
CS423 L05 SS.1 Spring 2012

CS 423
 Computer Architecture

Spring 2012

Lecture 05:
SS Front End / Back End Issues

Ozcan Ozturk

http://www.cs.bilkent.edu.tr/~ozturk/cs423/

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2005, UCB]

CS423 L05 SS.2 Spring 2012

SS Pipeline
 F

e
tc

h
 m

u
lt
ip

le
 i
n
s
tr

u
c
ti
o
n
s

 D
e
c
o
d
e
 i
n
s
tr

u
c
ti
o
n
s

1
s
t R

U
U

 f
u
n
c
ti
o
n
 (

R
U

U

a
llo

c
a
ti
o
n
,

s
rc

 o
p
e
ra

n
d

c
o
p
y
in

g
 (

o
r

T
a
g
 f
ie

ld
 s

e
t)

,

d
s
t
T
a
g
 f
ie

ld
 s

e
t)

3
n

d
 R

U
U

 f
u
n
c
ti
o
n
 (

w
h
e
n

b
o
th

 s
rc

 o
p
e

ra
n
d
s
 R

e
a
d
y

a
n
d
 F

U
 f
re

e
,

s
c
h
e
d
u
le

R
e
s
u
lt
 B

u
s
 a

n
d
 i
s
s
u
e
 i
n
s
tr

fo
r

e
x
e
c
u
ti
o
n
)

2
n

d
 R

U
U

 f
u
n
c
ti
o
n
 (

c
o
p
y

R
e
s
u
lt
 B

u
s
 d

a
ta

 t
o

m
a
tc

h
in

g
 s

rc
’s

 a
n
d
 t

o

R
U

U
 d

s
t
e
n
tr

y
)

4
th

 R
U

U
 f

u
n
c
ti
o
n
 (

fo
r

in
s
tr

a
t
R

U
U

_
H

e
a
d
 (

if

e
x
e
c
u
te

d
),

 w
ri
te

 d
s
t

C
o
n
te

n
ts

 t
o
 R

e
g
F

ile
)

FETCH DECODE &

DISPATCH

ISSUE &

EXECUTE

WRITE

BACK

RESULT

COMMIT

In Order In Order Out of Order In Order

CS423 L05 SS.3 Spring 2012

Instruction Fetch Sequences

 Instruction run – number of instructions (run length)
fetched between taken branches

 Instruction fetcher operates most efficiently when processing
long runs – unfortunately runs are usually quite short

4-way Instr Fetcher

S1 S2 S3

S4 S5

T1 T2 T3

T4

Branch

delay

Time

(cycles)

 The average run

length is about six

instructions

 Instruction bandwidth

of only 1.125

instructions

per cycle

 9 instructions

in 8 cycles

CS423 L05 SS.4 Spring 2012

Instruction Fetch Misalignment

CS423 L05 SS.5 Spring 2012

Instruction Fetch Inefficiencies

 Fetcher can’t provide adequate bandwidth to the decoder
to exploit the available ILP because

 Decoder is idle while the outcome of the branch is determined

- Can (mostly) fix with dynamic branch prediction

 Instruction fetch misalignment prevents the decoder from
operating at full capacity even when the decoder is processing
valid instructions

- The fetcher can align fetched instructions to avoid wasted decoder
slots

- If supported by dynamic branch prediction, the fetcher can also
merge instructions from different runs

 Aligning and merging can only be done if the fetcher has
the sufficient bandwidth (i.e., the fetch rate is faster than
the decode rate)

CS423 L05 SS.6 Spring 2012

Speedups of Fetch Alternatives

 A 4-way instr fetcher out performs a 2-way instr fetcher

 It has twice the potential instruction bandwidth

 But it requires twice as much decoder hardware to keep up
(e.g., in decoders and in ports and buses)

0

1

2

3

4

2-

base

4-

base

2-

pred

4-

pred

2-max 4-max

Low

HM

High

 Base: no

prediction and no

alignment

 Pred: dynamic

branch prediction

S
p
e
e
d
u
p

From Johnson, 1992

CS423 L05 SS.7 Spring 2012

4-Way Decoder Implementation

 A 4-way instr fetcher has higher fetch bandwidth but at
what cost ?

 12 dependency checks between the 4 decode instruction

op rs rt rd op rs rt rd op rs rt rd op rs rt rd

 8 read ports on the RegFile and 8 write ports to the RUU and 8

buses to distribute those source operands (or their RegFile

addr || LI)

CS423 L05 SS.8 Spring 2012

Reducing 4-Way Decoder Hardware

 Limiting the number of RegFile read ports, buses and
RUU write ports is acceptable since

 Not all decoded instructions access two registers

 Not all decoded instruction are valid (because of misalignment)

 Some decoded instructions have dependences on one or more
simultaneously decoded instructions

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 1 2 3 4 5 6 7 8

ccom

troff

 The register

demand means a

8 port capacity

would be wasted

 4 ports reduces

average

performance < 2%

F
ra

c
ti
o
n
 o

f
to

ta
l

d
e
c
o
d
e
d
 p

a
rc

e
ls

of Ports Used

From Johnson, 1992

CS423 L05 SS.9 Spring 2012

Arbitrating Read Port and Bus Usage

 If only 4 read ports and 4 buses are provided, have to
determine which instr’s get first access to them

 If more than 4 ports are needed to dispatch the decoded
instructions, then instruction fetch and decode must stall

 Prioritized register identifier selection for port usage must
be accomplished within about half a processor cycle

 If the first decoder position instr (i.e., the first instr in program
order) requires register access, it is always enabled on the first
and second, if it has two source operands, ports

 Such arbitration continues in sequence for the second, third, and
fourth decoder position instr’s

CS423 L05 SS.10 Spring 2012

SS Branch Prediction

 Recall that for a branch prediction in a scalar pipeline we
needed

 A mechanism to predict the branch outcome: a BHT (branch
history table) in the fetch stage

 A way to fetch two instructions – the sequential instruction (I$)
and the branch target instruction (BTB (branch target buffer))

 A way to ensure that instructions active in the pipeline following
the branch didn’t change the machine state until the branch
outcome was known

- Allowed to complete (in order commit) on correct prediction

- Flushed on mispredict and restart

 With a SS machine, it is possible to have many such
instructions after predicted branches active in the pipeline

 Flag instructions following branches as speculative until the
branch outcome is known

CS423 L05 SS.11 Spring 2012

Implementing Branches

 A SS processor could have more than one branch per
fetch set and could have several uncompleted
branches pending
at any time

Fetch (BHT/BTB)

I$

Branch (check

predict) Dispatch

Decode (Predict)

 Must access BHT/BTB for all branch instr’s in the fetch

set during fetch to reduced branch delay (i.e., need a 4

read-port BHT/BTB for 4-instr fetcher)

 Pass BHT information to decode stage

 After decode, choose between I$ set and BTB sets to determine

the next fetch set

CS423 L05 SS.12 Spring 2012

Decoding & Dispatching Branches

 While multiple branches could be dispatched per cycle,
incur only a slight performance decrease (about 2%)
from imposing a decoder limit of one branch per fetch
set since typically only one branch per cycle can be
executed (usually only have one branch FU)

0

0,5

1

1,5

2

2,5

3

4-sinpred 4-mulpred

Low

HM

High
S

p
e
e
d
u
p

 Having minimum

branch delay is

more important

that decoding

multiple branches

per cycle

From Johnson, 1992

CS423 L05 SS.13 Spring 2012

Speculative Instructions

 Speculation – The processor (or compiler) guesses the
outcome of an instruction (e.g., branches, loads) so as to
enable execution of other instructions that depend on the
speculated instruction

 One of the most important methods for finding more ILP in SS
and VLIW processors

 Producing correct results requires result checking,
recovery and restart hardware mechanisms

 Checking mechanisms to see if the prediction was correct

 Recovery mechanisms to cancel the effects of instructions that
were issued under false assumptions (e.g., branch
misprediction)

 Restart mechanisms to reestablish the correct instruction
sequence

- For branches the correct program counter restart value is known
when the branch outcome is determined

CS423 L05 SS.14 Spring 2012

RUU Speculation Field Support

 For dependent speculative instr’s, the speculative flag is
set to Yes until the outcome of the driving instr (i.e., the
branch) is determined. Then an associate comparison of
that branch’s PC addr and the RUU’s SIA fields can be
done.

src operand 1 src operand 2 destination

is
s
u
e
d

fu
n
c
ti
o
n
a
l
u
n
it

e
x
e
c
u
te

d

PC

R
e
a
d
y

R
e
a
d
y

Y
e

s
/N

o

Y
e
s
/N

o

U
n
it
 N

u
m

b
e
r

T
a
g

T
a
g

C
o
n
te

n
t

C
o
n
te

n
t

C
o
n
te

n
t

A
d
d
re

s
s

Y
e

s
/N

o

S
p
e

c
 I
n

s
tr

 A
d
d
r

T
a
g

speculative

CS423 L05 SS.15 Spring 2012

Branch Execution

 If the branch was not mispredicted, then the branch and
its trailing instructions can commit when at RUU_Head

 If the branch was mispredicted, then all subsequent
instr’s must be discarded (even though subsequent
branches may have been correctly predicted)

 When there is an exception, all of the RUU entries are
discarded in a single cycle and instruction stream
fetching restarts on the next cycle. Thus, the RUU
provides an easy way to discard instructions coming
after a mispredicted branch.

CS423 L05 SS.16 Spring 2012

Effects of RUU Size on Performance

 Since instruction decoding must stall when there is no
free RUU entry, the RUU should be large enough to
accept all instructions during the expected dispatch-to-
commit time period

0

1

2

3

32 16 8 4 2

Low

HM

High

S
p
e
e
d
u
p

Number of IROB Entries

(4-instr decoder)

 Performance

decreases markedly

with 8 and 4 entries

 For 2 entries the

performance is

worse than the

scalar processor

 Why?

From Johnson, 1992

CS423 L05 SS.17 Spring 2012

Effects of LSQ Size on Performance

 Since instruction decoding must stall when there is no
free LSQ entry, the LSQ should be large enough but

 the LSQ size has relatively little impact on performance

 With a 4-way decoder, a 4-entry LSQ only incurs a 1% speedup
loss over an 8-entry LSQ

 Smaller LSQ facilitate dependency checking

0

1

2

3

8 4 2

of Entries

S
p

e
e
d

u
p

Low

HM

High

From Johnson, 1992

CS423 L05 SS.18 Spring 2012

SS Fetch and Decode Pipeline Stages

F
e
tc

h
 4

 i
n
s
tr

u
c
ti
o
n
s

A
lig

n
 a

n
d
 m

e
rg

e

A
c
c
e
s
s
 B

H
T

/B
T

B
 f
o
r

 P
C

,

P
C

+
4
,
P

C
+

8
,

P
C

+
1
2

D
e
c
o
d
e
 4

 i
n
s
tr

u
c
ti
o
n
s

1
s
t
R

U
U

 f
u
n
c
ti
o
n
 (

R
U

U

a
llo

c
a
ti
o
n
,

s
rc

 o
p
e
ra

n
d

c
o
p
y
in

g
 (

o
r

T
a

g
 f
ie

ld
 s

e
t)

,
d
s
t

T
a
g
 f
ie

ld
 s

e
t)

If
 b

ra
n
c
h
,

u
s
e
 B

H
T

 i
n
fo

 t
o

d
e
te

rm
in

e
 n

e
x
t

P
C

 v
a
lu

e
 a

n
d

w
h
e
th

e
r

th
e
 I

$
 o

r
B

T
B

 i
n
s
tr

’s

a
re

 t
h
e
 n

e
x
t

fe
tc

h
 s

e
t

3
n
d
 R

U
U

 f
u
n
c
ti
o
n
 (

w
h
e
n
 b

o
th

s
rc

 o
p
e
ra

n
d
s
 R

e
a
d
y
 a

n
d
 F

U

fr
e
e
,
s
c
h
e
d
u
le

 R
e
s
u
lt
 B

u
s

a
n
d
 i
s
s
u
e
 i
n
s
tr

 f
o
r

e
x
e
c
u
ti
o
n
)

FETCH DECODE & DISPATCH ISSUE & EXECUTE

In Order Out of Order In Order

CS423 L05 SS.19 Spring 2012

SS Pipeline
 F

e
tc

h
 m

u
lt
ip

le
 i
n
s
tr

u
c
ti
o
n
s

 D
e
c
o
d
e
 i
n
s
tr

u
c
ti
o
n
s

1
s
t R

U
U

 f
u
n
c
ti
o
n
 (

R
U

U

a
llo

c
a
ti
o
n
,

s
rc

 o
p
e
ra

n
d

c
o
p
y
in

g
 (

o
r

T
a
g
 f
ie

ld
 s

e
t)

,

d
s
t
T
a
g
 f
ie

ld
 s

e
t)

3
n

d
 R

U
U

 f
u
n
c
ti
o
n
 (

w
h
e
n

b
o
th

 s
rc

 o
p
e

ra
n
d
s
 R

e
a
d
y

a
n
d
 F

U
 f
re

e
,

s
c
h
e
d
u
le

R
e
s
u
lt
 B

u
s
 a

n
d
 i
s
s
u
e
 i
n
s
tr

fo
r

e
x
e
c
u
ti
o
n
)

2
n

d
 R

U
U

 f
u
n
c
ti
o
n
 (

c
o
p
y

R
e
s
u
lt
 B

u
s
 d

a
ta

 t
o

m
a
tc

h
in

g
 s

rc
’s

 a
n
d
 t

o

R
U

U
 d

s
t
e
n
tr

y
)

4
th

 R
U

U
 f

u
n
c
ti
o
n
 (

fo
r

in
s
tr

a
t
R

U
U

_
H

e
a
d
 (

if

e
x
e
c
u
te

d
),

 w
ri
te

 d
s
t

C
o
n
te

n
ts

 t
o
 R

e
g
F

ile
)

FETCH DECODE &

DISPATCH

ISSUE &

EXECUTE

WRITE

BACK

RESULT

COMMIT

In Order In Order Out of Order In Order

CS423 L05 SS.20 Spring 2012

Result Buses Utilization

 Our SS model has only one Result Bus to carry results
generated by the FU’s to the RUU and LSQ

 Even at the high levels of performance, the utilization of the
Result Bus is only about 70% (i.e., the fraction of capacity
actually used)

 If a FU requests for the

Result Bus is not

granted, instruction

issue to that FU is

stalled until the bus

request can be granted

(i.e., the FU remains

“busy”)

0

1

1 2 3 4

ccom

troff

A
v
g

 #
 o

f
re

s
u

lt
s
 w

a
it

in
g

fo
r

th
e

 R
e

s
u

lt
 B

u
s

of Result Buses

From Johnson, 1992

CS423 L05 SS.21 Spring 2012

Arbitrating For Result Buses

 And since there are usually fewer Result Buses than
FUs, the FUs must continue to arbitrate for use of the
existing Result Buses

 The arbiter not only decides which FU is granted use of the
Result Buses, but also which of the two buses is to be used

- Prioritizing old requests over new helps prevent starvation

0

1

2

3

1 2 3 4

of Result Buses

S
p

e
e
d

u
p

Low

HM

High

 Reducing the impact of bus

contention by adding a

second Result Bus

improves performance (by

almost 19%)

 But adding a third Results

Buses yields only a very

small improvement in

performance (less than 3%)

From Johnson, 1992

CS423 L05 SS.22 Spring 2012

Result Forwarding

 Result forwarding supplies operands directly to the
waiting instr’s in the RUU to resolve true dependencies
that could not be resolved during decode

 The cost of forwarding is the comparison logic in the RUU to
compare the Result Bus Tag to the source operand Tags

 Need a set of comparators
for each Result Bus

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 1 2 3 4 5 6+

ccom

troff

F
ra

c
ti

o
n

 o
f

R
e
s
u

lt
s

of RUU Entries Receiving Result as

Input Operand

 About 2/3rd of all

results are

forwarded to one

waiting operand,

and about 1/6th are

forwarded to more

than one

From Johnson, 1992

CS423 L05 SS.23 Spring 2012

Performance Advantages

 Hardware complexity arises from four major hardware
features

 Out-of-order issue

 Register renaming

 Branch prediction

 4-way instruction fetch and decode

OOI Register

Renaming

Branch

Prediction

4-way Fetch

& Decode

52% 36% 30% 18%

From Johnson, 1992

CS423 L05 SS.24 Spring 2012

ILP in a Perfect OOI-OOC Processor

 The perfect processor has

 An infinite number of rename registers that eliminates all
storage hazards (i.e., write-before-write and write-before-read)

 No (fetch, decode, dispatch, issue, FU, buses, ports) limit on
the number of instr’s that can begin execution simultaneously
as long as read-before-write true data hazards are not present

 Perfect branch and jump (including jump register) prediction

 Loads can be moved before
stores (as long as the
addresses are not identical)
with memory address analysis

 All FU’s have a 1 cycle
latency

 Perfect caches with 1
cycle latency

55
63

18

75

119

150

0

40

80

120

160

g
cc

es
pr

es
so li

fp
pp

p

d
od

u
c

to
m

ca
tv

IP
C

From H&P, 2003

CS423 L05 SS.25 Spring 2012

Effect of Instruction Window Size on ILP

 Instruction window – the set of instructions that are
examined simultaneously for execution

0

40

80

120

160

In
fin

ite 2K 51
2

12
8

32 8 4

IP
C

gcc

espresso

li

fpppp

doduc

tomcatv

From H&P, 2003

CS423 L05 SS.26 Spring 2012

Effect of Realistic Branch Prediction on ILP

 On a processor with an instruction window size of 2K and
maximum 64-way issue capability

0

20

40

60

P
er

fe
ct

To
ur

na
m

en
t

S
ta

nd
ar

d
2-

bi
t

S
ta

tic

N
on

e

IP
C

gcc

espresso

li

fpppp

doduc

tomcatv

From H&P, 2003

CS423 L05 SS.27 Spring 2012

Effect of Finite Rename Registers

 On a processor with an instruction window size of 2K,
maximum 64-way issue capability, and a tournament
branch predictor with 8K entries

0

20

40

60

In
fin

ite

25
6

12
8

64 32
N
one

IP
C

gcc

espresso

li

fpppp

doduc

tomcatv

From H&P, 2003

CS423 L05 SS.28 Spring 2012

A SS Example

 Intel Pentium 4 (IA-32 ISA)
 Decodes the IA-32 instructions into microoperations

 Does register renaming with a RUU-like structure

 Has a 20 stage pipeline

T$ access
(Bpredict)

RUU
allocation

Instr
dispatch

RegFile
access

Execution

Commit

cycles 5 4 5 2 1 3

RUU
queue

FU
queues

µop
queue

 7 FUs: 2 integer ALUs, 1 FP ALU, 1FP move, load, store,

complex

 Up to 126 instructions in flight, including 48 loads and 24 stores

 4K entry branch predictor

