

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [TÜBİTAK EKUAL]
On: 16 December 2010
Access details: Access Details: [subscription number 786636116]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Journal of Electronics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713599654

Heterogeneous network-on-chip design through evolutionary computing
Ozcan Ozturka; Dilek Demirbasa

a Computer Engineering Department, Bilkent University, Bilkent, Ankara, Turkey

Online publication date: 06 October 2010

To cite this Article Ozturk, Ozcan and Demirbas, Dilek(2010) 'Heterogeneous network-on-chip design through
evolutionary computing', International Journal of Electronics, 97: 10, 1139 — 1161
To link to this Article: DOI: 10.1080/00207217.2010.512020
URL: http://dx.doi.org/10.1080/00207217.2010.512020

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713599654
http://dx.doi.org/10.1080/00207217.2010.512020
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Heterogeneous network-on-chip design through evolutionary

computing

Ozcan Ozturk* and Dilek Demirbas

Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey

(Received 4 November 2009; final version received 13 April 2010)

This article explores the use of biologically inspired evolutionary computational
techniques for designing and optimising heterogeneous network-on-chip (NoC)
architectures, where the nodes of the NoC-based chip multiprocessor exhibit
different properties such as performance, energy, temperature, area and
communication bandwidth. Focusing primarily on array-dominated applications
and heterogeneous execution environments, the proposed approach tries to
optimise the distribution of the nodes for a given NoC area under the constraints
present in the environment. This article is the first one, to our knowledge, that
explores the possibility of employing evolutionary computational techniques for
optimally placing the heterogeneous nodes in an NoC. We also compare our
approach with an optimal integer linear programming (ILP) approach using a
commercial ILP tool. The results collected so far are very encouraging and
indicate that the proposed approach generates close results to the ILP-based
approach with minimal execution latencies.

Keywords: NoC; evolutionary computing; genetic algorithm; heterogeneous

1. Introduction

As commonly accepted, the current performance trajectory of doubling chip
performance every 24–36 months can be achieved by the integration of multiple
processors on a chip rather than through increases in the clock rate of single
processors due to the power limitations present in processor design. Multicore
architectures have already made their way into the industry (Kahle et al. 2005;
Kongetira et al. 2005; McGowen 2005; AMD Athlon 64 X2 Dual-Core Processor
for Desktop, http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_
9485_13041,00.html; Intel quad-core Xeon. http://www.intel.com/quad-core/?cid¼
cim:ggl—xeon_us_clovertown—k7449—s), with more aggressive configurations
such as the Intel’s 80 core TeraFlop being prototyped (http://www.intel.com/idf/).
Since future technologies offer the promise of being able to integrate billions of
transistors on a chip, the prospects of having hundreds of processors on a single chip
along with an underlying memory hierarchy and an interconnection system are
entirely feasible. Point-to-point buses will no longer be feasible after a certain number
of nodes as the communication requirements between nodes will exponentially
increase with the number of processors. A viable interconnection system shown to be

*Corresponding author. Email: ozturk@cs.bilkent.edu.tr

International Journal of Electronics

Vol. 97, No. 10, October 2010, 1139–1161

ISSN 0020-7217 print/ISSN 1362-3060 online

� 2010 Taylor & Francis

DOI: 10.1080/00207217.2010.512020

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

http://www.intel.com/quad-core/?cid=cim:ggl—xeon _us_clovertown—k7449—s
http://www.intel.com/quad-core/?cid=cim:ggl—xeon _us_clovertown—k7449—s
http://www.intel.com/quad-core/?cid=cim:ggl—xeon _us_clovertown—k7449—s
http://www.intel.com/idf/

promising for these future chip multiprocessors (CMPs) is network-on-chip (NoC)
since it provides scalable, flexible and programmable communication. With this
NoC-based CMP as the computing platform, a very rich set of research challenges
arises. Circuit and architectural challenges such as router design, IP placement and
sensor placement are currently being studied in both industry and academia. In
comparison, the work on heterogeneous alternatives for these architectures has
received considerably less attention. Motivated by this observation, we propose an
evolutionary computational technique for the design of heterogeneous NoC
architectures. More specifically, we implement a genetic algorithm (GA) to optimally
select processors and their placements within the NoC architecture.

Evolutionary computing has been used as a powerful tool for solving many
problems from different domains. Most of these problems are computationally
intense multi-parameter optimisations, which can be solved in a methodology similar
to how biological evolution functions. These tools use a repeated process over many
generations through selection, mutation and cross-over, thereby exploring a larger
design space. Complex systems can be modelled in a similar way in which living
systems adapt to natural environments. Evolutionary computational designs have
been shown to be very successful (Handl and Knowles 2007; Wang and Dang 2007),
which makes them a very attractive tool for our heterogeneous NoC design problem.
Our problem fits well into the evolutionary computing domain since the design space
is very big for a brute-force computational method or an optimisation framework
such as integer linear programming (ILP).

Even though complex processors provide higher single-thread performance, they
consume more area and power compared to their simpler counterparts. Every
application has a different processing need and a memory requirement. Even one
single application has different requirements throughout its execution. An application
may exploit a high level of instruction-level parallelism where a powerful processor
will be a better match, whereas a simpler processor will suffice for a different
application with lower instruction-level parallelism. To choose the best match for an
application will reduce the power consumption. However, homogeneous CMPs
provide only one type of processor to match all these various requirements. When
Alpha processors EV4 and EV8 are compared, one can see that EV8 consumes 80
times more area and 12 times more power to gain just above two times more
performance (Kumar, Tullsen, Ranganathan, Jouppi and Farkas 2004; Kumar,
Tullsen, Jouppi and Ranganathan 2005). The marginal benefit provided by larger
processors is lower compared to smaller processors, consequently one should try to
utilise the available chip area and power budget according to the application needs.

Figure 1 gives the power, performance and area comparison for Alpha cores.
This example is only given for illustrative purposes, i.e. they are not the actual cores
used in our experimental evaluation. Figure 1a shows the average power consump-
tion of Alpha processors EV4, EV5, EV6 and EV8. Figure 1b gives the normalise
instructions per cycle (IPC) values with respect to EV4, whereas Figure 1c indicates
the normalised area consumption of the aforementioned processors (scaled to the
same 10 nanometre feature size) (Kumar et al. 2004; Kumar et al. 2005). When EV4
and EV8 are compared one can see that EV8 consumes 80 times more area and
12 times more power to gain just above 2 times more performance. The key
observation from these charts is that the marginal benefit provided by larger cores is
lower compared to smaller cores, consequently one should try to utilise the available
chip area and power budget according to the application needs.

1140 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

The ability to dynamically switch between different processors and power down
unused processors is the key in heterogeneous chip multiprocessing. It allows the
processor to better match execution resources of application needs which in turn
enables different workloads from high to low. It was shown that a representative
heterogeneous processor using two processor types achieves as much as a 63%
performance improvement over an equivalent-area homogeneous processor (Kumar
et al. 2004; Kumar et al. 2005).

To overcome the limitations due to the homogeneous behaviour of CMPs,
heterogeneous (asymmetric) CMPs have been proposed (Flachs et al. 2005; Pham
et al. 2005). In comparison, NoC-based heterogeneous CMPs have received
considerably less attention. The focus of this article is to perform the node
placement for a given NoC-based heterogeneous CMP with various types of nodes
under certain constraints. Our goal in selecting the location of each node is to
minimise the communication distance and load, i.e. placing the frequently
communicating nodes as close as possible. In addition to this, we try to select the
most suitable processor to run on a node.

This approach has been implemented by both using a GA and an optimal ILP-
based approach. This article is the first one, to our knowledge, that explores the
possibility of employing evolutionary computational techniques for optimally
placing the heterogeneous nodes in an NoC. ILP-based formulation has been
implemented to show the accuracy of our GA-based technique.

Figure 1. Comparison of Alpha cores EV4, EV5, EV6 and EV8. (a) Average power
consumption in watts. (b) Performance comparison (IPC - instructions per cycle) with respect
to EV4. (c) Relative sizes of cores normalised with respect to EV4.

International Journal of Electronics 1141

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

The remainder of this article is structured as follows. Section 2 gives the related
work on evolutionary computational methods and NoC-based heterogeneous
CMPs. Section 3 gives details of our approach and introduces the NoC-based
CMP abstraction. We present our evolutionary framework in section 4. The details
of our ILP-based approach are given in section 5, and an experimental evaluation is
presented in section 6. The article is concluded in Section 7.

2. Related work

We present the related work in three parts. First, we summarise the related work on
NoC-based CMPs in general and the related studies on heterogeneous CMPs.
Second, we discuss the related work on NoC-based heterogeneous CMPs. Finally,
we explore the related studies on evolutionary-based NoC studies.

Prior research studied the concept of NoC-based CMPs (Benini and De Micheli
2001; Dally and Towles 2001), which aims at replacing the traditional interconnects
with regular networks. These efforts are mostly motivated by increasing on-chip wire
delays. Meanwhile, both academia and industry are witnessing the increasing
popularity of CMPs (Taylor et al. 2002; Kahle et al. 2005; Kongetira et al. 2005;
http://www.intel.com/idf/). With the trend towards increasing the number of on-chip
processors, NoC-based CMPs will be an excellent interconnection choice for large-
scale multi-core architectures due to their scalability, flexibility, performance and
other advantages.

Several research groups have been working on modelling and simulating NoC-
based CMPs. In Madsen et al. (2003), a NoC-based CMP model based on the
concepts of allocator, scheduler and synchroniser is proposed and evaluated.
Gerstlauer (2003) discusses how abstract communications performed over a NoC-
based CMP. There are several emerging NoC-based platforms, for example, OPNET
(Bolotin et al. 2004), a commercial NoC simulator, and MPARM (Loghi et al. 2004),
a cycle accurate platform, etc. It turns out that NoCs consume a significant portion
of the overall chip power. This fact motivates the need to analyse and model
the power consumed by NoCs. Orion (Wang et al. 2002) is a cycle accurate power-
performance simulator. Similarly, another tool presented by Eisley and Peh (2004), is
used for estimating the power-performance metrics of NoCs at a more abstract level
than Orion.

Prior research on heterogeneous CMPs addressed various problems ranging from
hardware aspects such as selecting the right type of processors to software solutions
at the OS level. Kumar et al. (2004, 2005) discuss the benefits of heterogeneous
CMPs from many angles. Blume, Feldkaemper and Noll (2005) present a model-
based exploration method to support the design flow of heterogeneous CMPs. They
implement cost models for design space exploration using several cost parameters
such as performance and throughput. Balakrishnan, Rajwar, Upton and Lai (2005)
explore the effects of heterogeneity on commercial applications using a hardware
prototype. Both software (Liu and Chaudhary 2003; Shee, Erdos and Parameswaran
2006; Brisolara et al. 2007) and hardware (Lieverse, Wolf, Vissers and Deprettere
2001; Ghiasi, Keller and Rawson 2005; Kumar, Tullsen and Jouppi 2006; Yan and
Zhang 2007) solutions have been proposed to exploit heterogeneity in CMPs. There
are only a handful of prior studies which focus on heterogeneity-aware NoC-based
CMP design. Most of these studies consider heterogeneity only within the network
domain, that is, they discuss mixing different types of router architectures and use an

1142 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

http://www.intel.com/idf/

optimised mix of these routers (Cardoso et al. 2005; Kreutz et al. 2005; Ahonen and
Nurmi 2007).

On the other hand, evolutionary computational designs have been very
successful (Handl and Knowles 2007; Wang and Dang 2007) in different domains,
including VLSI design and layout (Schnecke and Vornberger 1996; Mazumder and
Rudnick 1999). Ascia, Catania, Palesi and Parlato (2003) present a GA-based
encoder to minimise switching activity on the communication bus. Palesi and
Givargis (2002) use a GA to find pareto-optimal configurations from the design
options in a parameterised SoC architecture. Apart from efforts on VLSI design,
there are also approaches that specifically target NoC architectures. For example,
Jena and Sherma (2007) address the problem of topological mapping of IPs on a
NoC through a multi-objective GA. Lei and Kumar (2003) propose a two-step GA
to map a task graph of a given application on to a NoC architecture. An
application-specific NoC topology framework is presented by Leary, Srinivasan,
Mehta and Chatha (2009). More specifically, a system-level floorplan is generated
using a multi-objective GA. Srinivasan and Chatha (2005) present a GA-based
technique for custom NoC topology design and application mapping. Leary et al.
(2009) presented chaos genetic mapping, a mapping strategy for task graphs on
NoCs. They try to improve the quality of service (QoS) in NoC architectures with
a GA-based implementation.

Lambrechts et al.’s (2005) is one of the studies that primarily focuses on
processor heterogeneity within NoC-based CMP design. In this work, the authors
present a power assessment of a realistic heterogeneous NoC-based CMP platform
which primarily targets the video processing chain from camera to display. The main
difference between this work and ours is that we propose a GA to reduce the overall
communication and computation through efficient placement and processor
selection. Ascia, Catania and Palesi (2004) proposed a GA-based multi-objective
NoC mapping scheme, where the NoC is composed of n 6 m tiles of equal size.
They try to optimally select the placement of fixed IP blocks within the given tiles
based on both power and performance. Similarly, da Silva, Nedjah and
deMacedoMourelle (2009) propose a methodology to topologically map the selected
IPs given as an application characterisation graph (APG). More specifically, they
describe applications using APG, where nodes indicate individual IPs and edges
represent the communication between IPs. Zhou, Zhang and Mao (2006) use a
similar GA-based technique to perform a placement on the NoC architecture with
different objectives. They try to minimise the communication overhead by reducing
the hop count while keeping the thermal balance. As compared to these studies, in
our approach, we do not assume a fixed set of IPs or processors; rather we try to
select the optimum set of processor types for a given application. In addition to this
selection, we also perform a placement within the available on-chip area. Moreover,
these techniques are mostly concerned with the communication effects since the main
task is to map the IPs or processors within the NoC. However, in our combined
optimisation problem (selection þ mapping), we also consider computation and
area in addition to communication.

3. Overview of our approach

Figure 2 illustrates the high-level view of our approach. The input code (after
parallelisation and mapping) is fed to a compiler analysis module which identifies the

International Journal of Electronics 1143

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

set of CMP nodes that communicate with each other. This information is
subsequently passed to the solver which determines the location of each node
within the NoC-based CMP and the type of processor used for each node.
Specific solvers used are a GA-based solver implemented using Java and an ILP-
based solver implemented on a commercial tool. Our goal in selecting the location
of each node is to minimise the communication load. Note that, depending on the
functionality, each node can exhibit different characteristics in terms of performance,
energy, temperature, area and communication bandwidth supported by the switch
available within the node. This information is crucial for selecting the type of
processor.

3.1. Target NoC-based CMP architecture

In our proposed approach, the NoC-based heterogeneous CMP architecture is
exposed to the compiler. This means the compiler accesses the state of the
processors as well as the network switches, and manages the data/code movement
between different components. Figure 3 shows the high-level view of a
heterogeneous NoC-based CMP with a two-dimensional (2D) mesh topology.
Each node of this mesh consists of a network switch/router (represented by R), a
processor (represented by CPU) and a memory hierarchy (represented by MH).
Except for boundary nodes, the network switch is responsible for direct
communication with the neighbouring switches (i.e. north, south, west and east).
Location of a node within this NoC-based CMP architecture can be represented
using x and y coordinates. In our implementation, we use these coordinates to
calculate the communication distances between the nodes. For example, if node i is
at (xi, yi) and node j is at (xj, yj), we express the communication distance d for
these two nodes with the Manhattan distance, that is, d¼jxi–xjj þ jyi–yjj. For each
pair of adjacent nodes, i and j, the communication links between them are bi-
directional. That is, there exists a communication link from node i to node j as well
as a link from node j to node i.

3.2. Interprocessor communication extraction

As shown in Figure 2, we first need to extract the interprocessor communication
information for a given application. For a given set of NoC-based CMP nodes, our

Figure 2. High-level view of our approach.

1144 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

eventual goal is to distribute the computation and data among the nodes using an
optimising compiler.

In order to distribute the data among the processors, we need two types of
information: the private data accessed by each processor and the amount of data
shared across the processors. We obtain these through representing the data accessed
by each processor and each processor pair using Presburger formulas and counting
them. When Presburger formulations are generated, we perform the code to count
the number of elements in each set. The resulting numbers (for private and shared
data) are then fed to our data partitioning algorithm.

Similarly, we represent parallelisation information for a given nest using a
vector referred to as the parallelism vector (~f). Entries of this vector correspond to
loops in the nest from outermost to innermost, where each entry of this vector can
be 1 or 0. An entry of 1 indicates that the corresponding loop is parallelised;
otherwise, it is not parallelised. For example, for a nest with three loops,
~f ¼ ð1 1 0ÞT indicates that the first two loops are parallelised, whereas the
iterations of the inner loop are to be executed sequentially. While there are
different ways of obtaining the ~f vector for each loop, we employ automatic
loop parallelisation theory (Banerjee 1994) and identify the loops whose iterations
could be executed in parallel. Alternately, one can allow the programmer to
explicitly mark the parallel loops, as is also common in the high-end parallel
computing community (Koelbel, Loveman and Schreiber 1993; The openmp
application program interface, http://www.openmp.org/). This programmer-
assisted parallelisation is typically supported with directives/pragmas, enabling
users to actively assist the compiler in the parallelisation process.

A loop space contains all the iterations executed by the loop and is represented
by a set whose boundaries are defined by loop limits. Consider, for example, the loop

Figure 3. NoC-based heterogeneous CMP architecture.

International Journal of Electronics 1145

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

http://www.openmp.org/

nest given in Figure 4. We can represent the iteration space of this loop nest using the
following Presburger formulation.

L ¼ fði1; i2; i3Þ j L1 � i1 � U1 ^ L2 � i2 � U2 ^ L3 � i3 � U3g:

The set of loop iterations that will be executed by a processor is determined by
parallelism vector (f) as well as the scheduling strategy adopted. In this article, we
employ a static block scheduling, where each processor is assigned a set of successive
loop iterations. Assuming that we have~p ¼ (1 0 0)T for the loop nest in Figure 4 and
that we have four processors (PROC0 through PROC3), the set of loop iterations
that will be executed by processor c (where 0 � c � 3) can be determined as:

KðcÞ ¼ fðk1; k2; k3Þ j ðL1 þ cðU1 � L1þ 1Þ=4 � k1 < L1þ ðcþ 1Þ
ðU1 � L1þ 1Þ=4� 1Þ ^ ðL2 � k2 � U2Þ ^ ðL3 � k3 � U3Þg:

Our approach, which is described in the rest of this article, is independent of the
parallelisation strategy employed.

We perform the data distribution, which is followed by code instrumentation. We
then execute the instrumented code to extract the profiling information. This way we
obtain the communication pattern for each loop nest in the application. The
communication calls are then inserted automatically based on the information
provided by the profiler. We also need to mention that, in deciding data distribution,
we tried to place the data elements frequently used by a processor into the local
memory of the node which holds that processor (i.e. we tried to improve access
locality to reduce communications as much as possible). After this step, the loops in
the application are parallelised based on the data distribution. As a result of this
parallelised data and computation distribution, we generate an affinity table to show
the pairwise interprocessor communication among the nodes of the NoC-based
CMP. While this part of the system has not been completely automated yet, we are
able to generate close estimates and use them in our implementation for preliminary
tests.

Execution of the program is viewed as a series of phases, where each phase
corresponds to the communications taking place within a loop. Processors get
synchronised before they start executing the next phase. Once the interprocessor
communication requirements are identified, the communication pattern of the
entire program can be represented using a table on which our approach operates.
In the rest of the article, this table is called the affinity table. As shown in Figure 2,
this information is then fed to the specific tool used, mainly, our GA-based
implementation or the ILP-based implementation. The goal of our GA imple-
mentation and ILP formulation, explained in the next two sections, is to distribute
the nodes of the NoC-based CMP to minimise the overall communication and
computation throughout the communication phases.

Figure 4. An example loop nest.

1146 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

Note that, our approach can be extended to multi-application scenarios
by generating the affinity table entries for every task pair. This information can
be used to decide on selecting the nodes for such multi-application environ-
ments. However, problem will get more and more complicated with the increased
number of concurrent applications as there will be much more constraints and cost
factors.

4. Evolutionary framework

4.1. Preliminaries

Evolutionary computation provides strong solutions to multiple input parameters,
which makes it a suitable candidate for computer-aided design (CAD) implementa-
tions. Evolutionary computational techniques start with an initial population, where
individuals of the population are generated through variations in the input
parameters. New generations are generated using new models created through
cross-over and mutation. Similar to natural selection, some of the individuals in the
population are promoted to the next generation using a fitness function. Cross-over is
performed on the highest fitness individuals, thereby forcing low-fitness individuals
disappear.

4.2. Algorithm

As explained before, we try to minimise the communication and computation of a
given parallel application by selection and placement of nodes through a GA. We
start our GA implementation with a set of randomly generated chromosomes which
form our initial population. The size of this initial population is selected based on the
NoC size and the number of different type of processors, as it greatly affects the
solution time. In our GA implementation, chromosomes are represented as triplets,
(t, x, y), where t indicates the type of processor used for that node, whereas (x, y)
indicates the coordinates of the location of the node. In Figure 5a, a heterogeneous
NoC with four nodes is shown. The corresponding chromosome sequence for this
NoC is given as (1,0,5) ! (2,1,5) ! (2,3,5) ! (3,0,3). The initial population is
generated using these chromosome sequences. Algorithm 1 recursively generates the
initial population with n chromosomes. Each recursive call tries to randomly select a
CPU type for one of the nodes(b) in the set of N nodes. Then it tries to place this
selected node in the chip area, which is performed by the (x, y) ¼ place(b,CX,CY,
placement) call. Thus, a chromosome (t, x, y) is assigned to every node in the initial
N node set. Every valid chromosome created is appended to the placement set.
This recursive call is performed for each individual to be created in the initial
population.

Table 1 gives the constant terms used in our implementation. These constant
terms are used for both GA and ILP. Assume that we are given N number of nodes,
where 1 � i � N. Our algorithm places these nodes on the 2D grid with (CX, CY)
dimensions, and at the end, returns the coordinates of each NoC-based CMP node.
Communication load between two nodes is expressed by Ai,j, which indicates the
affinity between two nodes as explained in Section 3.2.

The most well-known genetic operators to generate offsprings are mutation and
cross-over. A certain proportion of the population is selected to generate a new
population using a fitness function. Specific fitness function we employ is given as

International Journal of Electronics 1147

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

Table 1. The constant terms used in our GA/ILP implementation. These are either
architecture specific or program specific. Ai,j values are obtained as explained in
Section 3.2.

Constant Definition

N Number of nodes
P Number of processor types
CX,CY Dimensions of the chip
Xi,Y i Dimensions of processor type i
Ai,j Affinity between nodes i and j
Li Computation load in node i
Capi Processing capacity of processor type i
CUC Communication unit cost
PUC Processing unit cost

Figure 5. (a-d) Initial population starts with four individuals generated through our
algorithm (G1, G2, G3, G4). (e-f) Two offspring (G5 and G6) generated by a cross-over on G2
and G4. (g) A legal mutation on G6. (h) An illegal mutation on G6.

1148 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

total communication and computation cost of the design. This is evaluated using the
following fitness rate function.

XN

i¼1
ðLi=CapiÞ � PUCþ

XN

i¼1

XN

j¼1
Distancei;j � Ai;j � CUC: s:t: i 6¼ j: ð1Þ

Note that in the above formulation PUC and CUC indicate the processing unit
cost and communication unit cost, respectively. As can be seen in Algorithm 2,
the communication cost between every pair of nodes is given with Distancei,j 6
Ai,j (affinity). The computation cost of each node is also added to the overall
design cost. The highest fitness individuals are selected to generate the next
generation as this increases the probability of higher fitness individuals. While
roulette wheel selection and tournament selection techniques are the most
common techniques, we use a wheel roulette technique to select two optimum
chromosome sequences (design patterns). Every individual in the population is
evaluated based on the fitness rate and two best individuals are used to generate
the new generation chromosome sequences. Figure 5a–d shows four individuals,
namely G1, G2, G3 and G4, with different chromosome sequences. Table 3 shows
their affinities and respective loads. The last column of the table indicates the
load on each node, whereas the first four columns show the affinities with other
nodes. Note that affinity between nodes i and j can be seen on the ith row and jth
column. Similarly, Table 2 shows the example processor types and their respective
properties. Last column of this table indicates the processing capacity of each
processor, Capi. Based on these values, fitness rates for G1, G2, G3 and G4, are
84.2, 79.5, 84.3 and 79.9, respectively. Note that these are obtained using the
fitness function given in Expression 1, processor properties given in Table 2, and
the affinities given in Table 3. Among these randomly generated individuals, the

Algorithm 1: Algorithm to generate a random individual with n chromosomes recursively.

function generatePopulation(CX,CY,placement,N)
if b ! ¼ null then
b (random CPU type t
(x, y) ¼ place(b,CX,CY,placement)
if (x 4 0 and y 4 0) then
add chromosome (t,x,y)
generatePopulation(CX,CY,placement[(t,x,y),N–1)

else

generatePopulation(CX,CY,placement,N)
end if

end if

Table 2. Processor types and their respective properties.

Processor Dimensions Capacity

1 1 6 1 10
2 2 6 2 30
3 2 6 3 50

International Journal of Electronics 1149

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

two chromosome sequences with the best fitness rates are G2 (b) and G4 (d).
Therefore we select these two individuals to generate the next generation.

The parent selection process is followed by a cross-over or reproduction to form
offsprings. In cross-over, two parents exchange their genome parts. This change is
performed at a cross-over point which can be determined randomly or reasonably.
By recombining partial solutions (chromosome sequence parts), cross-over enables
GA to reach promising regions of the search space quickly. In our implementation,
the cross-over point is selected to be the half of the chromosome sequence. As shown
in Figure 5e and f, two new offsprings are generated by using the chromosome
sequences G2 and G4 (the individuals with best fitness rates). Chromosome
sequences for parents are (2,0,5) ! (1,2,5) ! (1,3,5) ! (3,0,3), and (3,0,5) !
(2,3,5) ! (1,0,3) ! (2,1,3). Therefore, generated offsprings G5 and G6 have
(2,0,5) ! (1,2,5) ! (1,4,5) ! (2,0,3) and (3,0,5) ! (2,3,5) ! (1,0,3) ! (3,1,3)
sequences since we used 2 as our cross-over point. Each offspring is checked for
legality, since the newly generated offspring formed by combining the two halves of
the parent chromosomes may not fit onto the available chip area. In our example,
the new population after performing cross-over becomes (G1, G2, G3, G4, G5, G6).
Algorithm 3 shows how our cross-over operates on the genome parts.

As can be seen in the last part of Algorithm 3, we keep the population size
constant by removing the low-fitness individuals. This type of GA is called Steady-
State GA, where a survival function replaces a set of individuals from the old
population with the new generation. In our specific example, we evaluate
chromosome G1 through G6 and select the four highest-fitness individuals as the
next generation. More specifically, when new members of the population, G5 and
G6, are considered we see that their fitness rates are 95 and 77.8, respectively.
Therefore G6 replaces G3 in the new generation, whereas G5 disappears due to its
low fitness rate. Consequently, our new population becomes (G1, G2, G4, G6). In a
sense, we try to mimic natural selection through the fitness function.

Algorithm 2: Algorithm to calculate fitness rate of each chromosome sequence in terms of
total cost.

function calculateFitness(selectedCPUs[N])
for i 1 . . . N do

for j i . . . N do

commCost (commCost þ Distancei,j 6 Ai,j

end for

compCost (compCost þ Li/Capi
end for

totalCost (compCost þ commCost

Table 3. Example processor types and their respective properties. The last column indicates
the load on each node, whereas the first four columns show the affinities with other nodes.

Node 1 2 3 4 Load

1 0 3 2 1 40
2 3 0 5 4 60
3 2 5 0 8 100
4 1 4 8 0 80

1150 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

Mutation is a key operator in biological evolution, as it prevents convergence to
local optima by sampling new points in the search space. In our GA implementation,
we implement mutation by selecting a random chromosome, that is, we modify
the processor type of a randomly selected node. Note that, this newly generated
chromosome may not be legal, as it may not fit onto the NoC. Our algorithm applies
another random mutation if this change is not legal. For example, Figure 5g and h
shows two mutations on G6 ¼ (3,0,5) ! (2,3,5) ! (1,0,3) ! (3,1,3). Both of these
mutations are applied on the second chromosome – (2,3,5) –, creating (3,0,5) !
(1,3,5) ! (1,0,3) ! (3,1,3) and (3,0,5) ! (3,3,5) ! (1,0,3) ! (3,1,3). The former is
legal since it becomes a smaller processor, a type 1 processor instead of type 2,
whereas the latter is not legal due to insufficient chip area. Algorithm 4 shows how
our mutation approach works on a chromosome.

A population is generated through many stages of reproduction until a
termination condition has been reached. The termination condition can be a fixed
number of iterations, an acceptable level of fitness rate, allocated budget, time or
cost. On top of these conditions, we check whether the cross-over operation is
generating new offspring or not. This enables faster search space exploration. Recall
that, for our running example, the population before the mutation is (G1, G2, G4,
G6). According to this population and the fitness function, G2 and G6 are selected as
the parents to form the next generation. Cross-over generates two offspring, namely,
G7 ¼ (2,0,5) ! (1,2,5) ! (1,3,5) ! (3,0,3) and G8 ¼ (3,0,5) ! (2,3,5) ! (1,0,3) !
(3,1,3). Note that these two offspring are same as their parents except with a different
orientation. In our implementation, we terminate the GA if the offsprings are same
as their parents (even with different orientations).

Algorithm 3: Cross-over algorithm to form new offsprings.

function cross - over(Max1,Max2,population)
for i 1 . . . N/2 do

Child1 (Max1[i]
Child2 (Max2[i]

end for

for i N/2 þ 1 . . . N do

Child1 (Max2[i]
Child2 (Max1[i]

end for

if (Child1 is legal) then
population ¼ population þ child1
new þ þ

end if

if (Child2 is legal) then
population ¼ population þ child2
new þ þ

end if

if (new 4 0) then
population (population - getMin(population)

else

if (new 4 1) then
population (population - getMin(population)
population (population - getMin(population)

end if

end if

International Journal of Electronics 1151

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

4.3. Implementation and discussion

Our initial experimental evaluation shows that the GA-based approach is both
practical and promising. It is practical because we are able to achieve close-to-
optimal results within the fractions of the time ILP executes. More specifically, in
our benchmarks, we generate results between 25 s and 3 min. Our proposed solution
is promising as the initial results collected so far indicate significant savings.

Note that, in our GA implementation, we employ area, performance and energy
as constraints, whereas temperature and communication bandwidth and other
possible constraints are left out. For example, depending on the switch present in a
node, bandwidth available to the connected links will be limited. Our implementa-
tion, in its current form, does not cover this constraint (and similar ones). However,
our GA-based implementation can easily be modified to include such constraints.

Note also that, we do not consider possible energy reduction within the
communication channels which could be a possible extension to this problem. As
some of the links might be unused most of the time, it can be possible to shut these
links down to save energy. In our future studies, we would like to explore the
aforementioned objectives using a multi-objective GA framework.

5. ILP formulation

Our goal in this section is to present an ILP formulation of the problem of
minimising communication and computation by determining the optimal selection
and placement of nodes in an NoC-based CMP. This ILP framework is used to
compare with our GA-based implementation presented in the previous section.

ILP provides a set of techniques that solve those optimisation problems in
which both the objective function and constraints are linear functions and the
solution variables are restricted to be integers. The 0–1 ILP is an ILP problem in
which each (solution) variable is restricted to be either 0 or 1 (Nemhauser and
Wolsey 1988). As indicated before, Table 1 gives the constant terms used in our
ILP/GA formulation. We used Xpress-MP (2002), a commercial tool, to formulate
and solve our ILP problem, though its choice is orthogonal to the focus of this
article. In our ILP formulation, we view the chip area as a 2D grid, and assign
nodes into this grid.

As before, we assume that we are given N number of nodes with dimensions
(Xi,Y i). Our ILP approach uses 0–1 variables to place these nodes on the 2D grid
with (CX, CY) dimensions, and at the end, returns the coordinates of each NoC-
based CMP node.

Algorithm 4: Mutation on a chromosome.

function mutation(placement)
b (random CPU type t
(x, y) ¼ re - place(b,CX,CY,placement - b)
if (x 4 0 and y 4 0 then

add chromosome (t,x,y)
placement (placement - b [(t,x,y)

else

mutation(placement)
end if

1152 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

In order to express the location of node n, we use the NC variable. More
specifically,

. NCn,x,y: indicates whether node n is in (x, y).

The mapping between the coordinates and nodes is ensured by the Map variable.
That is,

. Mapx,y,n: indicates whether coordinate (x,y) is assigned to node n.

We capture the distance between two nodes by using the distances on both x and y
axis, where DXi,j,x returns the distance on x-axis and DYi,j,x returns the distance on y-
axis. Specifically, we have:

. DXi,j,x: indicates whether the distance between nodes i and j is equal to x on the
x-axis.

. DY i,j,y: indicates whether the distance between nodes i and j is equal to y on the
y-axis.

The processor type being selected is identified with:

. PTn,p: indicates whether node n is running processor type p.

After describing the 0–1 variables, we next, give our constraints. Our first constraint
is regarding the unique assignment of a node, that is, a node can be assigned to a
single coordinate on the grid:

XCX

i¼1

XCY

j¼1
NCn;i;j ¼ 1; 8n: ð2Þ

In the above equation, i and j correspond to the x and y coordinates, respectively.
Each node must be assigned only one type of processor:

XP

j¼1
PTn;j ¼ 1; 8n: ð3Þ

We make sure that each node is assigned only one type of processor by setting the
overall sum to 1, which will force the ILP solver to set only one of the 0–1 variables
to 1. Manhattan distance is assumed to be the unit cost of the data communication
between two nodes, and is the metric whose value we use in minimisation. To capture
the Manhattan distance, we use two variables, namely, DXi,j,x and DYi,j,y, and
employ the following constraints:

DXn1;n2;x � NCn1;x1;y1 þNCn2;x2;y2 � 1;

8n1; n2; x; x1; x2; y1; y2; s:t:
x ¼ jx1 � x2j and n1 6¼ n2: ð4Þ

DYn1;n2;y � NCn1;x1;y1 þNCn2;x2;y2 � 1;

8n1; n2; y; x1; x2; y1; y2; s:t:
y ¼ jy1 � y2j and n1 6¼ n2: ð5Þ

International Journal of Electronics 1153

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

Having specified the necessary constraints in our ILP formulation, we next give our
objective function. We define our total cost function as the sum of the
communication cost in both dimensions and computation cost. More specifically,
we denote the total data communication using CommX and CommY for dimensions x
and y, respectively:

CommX ¼
XN

i¼1

XN

j¼1

XCX

k¼1
Ai;j � DXi;j;k � k s:t: i 6¼ j: ð6Þ

CommY ¼
XN

i¼1

XN

j¼1

XCY

k¼1
Ai;j � DYi;j;k � k s:t: i 6¼ j: ð7Þ

Note that, for both communication costs, we use Ai,j to express the affinity between
two nodes. This is multiplied with the distance given by k which is also multiplied
with 0–1 variable DXi,j,k or DYi,j,k. This variable indicates whether k is the actual
distance between nodes i and j. Consequently, our communication cost can be
expressed as:

Comm ¼ ðCommX þ CommYÞ � CUC: ð8Þ

Next, we give the computation cost as:

Comp ¼
XN

i¼1

XP

j¼1
PTi;j � Li � PUC: ð9Þ

To summarise, our node placement and processor selection problem can be
formulated as ‘minimise Comm þ Comp under constraints (2) through (9)’. It is
important to note that this ILP formulation is very flexible as it can accommodate
different numbers of nodes and dimensions. Note also that the ILP formulation has
many other constraints which are not shown for clarity reasons.

6. Experimental evaluation

6.1. Setup

We performed experiments with eight different array-based benchmark codes
parallelised through an optimising compiler built upon SUIF. Table 4 lists the
applications and their important characteristics. In collecting these results, we fast-
forwarded the first 1 billion instructions, and simulated the next 300 million
instructions. The fourth column of Table 4 gives the number of data accesses for
each application. While GA solution times varied between 25 s and 3 min, averaging
on about 94 s, ILP solution times were between 172 min and 18.4 h. In our base
configuration, we used four different types of processors with properties given in
Table 5.

We performed experiments with four different execution models for each
benchmark code in our experimental suite:

. Homogeneous: This is in a sense a conventional NoC topology which uses the
same type of processors in the NoC nodes.

1154 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

. Random: This is a randomly generated heterogeneous NoC, where the
processor types are selected randomly and placement of these nodes are
done randomly.

. GA: This is the GA-based processor selection and node placement strategy for
heterogeneous NoCs, wherein a close-to-optimal placement is targeted.

. ILP: This is the ILP-based processor selection and node placement strategy,
which we compare our GA-based implementation with. This scheme represents
the optimal placement for heterogeneous NoCs.

6.2. Results

Figure 6 gives our total cost results normalised with respect to the homogeneous
scheme based on four processors. We see that the overall average normalised
costs with random and GA are around 110% and 77%, respectively. On the
other hand, the ILP scheme has a normalised cost of 71% on average. Our GA-
based implementation achieves close to optimal results (77% vs. 71%) with much
better solution times. Specifically, our GA solution time varied between 25 s and
3 min, averaging on about 94 s, whereas ILP solution times were between
172 min and 18.4 h.

One can see that, while some of the benchmarks prefer a homogeneous NoC
topology, as in the case of ammp and vortex, most of the benchmarks take advantage
of heterogeneous NoC. For ammp and vortex, the optimum topology returned by the
ILP is a homogeneous NoC with a 100% normalised total cost with respect to
homogeneous. While heterogeneity provides more options and reduces the total cost,
optimal placement also plays a key role in achieving the best results. In other words,
the best design is achieved by combining both optimal placement and heterogeneous
properties.

Table 4. Benchmark codes used in this study.

Benchmark Source Description Number of data accesses

3step-log DSPstone Motion estimation 90646252
adi Livermore Alternate direction integration 71021085
ammp Spec Computational chemistry 86967895
equake Spec Seismic wave propagation simulation 83758249
mcf Spec Combinatorial optimisation 114662229
mesa Spec 3D graphics library 134791940
vortex Spec Object-oriented database 163495955
vpr Spec FPGA circuit placement 117239027

Table 5. Processors used in our heterogeneous NoC and their characteristics.

Processor IPC Energy Area

P1 1 3.73 1
P2 1.3 6.88 2
P3 1.87 10.68 8
P4 2.14 46.44 40

International Journal of Electronics 1155

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

Recall that the original number of processor types we used were four. The
bar-chart in Figure 7 shows the normalised costs (with respect to those of the
Homogeneous scheme) for the benchmark equake with different numbers of
processor types (the results with the original number of processors are also
shown for convenience), ranging from 1 to 4. Note that, the total chip area is
kept constant for all these experiments and the only difference between two
experiments is the number of processor types and corresponding properties
such as energy, area and performance. Available processor types and their
characteristics are listed in Table 5. The second column gives the IPC value of

Figure 6. Total costs of random, GA and ILP normalised with respect to homogeneous.

Figure 7. Normalised costs with the different number of processor types (equake).

1156 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

each processor type, while the third column shows the average energy con-
sumption and the last column shows the area required for the processor. We see
from these results that the effectiveness of the GA-based and ILP approaches
increases with the increasing number of processor types. The main reason for this
behaviour is that adding more processor types gives more flexibility to select a
better match for a given processing load. Note that, when only one type of
processor is used, all the schemes behave similar to homogeneous except the
placement of different nodes. GA and ILP try to optimise the location of different
nodes depending on their affinities. This shows that optimal placement should be
targeted along with heterogeneity.

In the next set of experiments, we include an additional execution model to reflect
the behaviour of the studies (Ascia et al. 2004; Zhou et al. 2006; da Silva et al. 2009)
described in Section 2. Recall that, these studies try to map IPs or processors onto
the NoC using a GA-based framework with different objectives.

Random þ GA: This is a randomly generated heterogeneous NoC, where the
processor types are selected randomly, however placement is done using our
GA-based implementation.

Note that, GA portion of this execution model is different from the previously
proposed techniques (Ascia et al. 2004; Zhou et al. 2006; da Silva et al. 2009).
However, it still shows the affects of separating processor selection from mapping.
Figure 8 gives results for both Random þ GA and GA normalised with respect to
Homogeneous scheme. Average normalised costs with Random þ GA and GA are
around 94% and 77%, respectively. These results clearly show that processor
selection plays an important role in achieving good results.

In our last set of experiments, we measure the ratio of communication to
computation in GA normalised with respect to homogeneous. The bar-chart
in Figure 9 shows the normalised costs for the communication and computation
in the total cost. Recall that the original communication and computation
formulation is used in both GA and ILP. As we can see from this graph, certain
applications are more communication oriented, whereas others are computationally
intense.

Figure 8. Normalized costs with Random þ GA.

International Journal of Electronics 1157

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

7. Concluding remarks

One of the promising solutions for designing efficient NoC-based CMPs is to make
use of heterogeneity as it allows the processor to better match execution resources.
The work described in this article studies application-specific placement of nodes in
an NoC-based heterogeneous CMP. We expressed this problem using an
evolutionary computation-based approach. Our preliminary experiments show
that our approach is both practical and promising.

Acknowledgements

This research is supported in part by TUBITAK grant 108E233, by a grant from IBM, and by
a Marie Curie International Reintegration Grant within the 7th European Community
Framework Programme.

References

Ahonen, T., and Nurmi, J.A. (2007), ‘Hierarchically Heterogeneous Network-on-Chip’, in
Proceedings of EUROCON, Warsaw: The International Conference on ‘‘Computer as a
Tool’’, pp. 2580–2586.

Ascia, G., Catania, V., and Palesi, M. (2004), ‘Multi-objective Mapping for Mesh-based NoC
Architectures’, in Proceedings of the 2nd IEEE/ACM/IFIP international Conference on
Hardware/Software Codesign and System Synthesis, Stockholm, Sweden, September
08–10, 2004. CODES þ ISSS 004, New York, NY: ACM, pp. 182–187.

Ascia, G., Catania, V., Palesi, M., and Parlato, A. (2003), ‘An Evolutionary Approach for
Reducing the Energy in Address Buses’, in ISICT 003: Proceedings of the 1st international
symposium on Information and communication technologies, pp. 76–81.

Balakrishnan, S., Rajwar, R., Upton, M., and Lai, K. (2005), ‘The Impact of Performance
Asymmetry in Emerging Multicore Architectures’, in ISCA 005: Proceedings of the 32nd
annual international symposium on Computer Architecture, pp. 506–517.

Banerjee, U. (1994), Loop Parallelization, Norwell, MA, USA: Kluwer Academic
Publishers.

Figure 9. Communication vs. computation cost normalised with respect to homogeneous.

1158 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

Benini, L., and De Micheli, G. (2001), ‘Powering Networks on Chips: Energy-efficient and
Reliable Interconnect Design for SoCs’, in Proceedings of ISSS, Montreal, Canada: ACM,
pp. 33–38.

Blume, H., Feldkaemper, H.T., and Noll, T.G. (2005), ‘Model-based Exploration of the
Design Space for Heterogeneous Systems on Chip’, Journal of VLSI Signal Processing
Systems, 40, 19–34.

Bolotin, E., Cidon, I., Ginosar, R., and Kolodny, A. (2004), ‘Qnoc: QoS
Architecture and Design Process for Network on Chip’, Journal of Systems Architecture,
50, 105–128.

Brisolara, L., il Han, S., Guerin, X., Carro, L., Reis, R., Chae, S.I., and Jerraya, A.
(2007), ‘Reducing Fine-grain Communication Overhead in Multithread Code Genera-
tion for Heterogeneous mpsoc’, in SCOPES 007: Proceedings of the 10th international
workshop on Software & compilers for embedded systems, New York, NY, USA: ACM,
pp. 81–89.

Cardoso, R.S., Kreutz, M.E., Carro, L., and Susin, A.A. (2005), ‘Design Space Eexploration
On Heterogeneous Network-On-Chip’, in Proceedings IEEE International Symposium on
Circuits and Systems. Washington, DC, USA: IEEE, pp. 428–431.

da Silva, M.V.C., Nedjah, N., and deMacedoMourelle, L. (2009), ‘Application Synthesis for
MPSoCs Implementation using Multiobjective Optimization’, Lecture Notes in Computer
Science, 5517, 736–743.

Dally, W.J., and Towles, B. (2001), ‘Route Packets, not Wires: On-chip Interconnection
Networks’, in Proceedings of DAC, Las Vegas, Nevada: ACM, 684–689.

Eisley, N., and Peh, L.-S. (2004), ‘High-level Power Analysis of on-chip Networks’, in
Proceedings of CASES, Washington, DC: ACM, pp. 104–115.

Flachs, B., Asano, S., Dhong, S., Hotstee, P., Gervais, G., Kim, R., Le, T., Liu, P., Leenstra,
J., Liberty, J., Michael, B., Oh, H., Mueller, S., Takahashi, O., Hatakeyama, A.,
Watanabe, Y., and Yano, N. (2005), ‘A Streaming Processing Unit for a Cell Processor
(Vol. 1)’, in 2005 IEEE International Conference on Solid-State Circuits, Digest of
Technical Papers. Washington, DC, USA: IEEE, pp. 134–135.

Gerstlauer, A. (2003), ‘Communication Abstractions for System-level Design and Synthesis’,
Technical Report. TR-03-30, Center for Embedded Computer Systems, University of
California, Irvine, CA.

Ghiasi, S., Keller, T., andRawson, F. (2005), ‘Scheduling for Heterogeneous Processors in Server
Systems’, in CF 005: Proceedings of the 2nd conference on Computing frontiers, New York,
NY, USA: ACM, pp. 199–210.

Handl, J., and Knowles, J.D. (2007), ‘An Evolutionary Approach to Multiobjective
Clustering’, IEEE Transactions on Evolutionary Computation, 11, 56–76.

Jena, R.K., and Sharma, G.K. (2007), ‘A Multi-objective Evolutionary algorithm- Based
Optimisation Model for Network on Chip Synthesis’, International Journal of Innovative
Computing and Applications, 1, 121–127.

Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., and Shippy, D. (2005),
‘Introduction to the Cell Multiprocessor’, IBM Journal of Research and Development, 49,
589–604.

Koelbel, C.H., Loveman, D.B., and Schreiber, R.S. (1993), The High Performance Fortran
Handbook, Cambridge, MA, USA: MIT Press.

Kongetira, P., Aingaran, K., and Olukotun, K. (2005), ‘Niagara: A 32-Way Multithreaded
Sparc Processor’, IEEE Micro, March/April, 21–29.

Kreutz, M., Marcon, C., Carro, L., Wagner, F., and Susin, A. (2005),
‘Design Space Exploration Comparing Homogeneous And Heterogeneous Network-
on-Chip Architectures’, in Proceedings of IEEE International of the 18th Annual
Symposium on Integrated circuits and System Design, Florianolpolis, Brazil: ACM, pp.
190–195.

Kumar, R., Tullsen, D.M., and Jouppi, N.P. (2006), ‘Core Architecture Optimization for
Heterogeneous Chip Multiprocessors’, in PACT 006: Proceedings of the 15th International
Conference on Parallel Architectures and Compilation Techniques, Seattle, Washington,
USA: ACM, pp. 23–32.

Kumar, R., Tullsen, D.M., Jouppi, N.P., and Ranganathan, P. (2005), ‘Heterogeneous Chip
Multiprocessors’, Computer, 38, 32–38.

International Journal of Electronics 1159

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., and Farkas, K.I. (2004), ‘Single-is
a Heterogeneous Multi-Core Architectures for Multithreaded Workload Performance’, in
ISCA 004: Proceedings of the 31st Annual International Symposium on Computer
Architecture, New York, NY, USA: ACM, p. 64.

Lambrechts, A., Raghavan, P., Leroy, A., Talavera, G., Vander, T., Jayapala, M., Catthoor,
F., Verkest, D., Deconinck, G., Corporaal, H., Robert, F., and Carrabina, J. (2005),
‘Power Breakdown Analysis for a Heterogeneous NoC Platform Running a Video
Application’, in Proceedings of the 2005 IEEE International Conference on Application-
Specific Systems, Architecture Processors, Washington, DC, USA: IEEE Computer
Society, pp. 179–184.

Leary, G., Srinivasan, K., Mehta, K., and Chatha, K.S. (2009), ‘Design of Network-on-chip
Architectures with a Genetic Algorithm-based Technique’, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 17, 674–687.

Lei, T., and Kumar, S. (2003), ‘A Two-step Genetic Algorithm for Mapping Task Graphs
to a Network on Chip Architecture’, in DSD 003: Proceedings of the Euromicro
Symposium on Digital Systems Design, Los Alamitos, CA, USA: IEEE Computer
Society, p. 180.

Lieverse, P., Wolf, P.V.D., Vissers, K., and Deprettere, E. (2001), ‘A Methodology for
Architecture Exploration of Heterogeneous Signal Processing Systems’, Journal of VLSI
Signal Processing Systems, 29, 197–207.

Liu, F., and Chaudhary, V. (2003), ‘Extending openmp for Heterogeneous Chip Multi-
processors’, in Proceedings of the 2003 International Conference on Parallel Processing,
Kaohsiung, Taiwan: IEEE Computer Society, pp. 161–168.

Loghi, M., Angiolini, F., Bertozzi, D., Benini, L., and Zafalon, R. (2004), ‘Analyzing on-
chip Communication in a MPSOC Environment’, in Proceedings of the conference on
Design, Automation and Test in Europe, Washington, DC, USA: IEEE Computer Society,
p. 20752.

Madsen, J., Mahadevan, S., Virk, K., and Gonzalez, M. (2003), Real-Time Systems
Symposium, Cancun, Mexico: IEEE Computer Society, pp. 265–274.

Mazumder, P., and Rudnick, E.M. (1999), Genetic Algorithms for VLSI Design, Layout & Test
Automation, Upper Saddle River, NJ, USA: Prentice Hall PTR.

McGowen, R. (2005), ‘Adaptive Designs for Power and Thermal Optimization, in Proceedings
the 2005 IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA:
IEEE Computer Society, pp. 118–121.

Nemhauser, G.L., and Wolsey, L.A. (1988), Integer and Combinatorial Optimization, New
York, NY, USA: Wiley-Interscience.

Palesi, M., and Givargis, T. (2002), ‘Multi-objective Design Space Exploration Using Genetic
Algorithms’, in CODES 002: Proceedings of the Tenth International Symposium on
Hardware/software Codesign, pp. 67–72.

Pham, D., Asano, S., Bolliger, M., Day, M., Hofstee, H., Johns, C., Kahle, J., Kameyama, A.,
Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D., Suzuoki, M., Wang, M.,
Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T., and Yazawa, K. (2005), ‘The Design
and Implementation of a First-generation Cell Processor (Vol. 1)’, in 2005 IEEE
International Conference on Solid-State Circuits, Digest of Technical Papers, pp. 184–592.

Schnecke, V., and Vornberger, O. (1996), ‘A Genetic Algorithm for vlsi Physical Design
Automation’, in Proceedings of ACEDC ’96. University of Plymouth, U.K.

Shee, S.L., Erdos, A., and Parameswaran, S. (2006), ‘Heterogeneous Multiprocessor
Implementations for jpeg: A Case Study, in CODES þ ISSS 006: Proceedings of the 4th
International Conference on Hardware/software Codesign and System Synthesis,New York,
NY, USA: ACM, pp. 217–222.

Srinivasan, K., and Chatha, K.S. (2005), ‘Isis: A Genetic Algorithm Based Technique for
Custom on-chip Interconnection Network Synthesis’, in International Conference on VLSI
Design, pp. 623–628.

Taylor, M.B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffman, H.,
Johnson, P., Lee, J., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N., Strumpen, V.,
Frank, M., Amarasinghe, S., and Agarwal, A. (2002), ‘The RAW Microprocessor: A
Computational Fabric for Software Circuits and General Purpose Programs’, IEEE
Micro, 22(2), 25–35.

1160 O. Ozturk and D. Demirbas

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

Wang, H., Zhu, X., Peh, L., and Malik, S. (2002), ‘Orion: A Power-performance Simulator for
Interconnection Networks’, in Proceedings of MICRO, pp. 294–305.

Wang, Y., and Dang, C. (2007), ‘An Evolutionary Algorithm for Global Optimization Based
on Level-set Evolution and Latin Squares’, IEEE Transactions on Evolutionary
Computation, 11, 579–595.

Xpress-MP (2002). http://www.dashoptimization.com/pdf/Mosel1.pdf
Yan, J., and Zhang, W. (2007), ‘Hybrid Multi-core Architecture for Boosting Single-threaded

Performance’, SIGARCH Computer Architecture News, 35, 141–148.
Zhou, W., Zhang, Y., and Mao, Z. (2006), ‘Pareto based Multi-objective Mapping IP Cores

onto NoC Architectures’, in IEEE Asia Pacific Conference on Circuits and Systems,
Singapore: IEEE, pp. 331–334.

International Journal of Electronics 1161

D
o
w
n
l
o
a
d
e
d

B
y
:

[
T
Ü
B
T
A
K

E
K
U
A
L
]

A
t
:

1
2
:
4
8

1
6

D
e
c
e
m
b
e
r

2
0
1
0

http://www.dashoptimization.com/pdf/Mosel1.pdf

