
CS423 L06 VLIW.1 Spring 2012

CS 423
 Computer Architecture

Spring 2012

Lecture 06:
VLIW Processors

Ozcan Ozturk

http://www.cs.bilkent.edu.tr/~ozturk/cs423/

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2005, UCB]

CS423 L06 VLIW.2 Spring 2012

Review: Multi-Issue Datapath Responsibilities

 Must handle, with a combination of hardware and software
 Data dependencies – aka data hazards

- True data dependencies (read after write)

– Use data forwarding hardware

– Use compiler scheduling

- Storage dependence (aka name dependence)

– Use register renaming to solve both

» Antidependencies (write after read)

» Output dependencies (write after write)

 Procedural dependencies – aka control hazards
- Use aggressive branch prediction (speculation)

- Use predication

 Resource conflicts – aka structural hazards
- Use resource duplication or resource pipelining to reduce (or

eliminate) resource conflicts

- Use arbitration for result and commit buses and register file read and
write ports

CS423 L06 VLIW.3 Spring 2012

Review: Multiple-Issue Processor Styles

 Dynamic multiple-issue processors (aka superscalar)

 Decisions on which instructions to execute simultaneously (in
the range of 2 to 8 in 2005) are being made dynamically (at run
time by the hardware)

 E.g., IBM Power 2, Pentium 4, MIPS R10K, HP PA 8500 IBM

 Static multiple-issue processors (aka VLIW)

 Decisions on which instructions to execute simultaneously are
being made statically (at compile time by the compiler)

 E.g., Intel Itanium and Itanium 2 for the IA-64 ISA – EPIC
(Explicit Parallel Instruction Computer)

- 128 bit “bundles” containing 3 instructions each 41 bits + 5 bit
template field (specifies which FU each instr needs)

- Five functional units (IntALU, MMedia, DMem, FPALU, Branch)

- Extensive support for speculation and predication

CS423 L06 VLIW.4 Spring 2012

History of VLIW Processors

 Started with (horizontal) microprogramming

 Very wide microinstructions used to directly generate control
signals in single-issue processors (e.g., IBM 360 series)

 VLIW for multi-issue processors first appeared in the
Multiflow and Cydrome (in the early 1980’s)

 Current commercial VLIW processors

 Intel i860 RISC (dual mode: scalar and VLIW)

 Intel I-64 (EPIC: Itanium and Itanium 2)

 Transmeta Crusoe

 Lucent/Motorola StarCore

 ADI TigerSHARC

 Infineon (Siemens) Carmel

CS423 L06 VLIW.5 Spring 2012

Static Multiple Issue Machines (VLIW)

 Static multiple-issue processors (aka VLIW) use the
compiler to decide which instructions to issue and
execute simultaneously

 Issue packet – the set of instructions that are bundled together
and issued in one clock cycle – think of it as one large instruction
with multiple operations

 The mix of instructions in the packet (bundle) is usually restricted
– a single “instruction” with several predefined fields

 The compiler does static branch prediction and code scheduling
to reduce (control) or eliminate (data) hazards

 VLIW’s have

 Multiple functional units (like SS processors)

 Multi-ported register files (again like SS processors)

 Wide program bus

CS423 L06 VLIW.6 Spring 2012

An Example: A VLIW MIPS

 Consider a 2-issue MIPS with a 2 instr bundle

ALU Op (R format)

or

Branch (I format)

Load or Store (I format)

64 bits

 Instructions are always fetched, decoded, and issued in

pairs

 If one instr of the pair can not be used, it is replaced with a noop

 Need 4 read ports and 2 write ports and a separate

memory address adder

CS423 L06 VLIW.7 Spring 2012

A MIPS VLIW (2-issue) Datapath

Instruction

Memory

Add

P
C

4

Write Data

Write Addr

Register

File

ALU

Add

Data

Memory

Sign

Extend

Add

Sign

Extend

 No hazard hardware (so

no load use allowed)

CS423 L06 VLIW.8 Spring 2012

Code Scheduling Example

 Consider the following loop code

lp: lw $t0,0($s1) # $t0=array element

 addu $t0,$t0,$s2 # add scalar in $s2

 sw $t0,0($s1) # store result

 addi $s1,$s1,-4 # decrement pointer

 bne $s1,$0,lp # branch if $s1 != 0

 Must “schedule” the instructions to avoid pipeline stalls

 Instructions in one bundle must be independent

 Must separate load use instructions from their loads by one

cycle

 Notice that the first two instructions have a load use

dependency, the next two and last two have data dependencies

 Assume branches are perfectly predicted by the hardware

CS423 L06 VLIW.9 Spring 2012

The Scheduled Code (Not Unrolled)

 Four clock cycles to execute 5 instructions for a

 CPI of 0.8 (versus the best case of 0.5)

 IPC of 1.25 (versus the best case of 2.0)

 noops don’t count towards performance !!

ALU or branch Data transfer CC

lp: lw $t0,0($s1) 1

addi $s1,$s1,-4 2

addu $t0,$t0,$s2 3

bne $s1,$0,lp sw $t0,4($s1) 4

CS423 L06 VLIW.10 Spring 2012

Loop Unrolling

 Loop unrolling – multiple copies of the loop body are
made and instructions from different iterations are
scheduled together as a way to increase ILP

 Apply loop unrolling (4 times for our example) and then
schedule the resulting code

 Eliminate unnecessary loop overhead instructions

 Schedule so as to avoid load use hazards

 During unrolling the compiler applies register renaming to
eliminate all data dependencies that are not true
dependencies

CS423 L06 VLIW.11 Spring 2012

Unrolled Code Example

lp: lw $t0,0($s1) # $t0=array element

 lw $t1,-4($s1) # $t1=array element

 lw $t2,-8($s1) # $t2=array element

 lw $t3,-12($s1) # $t3=array element

 addu $t0,$t0,$s2 # add scalar in $s2

 addu $t1,$t1,$s2 # add scalar in $s2

 addu $t2,$t2,$s2 # add scalar in $s2

 addu $t3,$t3,$s2 # add scalar in $s2

 sw $t0,0($s1) # store result

 sw $t1,-4($s1) # store result

 sw $t2,-8($s1) # store result

 sw $t3,-12($s1) # store result

 addi $s1,$s1,-16 # decrement pointer

 bne $s1,$0,lp # branch if $s1 != 0

CS423 L06 VLIW.12 Spring 2012

The Scheduled Code (Unrolled)

 Eight clock cycles to execute 14 instructions for a

 CPI of 0.57 (versus the best case of 0.5)

 IPC of 1.8 (versus the best case of 2.0)

ALU or branch Data transfer CC

lp: addi $s1,$s1,-16 lw $t0,0($s1) 1

lw $t1,12($s1) 2

addu $t0,$t0,$s2 lw $t2,8($s1) 3

addu $t1,$t1,$s2 lw $t3,4($s1) 4

addu $t2,$t2,$s2 sw $t0,16($s1) 5

addu $t3,$t3,$s2 sw $t1,12($s1) 6

sw $t2,8($s1) 7

bne $s1,$0,lp sw $t3,4($s1) 8

CS423 L06 VLIW.13 Spring 2012

Speculation

 Speculation is used to allow execution of future instr’s that
(may) depend on the speculated instruction

 Speculate on the outcome of a conditional branch (branch
prediction)

 Speculate that a store (for which we don’t yet know the address)
that precedes a load does not refer to the same address, allowing
the load to be scheduled before the store (load speculation)

 Must have (hardware and/or software) mechanisms for

 Checking to see if the guess was correct

 Recovering from the effects of the instructions that were executed
speculatively if the guess was incorrect

- In a VLIW processor the compiler can insert additional instr’s that
check the accuracy of the speculation and can provide a fix-up
routine to use when the speculation was incorrect

 Ignore and/or buffer exceptions created by speculatively
executed instructions until it is clear that they should really
occur

CS423 L06 VLIW.14 Spring 2012

Predication

 Predication can be used to eliminate branches by making
the execution of an instruction dependent on a
“predicate”, e.g.,

 if (p) {statement 1} else {statement 2}

 would normally compile using two branches. With
predication it would compile as

 (p) statement 1

 (~p) statement 2

 The use of (condition) indicates that the instruction is
committed only if condition is true

 Predication can be used to speculate as well as to
eliminate branches

CS423 L06 VLIW.15 Spring 2012

Compiler Support for VLIW Processors

 The compiler packs groups of independent instructions
into the bundle

 Done by code re-ordering (trace scheduling)

 The compiler uses loop unrolling to expose more ILP

 The compiler uses register renaming to solve name
dependencies and ensures no load use hazards occur

 While superscalars use dynamic prediction, VLIW’s
primarily depend on the compiler for branch prediction

 Loop unrolling reduces the number of conditional branches

 Predication eliminates if-the-else branch structures by replacing
them with predicated instructions

 The compiler predicts memory bank references to help
minimize memory bank conflicts

CS423 L06 VLIW.16 Spring 2012

CISC vs RISC vs SS vs VLIW

CISC RISC Superscalar VLIW

Instr size variable size fixed size fixed size fixed size (but

large)

Instr format variable

format

fixed format fixed format fixed format

Registers few, some

special

many GP GP and

rename (RUU)

many, many

GP

Memory

reference

embedded in

many instr’s

load/store load/store load/store

Key Issues decode

complexity

data

forwarding,

hazards

hardware

dependency

resolution

(compiler)

code

scheduling

Instruction

flow

IF ID EX M WB

IF ID EX M WB

EX M WB

IF ID EX M WB IF ID EX M WB

EX M WB IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

IF ID EX M WB

