CS 426

The CUDA Programming Model
Overview

- Massively Parallel Processing
- CPU/GPU Architecture
- GPUs
- CUDA
- OpenCL
- APU
- Accelerators - MIC
Why Massively Parallel Processing?

- A quiet revolution and potential build-up
 - Calculation: TFLOPS vs. 100 GFLOPS
 - Memory Bandwidth: ~10x

![Graph showing the performance gap between GPUs and CPUs](image)

- GPU in every PC—massive volume and potential impact
NVIDIA Tesla Family

NVIDIA Tesla Family Specification Comparison

<table>
<thead>
<tr>
<th></th>
<th>Tesla K80</th>
<th>Tesla K40</th>
<th>Tesla K20X</th>
<th>Tesla K20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream Processors</td>
<td>2 x 2496</td>
<td>2880</td>
<td>2688</td>
<td>2496</td>
</tr>
<tr>
<td>Core Clock</td>
<td>562MHz</td>
<td>745MHz</td>
<td>732MHz</td>
<td>706MHz</td>
</tr>
<tr>
<td>Boost Clock(s)</td>
<td>875MHz</td>
<td>810MHz, 875MHz</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Memory Clock</td>
<td>5GHz GDDR5</td>
<td>6GHz GDDR5</td>
<td>5.2GHz GDDR5</td>
<td>5.2GHz GDDR5</td>
</tr>
<tr>
<td>Memory Bus Width</td>
<td>2 x 384-bit</td>
<td>384-bit</td>
<td>384-bit</td>
<td>320-bit</td>
</tr>
<tr>
<td>VRAM</td>
<td>2 x 12GB</td>
<td>12GB</td>
<td>6GB</td>
<td>5GB</td>
</tr>
<tr>
<td>Single Precision</td>
<td>8.74 TFLOPS</td>
<td>4.29 TFLOPS</td>
<td>3.95 TFLOPS</td>
<td>3.52 TFLOPS</td>
</tr>
<tr>
<td>Double Precision</td>
<td>2.91 TFLOPS (1/3)</td>
<td>1.43 TFLOPS (1/3)</td>
<td>1.31 TFLOPS (1/3)</td>
<td>1.17 TFLOPS (1/3)</td>
</tr>
<tr>
<td>Transistor Count</td>
<td>2 x 7.1B(?)</td>
<td>7.1B</td>
<td>7.1B</td>
<td>7.1B</td>
</tr>
<tr>
<td>TDP</td>
<td>300W</td>
<td>235W</td>
<td>235W</td>
<td>225W</td>
</tr>
<tr>
<td>Cooling</td>
<td>Passive</td>
<td>Active/Passive</td>
<td>Passive</td>
<td>Active/Passive</td>
</tr>
<tr>
<td>Manufacturing Process</td>
<td>TSMC 28nm</td>
<td>TSMC 28nm</td>
<td>TSMC 28nm</td>
<td>TSMC 28nm</td>
</tr>
<tr>
<td>Architecture</td>
<td>Kepler</td>
<td>Kepler</td>
<td>Kepler</td>
<td>Kepler</td>
</tr>
<tr>
<td>Launch Price</td>
<td>$5000</td>
<td>$5499</td>
<td>~$3799</td>
<td>~$3299</td>
</tr>
</tbody>
</table>
NVIDIA Tesla K80

NVIDIA® TESLA® ACCELERATOR PERFORMANCE

<table>
<thead>
<tr>
<th></th>
<th>NVIDIA Tesla K80</th>
<th>NVIDIA Tesla K40</th>
<th>CPU</th>
</tr>
</thead>
</table>

Graph showing performance comparison with different applications and categories:

- Computational Chemistry and Molecular Dynamics
- Materials Science
- Physics

Applications include:
- GROMACS
- LAMMPS
- NAMD
- AMBER14
- HOOMD-BLUE
- CP2K
- QUANTUM ESPRESSO
- LSMS
- MINIFE (CGTIME)
- SPECFEM3D
- CLOVERLEAF
- MILC
- CHROMA
- RTM
- LINPACK
- CAFFE
Ex: Deep Learning in GPUs

- **Tesla V100**

<table>
<thead>
<tr>
<th>Processor</th>
<th>SMs</th>
<th>CUDA Cores</th>
<th>Tensor Cores</th>
<th>Frequency</th>
<th>TFLOPs (double)</th>
<th>TFLOPs (single)</th>
<th>Cache</th>
<th>Max. Memory</th>
<th>Memory B/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nvidia P100 PCIe (Pascal)</td>
<td>56</td>
<td>3,584</td>
<td>N/A</td>
<td>1,126 MHz</td>
<td>4.7</td>
<td>9.3</td>
<td>4 MB L2</td>
<td>16 GB</td>
<td>720 GB/s</td>
</tr>
<tr>
<td>Nvidia V100 PCIe (Volta)</td>
<td>80</td>
<td>5,120</td>
<td>640</td>
<td>1.53 GHz</td>
<td>7</td>
<td>14</td>
<td>6 MB L2</td>
<td>16 GB</td>
<td>900 GB/s</td>
</tr>
</tbody>
</table>
GeForce 8800 (2007)

16 highly threaded SM’s,
>128 FPU’s,
367 GFLOPS,
768 MB DRAM,
86.4 GB/S Mem BW,
4GB/S BW to CPU
Fermi (2010)

~1.5TFLOPS (SP)/~800GFLOPS (DP)
230 GB/s DRAM Bandwidth
Pascal GP100 - 3840 CUDA cores (2016)
Future Apps Reflect a Concurrent World

● Exciting applications in future mass computing market have been traditionally considered “supercomputing applications”
 ■ Molecular dynamics simulation, Video and audio coding and manipulation, 3D imaging and visualization, Consumer game physics, and virtual reality products
 ■ These “Super-apps” represent and model physical, concurrent world

● Various granularities of parallelism exist, but…
 ■ programming model must not hinder parallel implementation
 ■ data delivery needs careful management
Stretching Traditional Architectures

● Traditional parallel architectures cover some super-applications
 ■ DSP, GPU, network apps, Scientific
● The game is to grow mainstream architectures “out” or domain-specific architectures “in”
 ■ CUDA is latter
GeForce 8800 GTX vs. 2.2GHz Opteron 248

10× speedup in a kernel is typical, as long as the kernel can occupy enough parallel threads

25× to 400× speedup if the function’s data requirements and control flow suit the GPU and the application is optimized
Classic PC architecture

- Northbridge connects 3 components that must communicate at high speed
 - CPU, DRAM, video
 - Video also needs to have 1st-class access to DRAM
 - Previous NVIDIA cards are connected to AGP, up to 2 GB/s transfers

- Southbridge serves as a concentrator for slower I/O devices
PCI as Memory Mapped I/O

- PCI device registers are mapped into the CPU’s physical address space
 - Accessed through loads/stores (kernel mode)

- Addresses assigned to the PCI devices at boot time
 - All devices listen for their addresses
PCI Express (PCIe)

- Switched, point-to-point connection
 - Each card has a dedicated “link” to the central switch, no bus arbitration.
 - Packet switches messages form virtual channel
 - Prioritized packets for QoS
 - E.g., real-time video streaming
PCle PC Architecture

- PCIe forms the interconnect backbone
 - Northbridge/Southbridge are both PCIe switches
 - Some Southbridge designs have built-in PCI-PCIe bridge to allow old PCI cards
 - Some PCIe cards are PCI cards with a PCI-PCIe bridge
- Source: Jon Stokes, PCI Express: An Overview
 - http://arstechnica.com/articles/paedia/hardware/pcie.ars
Intel Skylake Processor (2015)
Intel Skylake Processor (2015)
Intel Ivy Town Xeon + FPGA

Top -- StratixV FPGA (5SGXEA7N1F45C1)
Bottom – Socket R (LGA 2011)
CUDA Overview

- CUDA (Compute Unified Device Architecture)
- Programming model – basic concepts and data types
- CUDA application programming interface - basic
- Simple examples to illustrate basic concepts and functionalities
- Performance features (if any) will be covered later
CUDA – C with no shader limitations!

- Integrated host+device app C program
 - Serial or modestly parallel parts in **host C code**
 - Highly parallel parts in **device SPMD kernel C code**

```c
Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);
```
CUDA Devices and Threads

- **A compute device**
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel
 - Is typically a GPU but can also be another type of parallel processing device

- **Data-parallel portions of an application are expressed as device kernels which run on many threads**

- **Differences between GPU and CPU threads**
 - GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - Multi-core CPU needs only a few
G80 CUDA mode – A Device Example

- Processors execute computing threads
- New operating mode/HW interface for computing

Diagram:
- Host
- Input Assembler
- Thread Execution Manager
- Parallel Data Cache
- Texture
- Load/store
Fermi

- 32 CUDA cores
- 2 Warp Schedulers
- Registers
- 64 KB configurable
 - shared memory
 - L1 cache
- Shared memory
 - managed by your code explicitly,
- L1 cache
 - Automatically managed
 - Based on global memory access
Extended C

● **Type Qualifiers**
 ■ global, device, shared, local, constant

● **Keywords**
 ■ threadIdx, blockIdx

● **Intrinsics**
 ■ __syncthreads

● **Runtime API**
 ■ Memory, symbol, execution management

● **Function launch**

```c
__device__ float filter[N];
__global__ void convolve (float *image) {
    __shared__ float region[M];
    ...
    region[threadIdx] = image[i];
    __syncthreads()
    ...
    image[j] = result;
}
// Allocate GPU memory
void *myimage = cudaMalloc(bytes)
// 100 blocks, 10 threads per block
convolve<<<100, 10>>>(myimage);
```
NVCC Compiler's Role: Code/Compile Device

```
mycode.cu

int main_data;
__shared__ int sdata;

Main() {

__host__ hfunc () {
    int hdata;
    <<<gfunc(g,b,m)>>>(t);
}

__global__ gfunc() {
    int gdata;
}

__device__ dfunc() {
    int ddata;
}
```

Compiled by native compiler: gcc, icc, cc

```
int main_data;
__shared__ sdata;

Main() {

__host__ hfunc () {
    int hdata;
    <<<gfunc(g,b,m)>>>(t);
}

__global__ gfunc() {
    int gdata;
}

__device__ dfunc() {
    int ddata;
}
```

Compiled by nvcc compiler

```
int main_data;
__shared__ sdata;

Main() {

__host__ hfunc () {
    int hdata;
    <<<gfunc(g,b,m)>>>(t);
}

__global__ gfunc() {
    int gdata;
}

__device__ dfunc() {
    int ddata;
}
```
Mark Murphy, “NVIDIA’s Experience with Open64,”
www.capsl.udel.edu/conferences/open64/4/2008/Papers/101.doc
Arrays of Parallel Threads

- A CUDA kernel is executed by an array of threads
- All threads run the same code (SPMD)
- Each thread has an ID that it uses to compute memory addresses and make control decisions

```c
float x = input[threadID];
float y = func(x);
output[threadID] = y;
```

threadID: 0 1 2 3 4 5 6 7
Thread Blocks: Scalable Cooperation

- Divide monolithic thread array into multiple blocks
 - Threads within a block cooperate via *shared memory, atomic operations* and *barrier synchronization*
 - Threads in different blocks cannot cooperate

```
Thread Block 0

```
Block IDs and Thread IDs

- Each thread uses IDs to decide what data to work on
 - Block ID: 1D or 2D
 - Thread ID: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
 - …
CUDA Memory Model Overview

- **Global memory**
 - Main means of communicating R/W Data between host and device
 - Contents visible to all threads
 - Long latency access

- **We will focus on global memory for now**
 - Constant and texture memory will come later
CUDA API Highlights: Easy and Lightweight

- The API is an extension to the ANSI C programming language
 - Low learning curve

- The hardware is designed to enable lightweight runtime and driver
 - High performance
CUDA Device Memory Allocation

- **cudaMalloc()**
 - Allocates object in the device **Global Memory**
 - Requires two parameters
 - **Address of a pointer** to the allocated object
 - **Size of** of allocated object

- **cudaFree()**
 - Frees object from device **Global Memory**
 - Pointer to freed object
CUDA Device Memory Allocation (cont.)

- **Code example:**
 - Allocate a 64 * 64 single precision float array
 - Attach the allocated storage to Md
 - “d” is often used to indicate a device data structure

```c
TILE_WIDTH = 64;
Float* Md;
int size = TILE_WIDTH * TILE_WIDTH * sizeof(float);

cudaMalloc((void**)&Md, size);
cudaFree(Md);
```
CUDA Host-Device Data Transfer

- **cudaMemcpy()**
 - Memory data transfer
 - Requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes copied
 - Type of transfer
 - Host to Host
 - Host to Device
 - Device to Host
 - Device to Device

- Asynchronous transfer
CUDA Host-Device Data Transfer

- **Code example:**
 - Transfer a 64 * 64 single precision float array
 - M is in host memory and Md is in device memory
 - `cudaMemcpyHostToDevice` and `cudaMemcpyDeviceToHost` are symbolic constants

  ```c
  cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
  cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);
  ```
CUDA Function Declarations

<table>
<thead>
<tr>
<th>device float DeviceFunc()</th>
<th>Executed on the:</th>
<th>Only callable from the:</th>
</tr>
</thead>
<tbody>
<tr>
<td>global void KernelFunc()</td>
<td>device</td>
<td>host</td>
</tr>
<tr>
<td>host float HostFunc()</td>
<td>host</td>
<td>host</td>
</tr>
</tbody>
</table>

- **__global__** defines a kernel function
 - Must return **void**
- **__device__** and **__host__** can be used together
CUDA Function Declarations (cont.)

- **__device__** functions cannot have their address taken
- For functions executed on the device:
 - No recursion
 - No static variable declarations inside the function
 - No variable number of arguments
Calling a Kernel Function – Thread Creation

- A kernel function must be called with an execution configuration:

```c
__global__ void KernelFunc(...);
dim3 DimGrid(100, 50);    // 5000 thread blocks
dim3 DimBlock(4, 8, 8);    // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<<DimGrid, DimBlock, SharedMemBytes>>>(...);
```
Simple working code example

- **Goal for this example:**
 - Really simple but illustrative of key concepts
 - Fits in one file with simple compile command
 - Can absorb during lecture

- **What does it do?**
 - Scan elements of array of numbers (any of 0 to 9)
 - How many times does “6” appear?
 - Array of 16 elements, each thread examines 4 elements, 1 block in grid, 1 grid

```
threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15
```

Known as a cyclic data distribution
CUDA Pseudo-Code

MAIN PROGRAM:

Initialization
- Allocate memory on host for input and output
- Assign random numbers to input array

Call *host* function

Calculate final output from per-thread output

Print result

GLOBAL FUNCTION:

Thread scans subset of array elements
Call *device* function to compare with “6”
Compute local result

HOST FUNCTION:

Allocate memory on device for copy of *input* and *output*

Copy input to *device*

Set up grid/block

Call *global* function

Synchronize after completion

Copy *device* output to host

DEVICE FUNCTION:

Compare current element and “6”

Return 1 if same, else 0
Main Program: Preliminaries

Main Program:

Initialization
- Allocate memory on host for input and output
- Assign random numbers to input array

Call host function

Calculate final output from per-thread output

Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4

int main(int argc, char **argv)
{
 int *in_array, *out_array;
 ...
}

Main Program: Invoke Global Function

Main Program:

Initialization *(OMIT)*
- Allocate memory on host for input and output
- Assign random numbers to input array

Call *host* function

Calculate final output from per-thread output

Print result

```c
#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute (int *in_arr, int *out_arr);
int main(int argc, char **argv)
{
    int *in_array, *out_array;
    /* initialization */ ...
    outer_compute(in_array, out_array);
    ...
}
```
Main Program: Calculate Output & Print Result

Main Program:

Initialization (OMIT)
• Allocate memory on host for input and output
• Assign random numbers to input array

Call host function

Calculate final output from per-thread output

Print result

```
#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute (int *in_arr, int *out_arr);

int main(int argc, char **argv)
{
    int *in_array, *out_array;
    int sum = 0;
    /* initialization */ …
    outer_compute(in_array, out_array);
    for (int i=0; i<BLOCKSIZE; i++) {
        sum+=out_array[i];
    }
    printf ("Result = %d\n",sum);
}
```
HOST FUNCTION:
Allocate memory on device for copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int *h_in_array, int *h_out_array)
{
 int *d_in_array, *d_out_array;
 cudaMalloc((void **) &d_in_array, SIZE*sizeof(int));
 cudaMalloc((void **) &d_out_array, BLOCKSIZE*sizeof(int));
 ...
}
HOST FUNCTION:
Allocate memory on device for copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int *h_in_array, int *h_out_array) {
 int *d_in_array, *d_out_array;

cudaMalloc((void **) &d_in_array, SIZE*sizeof(int));
cudaMalloc((void **) &d_out_array, BLOCKSIZE*sizeof(int));
cudaMemcpy(d_in_array, h_in_array, SIZE*sizeof(int), cudaMemcpyHostToDevice);
... do computation ...
cudaMemcpy(h_out_array,d_out_array, BLOCKSIZE*sizeof(int), cudaMemcpyToDevice);
}

HOST FUNCTION: Setup & Call Global Function

Allocate memory on device for copy of input and output

Copy input to device

Set up grid/block

Call global function

Synchronize after completion

Copy device output to host

```c
__host__ void outer_compute (int *h_in_array, int *h_out_array) {
    int *d_in_array, *d_out_array;

    cudaMalloc((void **) &d_in_array, SIZE*sizeof(int));
    cudaMalloc((void **) &d_out_array, BLOCKSIZE*sizeof(int));
    cudaMemcpy(d_in_array, h_in_array, SIZE*sizeof(int), cudaMemcpyHostToDevice);
    compute<<<(1,BLOCKSIZE)>>>(d_in_array, d_out_array);
    cudaMemcpy(h_out_array, d_out_array, BLOCKSIZE*sizeof(int), cudaMemcpyDeviceToHost);
}
```
GLOBAL FUNCTION:

Thread scans subset of array elements

Call *device* function to compare with “6”

Compute local result

```c
__global__ void compute(int *d_in, int *d_out)
{
    d_out[threadIdx.x] = 0;
    for (int i=0; i<SIZE/BLOCKSIZE; i++)
    {
        int val = d_in[i*BLOCKSIZE + threadIdx.x];
        d_out[threadIdx.x] += compare(val, 6);
    }
}
```
DEVICE FUNCTION:

Compare current element and “6”

Return 1 if same, else 0

```c
__device__ int compare(int a, int b)
{
    if (a == b) return 1;
    return 0;
}
```
A simple matrix multiplication example that illustrates the basic features of memory and thread management in CUDA programs

- Leave shared memory usage until later
- Local, register usage
- Thread ID usage
- Memory data transfer API between host and device
- Assume square matrix for simplicity
Programming Model: Square Matrix Multiplication Example

- \(P = M \times N \) of size \(WIDTH \times WIDTH \)

- Without tiling:
 - One thread calculates one element of \(P \)
 - \(M \) and \(N \) are loaded \(WIDTH \) times from global memory
Memory Layout of a Matrix in C

\[M \]

\[\begin{array}{cccc}
M_{0,0} & M_{0,1} & M_{0,2} & M_{0,3} \\
M_{1,0} & M_{1,1} & M_{1,2} & M_{1,3} \\
M_{2,0} & M_{2,1} & M_{2,2} & M_{2,3} \\
M_{3,0} & M_{3,1} & M_{3,2} & M_{3,3} \\
\end{array} \]
// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}
Step 2: Input Matrix Data Transfer (Host-side Code)

```c
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{
    int size = Width * Width * sizeof(float);
    float* Md, Nd, Pd;
    ...
    1. // Allocate and Load M, N to device memory
       cudaMemcpy(&Md, M, size, cudaMemcpyHostToDevice);
       cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

       cudaMemcpy(&Nd, N, size, cudaMemcpyHostToDevice);
       cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

       // Allocate P on the device
       cudaMemcpy(&Pd, P, size, cudaMemcpyHostToDevice);
}
Step 3: Output Matrix Data Transfer (Host-side Code)

2. // Kernel invocation code – to be shown later
   ...

3. // Read P from the device
   cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

   // Free device matrices
   cudaMemcpy(Md); cudaMemcpy(Nd); cudaMemcpy(Pd);
Step 4: Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {

    // Pvalue is used to store the element of the matrix
    // that is computed by the thread
    float Pvalue = 0;
}
for (int k = 0; k < Width; ++k) {
    float Melement = Md[threadIdx.y*Width+k];
    float Nelement = Nd[k*Width+threadIdx.x];
    Pvalue += Melement * Nelement;
}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
Step 5: Kernel Invocation (Host-side Code)

// Setup the execution configuration
    dim3 dimGrid(1, 1);
    dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
Only One Thread Block Used

- One Block of threads compute matrix Pd
  - Each thread computes one element of Pd
- Each thread
  - Loads a row of matrix Md
  - Loads a column of matrix Nd
  - Perform one multiply and addition for each pair of Md and Nd elements
  - Compute to off-chip memory access ratio close to 1:1 (not very high)
- Size of matrix limited by the number of threads allowed in a thread block
Compiling a CUDA Program

C/C++ CUDA Application

float4 me = gx[gtid];
me.x += me.y * me.z;

NVCC

CPU Code

PTX Code

Parallel Thread eXecution (PTX)
- Virtual Machine and ISA
- Programming model
- Execution resources and state

ld.global.v4.f32
mad.f32

[$f1, $f3, $f5, $f7], [$r9+0];
$f1, $f5, $f3, $f1;

Physical

PTX to Target Compiler

Target code

G80

...
Any executable with CUDA code requires two dynamic libraries:
- The CUDA runtime library (*cudart*)
- The CUDA core library (*cuda*)
Debugging Using the Device Emulation Mode

- An executable compiled in **device emulation mode** (`nvcc -deviceemu`) runs completely on the host using the CUDA runtime
  - No need of any device and CUDA driver
  - Each device thread is emulated with a host thread

- **Running in device emulation mode**, one can:
  - Use host native debug support (breakpoints, inspection, etc.)
  - Access any device-specific data from host code and vice-versa
  - Call any host function from device code (e.g. `printf`) and vice-versa
  - Detect deadlock situations caused by improper usage of `__syncthreads`
Block Usage in Matrix Multiplication

TILE_WIDTH = 2
Block Usage in Matrix Multiplication
Revised Matrix Multiplication Kernel using Multiple Blocks

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {
 int Row = blockIdx.y * TILE_WIDTH + threadIdx.y;
 int Col = blockIdx.x * TILE_WIDTH + threadIdx.x;

 float Pvalue = 0;
 for (int k = 0; k < Width; ++k) {
 Pvalue += Md[Row * Width + k] * Nd[k * Width + Col];
 }
 Pd[Row * Width + Col] = Pvalue;
}
```
CUDA Thread Block

- All threads in a block execute the same kernel program (SPMD)
- Programmer declares block:
  - Block size 1 to 512 concurrent threads
  - Block shape 1D, 2D, or 3D
  - Block dimensions in threads
- Threads have thread id numbers within block
  - Thread program uses thread id to select work and address shared data
- Threads in the same block share data and synchronize while doing their share of the work
- Threads in different blocks cannot cooperate
  - Each block can execute in any order relative to other blocks!
Transparent Scalability

- Hardware is free to assign blocks to any processor at any time
  - A kernel scales across any number of parallel processors

Each block can execute in any order relative to other blocks.
G80 Example: Executing Thread Blocks

- Threads are assigned to Streaming Multiprocessors in block granularity
  - Up to 8 blocks to each SM as resource allows
  - SM in G80 can take up to 768 threads
    - Could be 256 (threads/block) * 3 blocks
    - Or 128 (threads/block) * 6 blocks, etc.

- Threads run concurrently
  - SM maintains thread/block id #s
  - SM manages/schedules thread execution
WARP Scheduler
What is a Warp?

- SM won't directly give the threads the Execution resources.
- Instead, it will try to divide the threads in the block again into Warps (32 threads).
- The Warps in each of the block exhibit SIMD execution.
- If there is a memory access to any thread in a warp, SM switches to the next warp. This way SM always have some work to do.
SM implements zero-overhead warp scheduling
- At any time, only one of the warps is executed by SM
- Warps whose next instruction has its operands ready for consumption are eligible for execution
- Eligible Warps are selected for execution on a prioritized scheduling policy
- All threads in a warp execute the same instruction when selected

Instruction: 1 2 3 4 5 6 1 2 1 2 3 4 1 2 7 8 1 2 3 4

TB = Thread Block, W = Warp
G80 Example: Thread Scheduling

- Each Block is executed as 32-thread Warps
  - An implementation decision, not part of the CUDA programming model
  - Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each block has 256 threads, how many Warps are there in an SM?
  - Each Block is divided into 256/32 = 8 Warps
  - There are 8 * 3 = 24 Warps
Source Code

- Matrix Multiplication

```c
__syncthreads()

global__ void globFunction(int *arr, int N) {

__shared__ int local_array[THREADS_PER_BLOCK];

//local block memory cache
int idx = blockIdx.x* blockDim.x + threadIdx.x;

//...calculate results
local_array[threadIdx.x] = results;

//synchronize the local threads writing to the local memory cache
__syncthreads();

// read the results of another thread in the current thread
int val = local_array[(threadIdx.x + 1) % THREADS_PER_BLOCK];

//write back the value to global memory
arr[idx] = val;
}
```
cudaThreadSynchronize()

● *cudaThreadSynchronize*() is a _host_ function
  - Waits for all previous async operations (i.e. kernel calls, async memory copies) to complete.

● *__syncthreads*() is a _device_ function
  - Acts as a thread barrier.
  - All threads in a block must reach the barrier before any can continue execution.
  - It is only of use when you need to avoid race conditions when threads in a block access shared memory.
CUDA Unified Memory

// Allocate Unified Memory
// accessible from CPU or GPU
float *x, *y;
cudaMallocManaged(&x, N*sizeof(float));
cudaMallocManaged(&y, N*sizeof(float));

....
....

// Free memory
cudaFree(x);
cudaFree(y);
cudaThreadSynchronize is deprecated

// Wait for GPU to finish before accessing on host
cudaDeviceSynchronize();

DtoH cudaMemcpys are *always* synchronous.
HtoD cudaMemcpys will return once the source buffer
can be modified without impacting the copy.
CUDA - nvprof

- To find out how long the kernel takes to run
  - nvprof, the command line GPU profiler
  - CUDA Toolkit

```
$ nvprof ./add_cuda
==3355== NVPROF is profiling process 3355, command: ./add_cuda
Max error: 0
==3355== Profiling application: ./add_cuda
==3355== Profiling result:
Time(%) Time Calls Avg Min Max Name
100.00% 463.25ms 1 463.25ms 463.25ms 463.25ms add(int, float*, float*)
...```
Use CUDA best practices guide!

CUDA!