
CS423 L08 Multicore.1 Spring, 2012

CS 423
Computer Architecture

Spring 2012

Lecture 08:
Intro to Multiprocessors

Ozcan Ozturk

http://www.cs.bilkent.edu.tr/~ozturk/cs423/

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2005, UCB]

CS423 L08 Multicore.2 Spring, 2012

The Big Picture: Where are We Now?

Processor

Control

Datapath

Memory

Input

Output

Input

Output

Memory

Processor

Control

Datapath

� Multiprocessor – multiple processors with a single shared
address space

� Cluster – multiple computers (each with their own
address space) connected over a local area network
(LAN) functioning as a single system

CS423 L08 Multicore.3 Spring, 2012

Applications Needing “Supercomputing”

� Energy (plasma physics (simulating fusion reactions),
geophysical (petroleum) exploration)

� DoE stockpile stewardship (to ensure the safety and
reliability of the nation’s stockpile of nuclear weapons)

� Earth and climate (climate and weather prediction,
earthquake, tsunami prediction and mitigation of risks)

� Transportation (improving vehicles’ airflow dynamics, fuel
consumption, crashworthiness, noise reduction)

� Bioinformatics and computational biology (genomics,
protein folding, designer drugs)

� Societal health and safety (pollution reduction, disaster
planning, terrorist action detection)

http://www.nap.edu/books/0309095026/html/

CS423 L08 Multicore.4 Spring, 2012

Encountering Amdahl’s Law

� Speedup due to enhancement E is

Speedup w/ E = ----------------------
Exec time w/o E

Exec time w/ E

� Suppose that enhancement E accelerates a fraction F
(F <1) of the task by a factor S (S>1) and the remainder
of the task is unaffected

ExTime w/ E = ExTime w/o E ××××

Speedup w/ E =

CS423 L08 Multicore.5 Spring, 2012

Examples: Amdahl’s Law

� Consider an enhancement which runs 20 times faster
but which is only usable 25% of the time.

Speedup w/ E =

� What if its usable only 15% of the time?

Speedup w/ E =

� Amdahl’s Law tells us that to achieve linear speedup
with 100 processors, none of the original computation
can be scalar!

� To get a speedup of 99 from 100 processors, the
percentage of the original program that could be scalar
would have to be 0.01% or less

Speedup w/ E =

CS423 L08 Multicore.6 Spring, 2012

Supercomputer Style Migration (Top500)

� In the last 8 years uniprocessor and SIMDs disappeared
while Clusters and Constellations grew from 3% to 80%

0

100

200

300

400

500

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

Clusters

Constellations

SIMDs

MPPs

SMPs

Uniproc's

Nov data

http://www.top500.org/list/2009/06/100

Cluster – whole computers

interconnected using their

I/O bus

Constellation – a cluster

that uses an SMP

multiprocessor as the

building block

CS423 L08 Multicore.7 Spring, 2012

Multiprocessor/Clusters Key Questions

� Q1 – How do they share data?

� Q2 – How do they coordinate?

� Q3 – How scalable is the architecture? How many
processors can be supported?

CS423 L08 Multicore.8 Spring, 2012

Flynn’s Classification Scheme

� Now obsolete except for . . .

� SISD – single instruction, single data stream

� aka uniprocessor - what we have been talking about all semester

� SIMD – single instruction, multiple data streams

� single control unit broadcasting operations to multiple datapaths

� MISD – multiple instruction, single data

� no such machine (although some people put vector machines in
this category)

� MIMD – multiple instructions, multiple data streams

� aka multiprocessors (SMPs, MPPs, clusters, NOWs)

CS423 L08 Multicore.9 Spring, 2012

SIMD Processors

� Single control unit

� Multiple datapaths (processing elements – PEs) running
in parallel

� Q1 – PEs are interconnected (usually via a mesh or torus) and
exchange/share data as directed by the control unit

� Q2 – Each PE performs the same operation on its own local data

PE

PE

PE

PE PE

PE

PE

PE PE

PE

PE

PE PE

PE

PE

PE

Control

CS423 L08 Multicore.10 Spring, 2012

Example SIMD Machines

1024

512

2

2

1

Max
memory

(MB)

2,560514,0961980ICLDAP

MasPar

Thinking
Machines

Goodyear

UIUC

Maker

23,00025416,3841989MP-1216

16,3847165,5361987CM-2

20,48010116,3841982MPP

2,5601364641972Illiac IV

System
BW

(MB/s)

PE
clock
(MHz)

b/
PE

PEsYear

CS423 L08 Multicore.11 Spring, 2012

Multiprocessor Basic Organizations

� Processors connected by a single bus

� Processors connected by a network

2 to 36Bus

8 to 256NetworkPhysical
connection

2 to 64UMA

8 to 256NUMAShared
address

8 to 2048Message passingCommunication
model

of Proc

CS423 L08 Multicore.12 Spring, 2012

Shared Address (Shared Memory) Multi’s

� UMAs (uniform memory access) – aka SMP (symmetric
multiprocessors)

� all accesses to main memory take the same amount of time no
matter which processor makes the request or which location is
requested

� NUMAs (nonuniform memory access)

� some main memory accesses are faster than others depending on
the processor making the request and which location is requested

� can scale to larger sizes than UMAs so are potentially higher
performance

� Q1 – Single address space shared by all the processors

� Q2 – Processors coordinate/communicate through shared
variables in memory (via loads and stores)

� Use of shared data must be coordinated via synchronization
primitives (locks)

CS423 L08 Multicore.13 Spring, 2012

N/UMA Remote Memory Access Times (RMAT)

???Fat tree10240NUMA2004NASA Columbia

500Fat tree512NUMA1999SGI Origin 3000

275Switched bus64SMP2003HP Superdome
9000

240Switched bus8SMP2002Sun V880

400Switched bus32SMP1999Compaq
AlphaServer GS

10008 x 8 crossbar32SMP1998HP V

3002-way 3D torus2048NUMA1996Cray 3TE

500Address buses,
data switch

64SMP1996Sun Starfire

RMAT
(ns)

Interconnection
Network

Max
Proc

TypeYear

CS423 L08 Multicore.14 Spring, 2012

Single Bus (Shared Address UMA) Multi’s

� Caches are used to reduce latency and to lower bus traffic

� Must provide hardware to ensure that caches and memory
are consistent (cache coherency)

� Must provide a hardware mechanism to support process
synchronization

Processor Processor Processor

Cache Cache Cache

Single Bus

Memory I/O

CS423 L08 Multicore.15 Spring, 2012

Summing 100,000 Numbers on 100 Processors

� How would you add 100,000 Numbers on 100
processors?

CS423 L08 Multicore.16 Spring, 2012

Summing 100,000 Numbers on 100 Processors

sum[Pn] = 0;
for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1)

sum[Pn] = sum[Pn] + A[i];

� Processors start by running a loop that sums their subset of
vector A numbers (vectors A and sum are shared variables,
Pn is the processor’s number, i is a private variable)

� The processors then coordinate in adding together the
partial sums (half is a private variable initialized to 100
(the number of processors))

repeat
synch(); /*synchronize first
if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];
half = half/2
if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half]

until (half == 1); /*final sum in sum[0]

CS423 L08 Multicore.17 Spring, 2012

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum[P0]sum[P1]sum[P2] sum[P3]sum[P4]sum[P5]sum[P6] sum[P7]sum[P8] sum[P9]

half = 10

CS423 L08 Multicore.18 Spring, 2012

Message Passing Multiprocessors

� Each processor has its own private address space

� Q1 – Processors share data by explicitly sending and
receiving information (messages)

� Q2 – Coordination is built into message passing
primitives (send and receive)

CS423 L08 Multicore.19 Spring, 2012

Multiprocessor Cache Coherency

� Cache coherency protocols

� Bus snooping – cache controllers monitor shared bus traffic with
duplicate address tag hardware (so they don’t interfere with
processor’s access to the cache)

Proc1 Proc2 ProcN

DCache DCache DCache

Single Bus

Memory I/O

Snoop Snoop Snoop

CS423 L08 Multicore.20 Spring, 2012

Bus Snooping Protocols

� Multiple copies are not a problem when reading

� Processor must have exclusive access to write a word

� What happens if two processors try to write to the same shared
data word in the same clock cycle? The bus arbiter decides
which processor gets the bus first (and this will be the
processor with the first exclusive access). Then the second
processor will get exclusive access. Thus, bus arbitration
forces sequential behavior.

� This sequential consistency is the most conservative of the
memory consistency models. With it, the result of any
execution is the same as if the accesses of each processor
were kept in order and the accesses among different
processors were interleaved.

� All other processors sharing that data must be informed
of writes

CS423 L08 Multicore.21 Spring, 2012

Handling Writes

Ensuring that all other processors sharing data are
informed of writes can be handled two ways:

1. Write-update (write-broadcast) – writing processor
broadcasts new data over the bus, all copies are
updated

� All writes go to the bus → higher bus traffic

� Since new values appear in caches sooner, can reduce latency

2. Write-invalidate – writing processor issues invalidation
signal on bus, cache snoops check to see if they have a
copy of the data, if so they invalidate their cache block
containing the word (this allows multiple readers but
only one writer)

� Uses the bus only on the first write → lower bus traffic, so better
use of bus bandwidth

CS423 L08 Multicore.22 Spring, 2012

Write-Invalidate CC Examples
� I = invalid (many), S = shared (many), M = modified (only one)

Proc 1

A S

Main Mem

A

Proc 2

A I

1. read miss for A

2. read request for A

3. snoop sees

read request for

A & lets MM

supply A

4. gets A from MM

& changes its state

to S

Proc 1

A S

Main Mem

A

Proc 2

A I

1. write miss for A

2. writes A &

changes its state

to M

Proc 1

A M

Main Mem

A

Proc 2

A I

1. read miss for A3. snoop sees read

request for A, writes-

back A to MM

2. read request for A

4. gets A from MM

& changes its state

to S

3. P2 sends invalidate for A

4. change A

state to I

5. P2 sends invalidate for A

5. change A

state to S

Proc 1

A M

Main Mem

A

Proc 2

A I

1. write miss for A

2. writes A &

changes its state

to M

3. P2 sends invalidate for A

4. change A

state to I

CS423 L08 Multicore.23 Spring, 2012

Other Coherence Protocols

� There are many variations on cache coherence protocols

� Another write-invalidate protocol used in the Pentium 4
(and many other micro’s) is MESI with four states:

� Modified – same

� Exclusive – only one copy of the shared data is allowed to be
cached; memory has an up-to-date copy

- Since there is only one copy of the block, write hits don’t need to
send invalidate signal

� Shared – multiple copies of the shared data may be cached (i.e.,
data permitted to be cached with more than one processor);
memory has an up-to-date copy

� Invalid – same

CS423 L08 Multicore.24 Spring, 2012

Process Synchronization

� Need to be able to coordinate processes working on a
common task

� Lock variables (semaphores) are used to coordinate or
synchronize processes

� Need an architecture-supported arbitration mechanism to
decide which processor gets access to the lock variable

� Single bus provides arbitration mechanism, since the bus is the
only path to memory – the processor that gets the bus wins

CS423 L08 Multicore.25 Spring, 2012

Review: Summing Numbers on a SMP

sum[Pn] = 0;
for (i = 1000*Pn; i< 1000*(Pn+1); i = i + 1)

sum[Pn] = sum[Pn] + A[i];
/* each processor sums its
/* subset of vector A

� Pn is the processor’s number, vectors A and sum are
shared variables, i is a private variable, half is a private
variable initialized to the number of processors

repeat /* adding together the
/* partial sums

synch(); /*synchronize first
if (half%2 != 0 && Pn == 0)

sum[0] = sum[0] + sum[half-1];
half = half/2
if (Pn<half) sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1); /*final sum in sum[0]

CS423 L08 Multicore.26 Spring, 2012

An Example with 10 Processors

sum[P0] sum[P1] sum[P2] sum[P3]sum[P4]sum[P5]sum[P6] sum[P7] sum[P8] sum[P9]

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P0 P1 P2 P3 P4

� synch() : Processors must synchronize before the
“consumer” processor tries to read the results from the
memory location written by the “producer” processor

� Barrier synchronization – a synchronization scheme where
processors wait at the barrier, not proceeding until every processor
has reached it

CS423 L08 Multicore.27 Spring, 2012

Network Connected Multiprocessors

� Either a single address space (NUMA and ccNUMA) with
implicit processor communication via loads and stores or
multiple private memories with message passing
communication with sends and receives

� Interconnection network supports interprocessor communication

Processor Processor Processor

Cache Cache Cache

Interconnection Network (IN)

Memory Memory Memory

CS423 L08 Multicore.28 Spring, 2012

Summing 100,000 Numbers on 100 Processors

sum = 0;
for (i = 0; i<1000; i = i + 1)

sum = sum + Al[i]; /* sum local array subset

� Start by distributing 1000 elements of vector A to each of
the local memories and summing each subset in parallel

� The processors then coordinate in adding together the sub
sums (Pn is the number of processors, send(x,y) sends
value y to processor x , and receive() receives a value)

half = 100;
limit = 100;
repeat

half = (half+1)/2; /*dividing line
if (Pn>= half && Pn<limit) send(Pn-half,sum);
if (Pn<(limit/2)) sum = sum + receive();
limit = half;

until (half == 1); /*final sum in P0’s sum

CS423 L08 Multicore.29 Spring, 2012

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum sum sum sum sum sum sum sum sum sum

half = 10

CS423 L08 Multicore.30 Spring, 2012

Communication in Network Connected Multi’s

� Implicit communication via loads and stores

� hardware designers have to provide coherent caches and
process synchronization primitive

� lower communication overhead

� harder to overlap computation with communication

� more efficient to use an address to remote data when demanded
rather than to send for it in case it might be used (such a
machine has distributed shared memory (DSM))

� Explicit communication via sends and receives

� simplest solution for hardware designers

� higher communication overhead

� easier to overlap computation with communication

� easier for the programmer to optimize communication

CS423 L08 Multicore.31 Spring, 2012

Cache Coherency in NUMAs

� For performance reasons we want to allow the shared
data to be stored in caches

� Once again have multiple copies of the same data with
the same address in different processors

� bus snooping won’t work, since there is no single bus on which all
memory references are broadcast

� Directory-base protocols

� keep a directory that is a repository for the state of every block in
main memory (which caches have copies, whether it is dirty, etc.)

� directory entries can be distributed (sharing status of a block
always in a single known location) to reduce contention

� directory controller sends explicit commands over the IN to each
processor that has a copy of the data

CS423 L08 Multicore.32 Spring, 2012

IN Performance Metrics

� Network cost

� number of switches

� number of (bidirectional) links on a switch to connect to the
network (plus one link to connect to the processor)

� width in bits per link, length of link

� Network bandwidth (NB) – represents the best case

� bandwidth of each link * number of links

� Bisection bandwidth (BB) – represents the worst case

� divide the machine in two parts, each with half the nodes and
sum the bandwidth of the links that cross the dividing line

� Other IN performance issues

� latency on an unloaded network to send and receive messages

� throughput – maximum # of messages transmitted per unit time

� # routing hops worst case, congestion control and delay

CS423 L08 Multicore.33 Spring, 2012

Bus IN

� N processors, 1 switch (), 1 link (the bus)

� Only 1 simultaneous transfer at a time

� NB = link (bus) bandwidth * 1

� BB = link (bus) bandwidth * 1

Processor

node

Bidirectional

network switch

CS423 L08 Multicore.34 Spring, 2012

Ring IN

� If a link is as fast as a bus, the ring is only twice as fast
as a bus in the worst case, but is N times faster in the
best case

� N processors, N switches, 2 links/switch, N links

� N simultaneous transfers

� NB = link bandwidth * N

� BB = link bandwidth * 2

CS423 L08 Multicore.35 Spring, 2012

Fully Connected IN

� N processors, N switches, N-1 links/switch,
(N*(N-1))/2 links

� N simultaneous transfers

� NB = link bandwidth * (N*(N-1))/2

� BB = link bandwidth * (N/2)2

CS423 L08 Multicore.36 Spring, 2012

Crossbar (Xbar) Connected IN

� N processors, N2 switches (unidirectional),2 links/switch,
N2 links

� N simultaneous transfers

� NB = link bandwidth * N

� BB = link bandwidth * N/2

CS423 L08 Multicore.37 Spring, 2012

Hypercube (Binary N-cube) Connected IN

� N processors, N switches, logN links/switch, (NlogN)/2
links

� N simultaneous transfers

� NB = link bandwidth * (NlogN)/2

� BB = link bandwidth * N/2

2-cube 3-cube

CS423 L08 Multicore.38 Spring, 2012

2D and 3D Mesh/Torus Connected IN

� N simultaneous transfers

� NB = link bandwidth * 4N or link bandwidth * 6N

� BB = link bandwidth * 2 N1/2 or link bandwidth * 2 N2/3

� N processors, N switches, 2, 3, 4 (2D torus) or 6 (3D
torus) links/switch, 4N/2 links or 6N/2 links

CS423 L08 Multicore.39 Spring, 2012

IN Comparison

� For a 64 processor system

1Total # of
switches

1Total # of
links (bidi)

Links per
switch

1Bisection
bandwidth

1Network
bandwidth

Fully
connected

6-cube2D
Torus

RingBus

64

2

64

2+1

64+64

256

16

64

4+1

128+64

192

32

64

6+7

192+64

2016

1024

64

63+1

2016+64

CS423 L08 Multicore.40 Spring, 2012

IBM BlueGene

3 B/cycle3 B/cycleTorus BW

3D Torus, Tree,
Barrier

3D Torus, Tree,
Barrier

Networks

65,536 dual proc512 dual proc# Processors

1.5 MW9 KWTotal Power

2500 sq feet9 sq feetFoot Print

16 / 32 TByte128 GByteMemory Size

180 / 360 TFlops/s1.0 / 2.0 TFlops/sPeak Perf

BlueGene/L512-node proto

CS423 L08 Multicore.41 Spring, 2012

Summary
� Flynn’s classification of processors - SISD, SIMD, MIMD

� Q1 – How do processors share data?

� Q2 – How do processors coordinate their activity?

� Q3 – How scalable is the architecture (what is the maximum number of
processors)?

� Shared address multis – UMAs and NUMAs

� Scalability of bus connected UMAs limited (< ~ 36 processors)

� Network connected NUMAs more scalable

� Interconnection Networks (INs)

- fully connected, xbar

- ring

- mesh

- n-cube, fat tree

� Message passing multis

� Cluster connected (NOWs) multis

