback events based on FU
latency (hardcoded in fu_config[])

- res:ialu | imult | memport | fpalu | fpmult<num>: number of FU’s
(default is 4 | 1 | 2 | 4 | 1)

CS423 L04 SS.49 Spring 2012

SimpleScalar Pipeline, con’t
 ruu_writeback(): determines completed instr’s,

does data forwarding to dependent waiting instr’s,
detects branch misprediction and on misprediction rolls
the machine state back to the checkpoint and discards
erroneously issued instructions

 ruu_commit(): in-order commits results for instr’s
(values copied from RUU to RegFile or LSQ to D$),
RUU/LSQ entries for committed instr’s freed; keeps
retiring instructions at the head of RUU that are ready to
commit until the head instr is one that is not ready

CS423 L04 SS.50 Spring 2012

SS Pipeline
 F

e
tc

h
 m

u
lt
ip

le
 i
n
s
tr

u
c
ti
o
n
s

 D
e
c
o
d
e
 i
n
s
tr

u
c
ti
o
n
s

1
s
t R

U
U

 f
u
n
c
ti
o
n
 (

R
U

U

a
llo

c
a
ti
o
n
,

s
rc

 o
p
e
ra

n
d

c
o
p
y
in

g
 (

o
r

T
a
g
 f
ie

ld
 s

e
t)

,

d
s
t
T
a
g
 f
ie

ld
 s

e
t)

3
n

d
 R

U
U

 f
u
n
c
ti
o
n
 (

w
h
e
n

b
o
th

 s
rc

 o
p
e

ra
n
d
s
 R

e
a
d
y

a
n
d
 F

U
 f
re

e
,

s
c
h
e
d
u
le

R
e
s
u
lt
 B

u
s
 a

n
d
 i
s
s
u
e
 i
n
s
tr

fo
r

e
x
e
c
u
ti
o
n
)

2
n

d
 R

U
U

 f
u
n
c
ti
o
n
 (

c
o
p
y

R
e
s
u
lt
 B

u
s
 d

a
ta

 t
o

m
a
tc

h
in

g
 s

rc
’s

 a
n
d
 t

o

R
U

U
 d

s
t
e
n
tr

y
)

4
th

 R
U

U
 f

u
n
c
ti
o
n
 (

fo
r

in
s
tr

a
t
R

U
U

_
H

e
a
d
 (

if

e
x
e
c
u
te

d
),

 w
ri
te

 d
s
t

C
o
n
te

n
ts

 t
o
 R

e
g
F

ile
)

FETCH DECODE &

DISPATCH

ISSUE &

EXECUTE

WRITE

BACK

RESULT

COMMIT

In Order In Order Out of Order In Order

CS423 L04 SS.51 Spring 2012

Our SS Model Performance

 Out of order issue has consistently the best performance
for the benchmark programs

0

1

2

3

5d
iff

cc
om

doduc

gnuch
es

s

irs
im

lin
pac

k

si
m

ple

tr
off

tw
olf

S
p

e
e
d

u
p

IOC

OOC

OOI

From Johnson, 1992

