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The Big Picture: Where are We Now?
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� Multiprocessor – multiple processors with a single shared 
address space

� Cluster – multiple computers (each with their own 
address space) connected over a local area network 
(LAN) functioning as a single system
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Applications Needing “Supercomputing”

� Energy (plasma physics (simulating fusion reactions), 
geophysical (petroleum) exploration)

� DoE stockpile stewardship (to ensure the safety and 
reliability of the nation’s stockpile of nuclear weapons)

� Earth and climate (climate and weather prediction, 
earthquake, tsunami prediction and mitigation of risks)

� Transportation (improving vehicles’ airflow dynamics, fuel 
consumption, crashworthiness, noise reduction)

� Bioinformatics and computational biology (genomics, 
protein folding, designer drugs)

� Societal health and safety (pollution reduction, disaster 
planning, terrorist action detection)

http://www.nap.edu/books/0309095026/html/
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Encountering Amdahl’s Law

� Speedup due to enhancement E is

Speedup w/ E =  ----------------------
Exec time w/o E

Exec time w/ E 

� Suppose that enhancement E accelerates a fraction F   
(F <1) of the task by a factor S (S>1) and the remainder 
of the task is unaffected

ExTime w/ E  = ExTime w/o E  ××××

Speedup w/ E =
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Examples: Amdahl’s Law

� Consider an enhancement which runs 20 times faster 
but which is only usable 25% of the time.

Speedup w/ E  =   

� What if its usable only 15% of the time?

Speedup w/ E  =   

� Amdahl’s Law tells us that to achieve linear speedup 
with 100 processors, none of the original computation 
can be scalar!

� To get a speedup of 99 from 100 processors, the 
percentage of the original program that could be scalar 
would have to be 0.01% or less

Speedup w/ E =    
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Supercomputer Style Migration (Top500)

� In the last 8 years uniprocessor and SIMDs disappeared 
while Clusters and Constellations grew from 3% to 80%

0

100

200

300

400

500

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

Clusters

Constellations

SIMDs

MPPs

SMPs

Uniproc's

Nov data

http://www.top500.org/list/2009/06/100

Cluster – whole computers 

interconnected using their 

I/O bus

Constellation – a cluster 

that uses an SMP 

multiprocessor as the 

building block



CS423  L08 Multicore.7 Spring, 2012

Multiprocessor/Clusters Key Questions

� Q1 – How do they share data?

� Q2 – How do they coordinate?

� Q3 – How scalable is the architecture?  How many   
processors can be supported?
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Flynn’s Classification Scheme

� Now obsolete except for  . . .

� SISD – single instruction, single data stream

� aka uniprocessor - what we have been talking about all semester

� SIMD – single instruction, multiple data streams

� single control unit broadcasting operations to multiple datapaths

� MISD – multiple instruction, single data

� no such machine (although some people put vector machines in 
this category)

� MIMD – multiple instructions, multiple data streams

� aka multiprocessors (SMPs, MPPs, clusters, NOWs)
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SIMD Processors

� Single control unit

� Multiple datapaths (processing elements – PEs) running 
in parallel

� Q1 – PEs are interconnected (usually via a mesh or torus) and 
exchange/share data as directed by the control unit

� Q2 – Each PE performs the same operation on its own local data
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Example SIMD Machines
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Multiprocessor Basic Organizations

� Processors connected by a single bus

� Processors connected by a network

2 to 36Bus

8 to 256NetworkPhysical 
connection

2 to 64UMA

8 to 256NUMAShared 
address

8 to 2048Message passingCommunication 
model

# of Proc
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Shared Address (Shared Memory) Multi’s

� UMAs (uniform memory access) – aka SMP (symmetric 
multiprocessors)

� all accesses to main memory take the same amount of time no 
matter which processor makes the request or which location is 
requested

� NUMAs (nonuniform memory access)

� some main memory accesses are faster than others depending on 
the processor making the request and which location is requested

� can scale to larger sizes than UMAs so are potentially higher 
performance

� Q1 – Single address space shared by all the processors

� Q2 – Processors coordinate/communicate through shared 
variables in memory (via loads and stores)

� Use of shared data must be coordinated via synchronization 
primitives (locks)
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N/UMA Remote Memory Access Times (RMAT)
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Single Bus (Shared Address UMA) Multi’s

� Caches are used to reduce latency and to lower bus traffic

� Must provide hardware to ensure that caches and memory 
are consistent (cache coherency)

� Must provide a hardware mechanism to support process 
synchronization

Processor Processor Processor

Cache Cache Cache

Single Bus

Memory I/O
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Summing 100,000 Numbers on 100 Processors

� How would you add 100,000 Numbers on 100 
processors?
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Summing 100,000 Numbers on 100 Processors

sum[Pn] = 0;
for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1)

sum[Pn] = sum[Pn] + A[i];

� Processors start by running a loop that sums their subset of 
vector A numbers (vectors A and sum are shared variables, 
Pn is the processor’s number, i is a private variable)

� The processors then coordinate in adding together the 
partial sums (half is a private variable initialized to 100 
(the number of processors))

repeat
synch(); /*synchronize first
if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];
half = half/2
if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half]

until (half == 1); /*final sum in sum[0]
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An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum[P0]sum[P1]sum[P2] sum[P3]sum[P4]sum[P5]sum[P6] sum[P7]sum[P8] sum[P9]

half = 10
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Message Passing Multiprocessors

� Each processor has its own private address space

� Q1 – Processors share data by explicitly sending and 
receiving information (messages)

� Q2 – Coordination is built into message passing 
primitives (send and receive)
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Multiprocessor Cache Coherency

� Cache coherency protocols

� Bus snooping – cache controllers monitor shared bus traffic with 
duplicate address tag hardware (so they don’t interfere with 
processor’s access to the cache) 

Proc1 Proc2 ProcN

DCache DCache DCache

Single Bus

Memory I/O

Snoop Snoop Snoop
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Bus Snooping Protocols

� Multiple copies are not a problem when reading

� Processor must have exclusive access to write a word

� What happens if two processors try to write to the same shared 
data word in the same clock cycle? The bus arbiter decides 
which processor gets the bus first (and this will be the 
processor with the first exclusive access).  Then the second 
processor will get exclusive access.  Thus, bus arbitration 
forces sequential behavior.

� This sequential consistency is the most conservative of the 
memory consistency models.  With it, the result of any 
execution is the same as if the accesses of each processor 
were kept in order and the accesses among different 
processors were interleaved.

� All other processors sharing that data must be informed 
of writes



CS423  L08 Multicore.21 Spring, 2012

Handling Writes

Ensuring that all other processors sharing data are 
informed of writes can be handled two ways:

1. Write-update (write-broadcast) – writing processor 
broadcasts new data over the bus, all copies are 
updated

� All writes go to the bus → higher bus traffic

� Since new values appear in caches sooner, can reduce latency

2. Write-invalidate – writing processor issues invalidation 
signal on bus, cache snoops check to see if they have a 
copy of the data, if so they invalidate their cache block 
containing the word (this allows multiple readers but 
only one writer)

� Uses the bus only on the first write → lower bus traffic, so better 
use of bus bandwidth
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Write-Invalidate CC Examples
� I = invalid (many), S = shared (many), M = modified (only one)
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Other Coherence Protocols

� There are many variations on cache coherence protocols

� Another write-invalidate protocol used in the Pentium 4 
(and many other micro’s) is MESI with four states:

� Modified – same

� Exclusive – only one copy of the shared data is allowed to be 
cached; memory has an up-to-date copy

- Since there is only one copy of the block, write hits don’t need to 
send invalidate signal

� Shared – multiple copies of the shared data may be cached (i.e., 
data permitted to be cached with more than one processor); 
memory has an up-to-date copy

� Invalid – same 
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Process Synchronization

� Need to be able to coordinate processes working on a 
common task

� Lock variables (semaphores) are used to coordinate or 
synchronize processes

� Need an architecture-supported arbitration mechanism to 
decide which processor gets access to the lock variable

� Single bus provides arbitration mechanism, since the bus is the 
only path to memory – the processor that gets the bus wins
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Review:  Summing Numbers on a SMP

sum[Pn] = 0;
for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1)

sum[Pn] = sum[Pn] + A[i];
/* each processor sums its
/* subset of vector A

� Pn is the processor’s number, vectors A and sum are 
shared variables, i is a private variable, half is a private
variable initialized to the number of processors

repeat /* adding together the 
/* partial sums

synch(); /*synchronize first
if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];
half = half/2
if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1); /*final sum in sum[0]
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An Example with 10 Processors

sum[P0] sum[P1] sum[P2] sum[P3]sum[P4]sum[P5]sum[P6] sum[P7] sum[P8] sum[P9]

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P0 P1 P2 P3 P4

� synch() :  Processors must synchronize before the 
“consumer” processor tries to read the results from the 
memory location written by the “producer” processor

� Barrier synchronization – a synchronization scheme where 
processors wait at the barrier, not proceeding until every processor 
has reached it
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Network Connected Multiprocessors

� Either a single address space (NUMA and ccNUMA) with 
implicit processor communication via loads and stores or
multiple private memories with message passing 
communication with sends and receives

� Interconnection network supports interprocessor communication

Processor Processor Processor

Cache Cache Cache

Interconnection Network (IN)

Memory Memory Memory
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Summing 100,000 Numbers on 100 Processors

sum = 0;
for (i = 0; i<1000; i = i + 1)

sum = sum + Al[i]; /* sum local array subset

� Start by distributing 1000 elements of vector A to each of 
the local memories and summing each subset in parallel

� The processors then coordinate in adding together the sub 
sums (Pn is the number of processors, send(x,y ) sends 
value y to processor x , and receive() receives a value)

half = 100;
limit = 100;
repeat

half = (half+1)/2; /*dividing line
if (Pn>= half && Pn<limit) send(Pn-half,sum);
if (Pn<(limit/2)) sum = sum + receive();
limit = half;

until (half == 1); /*final sum in P0’s sum
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An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum sum sum sum sum sum sum sum sum sum

half = 10
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Communication in Network Connected Multi’s

� Implicit communication via loads and stores

� hardware designers have to provide coherent caches and 
process synchronization primitive 

� lower communication overhead 

� harder to overlap computation with communication

� more efficient to use an address to remote data when demanded
rather than to send for it in case it might be used (such a 
machine has distributed shared memory (DSM))

� Explicit communication via sends and receives

� simplest solution for hardware designers

� higher communication overhead 

� easier to overlap computation with communication 

� easier for the programmer to optimize communication
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Cache Coherency in NUMAs

� For performance reasons we want to allow the shared 
data to be stored in caches

� Once again have multiple copies of the same data with 
the same address in different processors

� bus snooping won’t work, since there is no single bus on which all 
memory references are broadcast

� Directory-base protocols

� keep a directory that is a repository for the state of every block in 
main memory (which caches have copies, whether it is dirty, etc.)

� directory entries can be distributed (sharing status of a block 
always in a single known location) to reduce contention

� directory controller sends explicit commands over the IN to each
processor that has a copy of the data
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IN Performance Metrics

� Network cost

� number of switches

� number of (bidirectional) links on a switch to connect to the 
network (plus one link to connect to the processor)

� width in bits per link, length of link

� Network bandwidth (NB) – represents the best case

� bandwidth of each link * number of links

� Bisection bandwidth (BB) – represents the worst case

� divide the machine in two parts, each with half the nodes and 
sum the bandwidth of the links that cross the dividing line

� Other IN performance issues

� latency on an unloaded network to send and receive messages

� throughput – maximum # of messages transmitted per unit time

� # routing hops worst case, congestion control and delay
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Bus IN

� N processors,  1 switch  (    ),  1 link (the bus)

� Only 1 simultaneous transfer at a time

� NB = link (bus) bandwidth * 1

� BB = link (bus) bandwidth * 1

Processor

node

Bidirectional

network switch
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Ring IN

� If a link is as fast as a bus, the ring is only twice as fast 
as a bus in the worst case, but is N times faster in the 
best case

� N processors, N switches, 2 links/switch, N links

� N simultaneous transfers

� NB = link bandwidth * N

� BB = link bandwidth * 2
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Fully Connected IN

� N processors, N switches, N-1 links/switch,                   
(N*(N-1))/2 links

� N simultaneous transfers

� NB = link bandwidth * (N*(N-1))/2

� BB = link bandwidth * (N/2)2
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Crossbar (Xbar) Connected IN

� N processors, N2 switches (unidirectional),2 links/switch, 
N2 links

� N simultaneous transfers

� NB = link bandwidth * N

� BB = link bandwidth * N/2
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Hypercube (Binary N-cube) Connected IN

� N processors, N switches, logN links/switch, (NlogN)/2 
links

� N simultaneous transfers

� NB = link bandwidth * (NlogN)/2

� BB = link bandwidth * N/2

2-cube 3-cube
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2D and 3D Mesh/Torus Connected IN

� N simultaneous transfers

� NB = link bandwidth * 4N       or    link bandwidth * 6N

� BB = link bandwidth * 2 N1/2    or    link bandwidth * 2 N2/3

� N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D 
torus) links/switch, 4N/2 links or 6N/2 links
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IN Comparison

� For a 64 processor system

1Total # of 
switches    

1Total # of 
links (bidi)

Links per 
switch

1Bisection 
bandwidth

1Network 
bandwidth

Fully 
connected

6-cube2D 
Torus

RingBus

64

2

64

2+1

64+64

256

16

64

4+1

128+64

192

32

64

6+7

192+64

2016

1024

64

63+1

2016+64
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IBM BlueGene

3 B/cycle3 B/cycleTorus BW 

3D Torus, Tree, 
Barrier

3D Torus, Tree, 
Barrier

Networks

65,536 dual proc512 dual proc#  Processors

1.5 MW9 KWTotal Power

2500 sq feet9 sq feetFoot Print

16 / 32 TByte128 GByteMemory Size

180 / 360 TFlops/s1.0 / 2.0 TFlops/sPeak Perf

BlueGene/L512-node proto
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Summary
� Flynn’s classification of processors - SISD, SIMD, MIMD

� Q1 – How do processors share data?

� Q2 – How do processors coordinate their activity?

� Q3 – How scalable is the architecture (what is the maximum number of
processors)?

� Shared address multis – UMAs and NUMAs

� Scalability of bus connected UMAs limited (< ~ 36 processors)

� Network connected NUMAs more scalable

� Interconnection Networks (INs)

- fully connected, xbar

- ring

- mesh

- n-cube, fat tree

� Message passing multis

� Cluster connected (NOWs) multis


