
48

&

www.ietdl.org
Published in IET Computers & Digital Techniques
Received on 17th September 2009
Revised on 7th January 2010
doi: 10.1049/iet-cdt.2009.0089

ISSN 1751-8601

On-chip memory space partitioning for chip
multiprocessors using polyhedral algebra
O. Ozturk1 M. Kandemir2 M.J. Irwin2

1Department of Computer Engineering, Bilkent University, Bilkent, 06800, Ankara, Turkey
2Computer Engineering Department, The Pennsylvania State University, University Park, PA 16802, USA
E-mail: ozturk@cs.bilkent.edu.tr

Abstract: One of the most important issues in designing a chip multiprocessor is to decide its on-chip memory
organisation. While it is possible to design an application-specific memory architecture, this may not necessarily
be the best option, in particular when storage demands of individual processors and/or their data sharing
patterns can change from one point in execution to another for the same application. Here, two problems are
formulated. First, we show how a polyhedral method can be used to design, for array-based data-intensive
embedded applications, an application-specific hybrid memory architecture that has both shared and private
components. We evaluate the resulting memory configurations using a set of benchmarks and compare them
to pure private and pure shared memory on-chip multiprocessor architectures. The second approach proposed
consider dynamic configuration of software-managed on-chip memory space to adapt to the runtime
variations in data storage demand and interprocessor sharing patterns. The proposed framework is fully
implemented using an optimising compiler, a polyhedral tool, and a memory partitioner (based on integer
linear programming), and is tested using a suite of eight data-intensive embedded applications.
1 Introduction
The ability to pack millions of transistors into a single core
enables chip multiprocessor design, where multiple
processor cores reside in the same chip. An important
advantage of this architecture is that it reduces the cost of
interprocessor communication from both performance and
power perspectives as this communication does not need to
go over off-chip buses. A potential drawback is the
increased cost of off-chip accesses as compared to
interprocessor communication. In particular, multiple cores
can try to use the same set of buses/pins to go off-chip,
and this can put a high pressure on the memory subsystem.
Consequently, embedded software designers for chip
multiprocessors prefer on-chip communication over off-
chip memory accesses.

Conventional on-chip memories in chip multiprocessors can
be of two types: shared or private. In the shared case, all
processors share the same on-chip memory space. Only one
processor can access a shared memory location at a time.
Synchronisation is done through shared memory. Data
4
The Institution of Engineering and Technology 2010
sharing among processors depends on the speed of memory
access, and can be fast if the number of processors is small.
But, the memory bandwidth is limited. An increase in the
number of processors without an increase of bandwidth
causes bottlenecks. In the private case, each processor can
only access its own private memory. Data are shared across an
on-chip communication network using message passing.
Synchronisation is also achieved by message passing. Memory
and bandwidth are scalable with the number of nodes but
data sharing among processors is slowed down due to the
latency of interconnection networks. There are pros and cons
for each type of memory. In the private memory case, the
memory units are closer to a processor, not requiring shared
bus accesses in the common case, thereby reducing access
latency as well as bus contention. A drawback of this
approach is potential duplication of hot data in multiple on-
chip memories, leading potentially to an underutilisation of
the available aggregate on-chip memory space. Clearly, the
density of duplication is determined by the degree of data
sharing between the parallel processors. In addition to this
problem, working with equal-sized private memories can also
introduce load balancing problems; that is, while some
IET Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
doi: 10.1049/iet-cdt.2009.0089

IET
do

www.ietdl.org
processors need more private memory space than available to
them, the rest may not use available private space allocated to
them. While a shared on-chip memory solves these two
problems to a certain extent, it typically costs higher access
latency and higher power consumption per access, and leads
to high contention on the interconnection network.

In an attempt to come up with a hybrid solution that takes
good characteristics of these two solutions while leaving out
the bad ones, customised on-chip memory design for chip
multiprocessors is first proposed that execute array-based
data-intensive embedded applications. Customisation in this
context brings two non-uniformities. First, each processor
can have a different size private memory, and second, some
processors can share a common memory while the others do
not. Fig. 1 illustrates private, shared, and a sample hybrid
on-chip memory architecture. Our first goal in this paper
is to determine a suitable hybrid memory hierarchy for a
given application, i.e. application-specific software-managed
memory design for chip multiprocessors. To achieve this
objective, our approach proceeds in two steps:

† We estimate the amount of data accessed by each processor
and shared between different processors. We do this by
formulating the set of accessed/shared elements using
Presburger formulas, and counting them (using a polyhedral
tool). The collected statistics are then fed into the second step.

† We divide the available on-chip memory space into shared
and private parts according to magnitudes of shared and private
data sets. After this division, we decide how the private parts
should be distributed across the processors, and the shared
parts across the processor pairs. The outcome of this step is a
hybrid memory architecture, where in the most general case
some processors share memory whereas the others do not.

We evaluated the hybrid memory designs obtained through
our approach from both performance and power perspectives.
In addition, we compared them to pure private and shared
architectures. When running the same set of array-based
data-intensive embedded applications with the same code
optimisations, our results indicate that the proposed hybrid
memory design methodology leads to much less power
consumption than the conventional memory architectures.
These results not only show that such hybrid memory
architectures are promising for chip multiprocessors, but they
also open up opportunities for novel compiler optimisations
in the future that could take non-uniform memory sizes of
the processors and irregular data sharing into account.

While such specialised hybrid architectures generate very
good results from both power and performance angles, the
resulting design may not be extremely flexible because the
data access pattern of the entire application is captured in a
single memory configuration. This is particularly true when
relative memory demands and data sharing patterns of
processors change from one portion of the code to another
during the course of execution. In such cases, a fixed
Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
i: 10.1049/iet-cdt.2009.0089
(static) memory configuration may not be optimal for
individual program phases. Motivated by this argument, a
reconfigurable software-managed on-chip memory design
for chip multiprocessors is also proposed here. The idea is
to change the memory partitioning dynamically between
the processors at runtime when execution moves from one
phase of computation to another.

To achieve this dynamic memory partitioning, we divide
the memory spaces into slices of equal sizes, and perform a
new slice allocation (across processors) at each phase of the
computation. A slice allocation indicates how the slices are
assigned to processors. Then, the question is to decide the
slice allocation for each programme phase. In our proposal,
this is handled by an analysis of the application code based
on a polyhedral tool that uses Presburger arithmetic.
Specifically, an optimising compiler analyses each program
phase with the help of the polyhedral tool, and decides the
most suitable on-chip memory partitioning for it. It
subsequently inserts special instructions in the code to
switch from one memory configuration to another when
the execution moves from one phase to another. We
compared this dynamic memory management strategy with
both classical memory architectures (pure shared and pure
private on-chip memories) and an application-specific
architecture that uses the same memory configuration for
the entire program execution. Our experimental evaluation
indicates that the proposed technique is very effective in
practice and leads to much less energy consumption than
all the alternatives tested.

The rest of this paper is organised as follows. Section 2
discusses our static approach and Section 3 discusses our

Figure 1 Private a, shared b and hybrid c on-chip memory
architectures
485

& The Institution of Engineering and Technology 2010

48

&

www.ietdl.org
dynamic scheme. An experimental evaluation of the proposed
schemes is presented in Section 4. Section 5 discusses related
work. Section 6 concludes with a summary and an outline of
the future work.

2 Application-specific
static design
In this section, we discuss our formulation of the problem that
determines a customised on-chip memory for a given
application. Note that, here the focuses is on array-based,
loop-intensive embedded programme. Array/loop-intensive
applications are frequently used in embedded image/video
processing. Such an application is typically composed of a set
of loop nests; each loop nest accesses a set of arrays. For
these applications loop bounds are either known or profile
data are available. An optimising compiler can analyse these
loop-intensive applications with regular data access patterns.

2.1 Presburger formulation

Presburger formulation is a class of logical formulas which
can be built from affine constraints over integer variables,
the logical connectives (_, ^, and ¬), and the existential
and universal quantifiers (∃ and ∀). In this work, we
employ a polyhedral tool called the Omega Library [1] to
manipulate integer tuple relations and sets, which are
described using Presburger formulas.

In order to partition the memory space among the
processors, we need two types of information: the amount
of private data accessed by each processor, and the amount
of data shared across the processors. Our solution to
obtaining these is based on representing the data accessed
by each processor and each processor pair using Presburger
formulas and counting them. After the sets containing
Presburger formulations are obtained, we generate code to
count the number elements in each set. The resulting
numbers (for private and shared data) are then fed to our
memory partitioning algorithm.

2.1.1 Representation of parallelism information:
We represent parallelisation information for a given nest using
a vector referred to as the parallelism vector (g). In this vector,
entries correspond to loops in the nest (from outermost to
innermost), and each entry can be 1 or 0. If an entry is 1, this
means that the corresponding loop is parallelised; otherwise,
the entry is set to 0. For example, for a nest with four loops,
g = (1 1 0 0)T indicates that the first two loops are
parallelised, whereas the iterations of the inner two loops are
to be executed sequentially. There are different ways of
obtaining the g vector for each loop. First, we can use
automatic loop parallelisation theory [2] and identify the loops
whose iterations could be executed in parallel. Alternately, we
can allow the programmer to explicitly mark the parallel loops,
as is also common in high-end parallel computing community
[3, 4]. This user-assisted parallelisation is typically supported
with directives/pragmas, enabling users to actively assist the
6
The Institution of Engineering and Technology 2010
compiler in the parallelisation process. Our approach, which is
described in the rest of this here, is independent of the
parallelisation strategy employed.

2.1.2 Representation of iteration and data sets
and counting them: A loop space contains all the
iterations executed by the loop and is represented by a set
whose boundaries are defined by loop limits. Consider, for
example, the loop nest given in Fig. 2. We can represent
the iteration space of this loop nest using the following
Presburger formulation

L = {(i1, i2, i3) |L1 ≤ i1 ≤ U1 ^ L2 ≤ i2 ≤ U2

^ L3 ≤ i3 ≤ U3}

The set of loop iterations that will be executed by a processor
is determined by parallelism vector (g) as well as the
scheduling strategy adopted. In this paper, we employ a
static block scheduling, where each processor is assigned a
set of successive loop iterations. Assuming that we have
p = (1 0 0)T for the loop nest in Fig. 2 and that we have
four processors (PROC0 through PROC3), the set of loop
iterations that will be executed by processor c (where
0 ≤ c ≤ 3) can be determined as

K(c) =
{

(k1, k2, k3) | L1 +
c(U1 − L1 + 1)

4

(

≤ k1 , L1 + (c + 1)(U1 − L1 + 1)

4
− 1

)

^ (L2 ≤ k2 ≤ U2) ^ (L3 ≤ k3 ≤ U3)

}

We assumed (for simplicity) that (U1 − L1) is evenly divided
by four. To specify the set of data elements accessed by each
processor, we need to consider each array reference within the
loop. Continuing with our example, for processor c, we have
the following sets

S(c, A[i2, i3 + i1]) = {(a1, a2) | ∃(i1, i2, i3) such that

(i2 = a1 ^ i1 + i3 = a2) ^ (i1, i2, i3) [K(c)}

S(c, A[i2 + i3, i3 − i2]) = {(a1, a2) | ∃(i1, i2, i3) such that

(i2 + i3 = a1 ^ i3 − i2 = a2) ^ (i1, i2, i3) [K(c)}

S(c, A[i2 + 2, i3 + i1 − 1]) = {(a1, a2) | ∃(i1, i2, i3)

such that

(i2 + 2 = a1 ^ i1 + i3 − 1 = a2) ^ (i1, i2, i3) [K(c)}

Figure 2 Example loop nest
IET Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
doi: 10.1049/iet-cdt.2009.0089

IE
do

www.ietdl.org
As a result, the total set of data items (array elements)
accessed by processor c can be expressed as

Stotal(c) = S(c, A[i2, i3 + i1]) < S(c, A[i2 + i3, i3 − i2])

< S(c, A[i2 + 2, i3 + i1 − 1)}

where < denotes the set union.

To capture data sharing between processors, we need to
specify the set of common elements accessed by each pair
of processors. Returning to our current example, let us
consider two processors (c and c′). The array elements
shared between them can be written as

C(c, c′) = {(a1, a2) | (a1, a2) [Stotal(c)

^ (a1, a2) [Stotal(c
′)}

Informally, for an element to belong to set C(c, c′), it must be
accessed by both the processors (i.e. c and c′). Consequently,
the private data elements for processor c (i.e. those that are
accessed only by processor c) can be computed as

P(c) = Stotal(c) −
⋃

∀c′s.t.c′=c

C(c, c′)

However, for our memory space partitioning approach, we also
need to find the number of elements in setsP(c) and C(c, c′). To
do this, we need to be able to enumerate the elements in these
sets. For this purpose, we employ the following strategy. Using
the codegen utility provided by the Omega Library [1], we first
generate a code (typically a nested loop sequence) that iterates
over the elements in a given set. Then, we place a counter
(variable) in this code, and find the number of times the
counter is updated, which gives us the number we want. In
other words, what we do is to create a code and execute it.
While executing such a code fragment for each set of interest
can take time, we believe that this overhead is within the
tolerable limits. Nevertheless, we also quantify this overhead
for the benchmark codes used in this study.

Note that, if we have multiple nests and arrays in the
application, we determine P(c) and C(c, c′) considering all
the nests and arrays. Specifically, let C(c, c′, Ni, Aj) be the
set of the elements of array Aj shared by processors c and c′

in nest Ni. Based on these, we can write

C(c, c′) =
⋃

i

⋃
j

C(c, c′, Ni, Aj)

and

P(c) = Stotal(c) −
⋃

∀c′s.t.c′=c

C(c, c′)

The first one of these equalities, determine the total shared
elements between processors c and c′ across all nests and
arrays in the application. The second one, on the other
hand, gives us the set of data elements private to processor
T Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
i: 10.1049/iet-cdt.2009.0089
c, assuming that Stotal(c) is the total number of elements
(from all arrays and in all nests) accessed by that processor.

2.2 Memory partitioning

2.2.1 Base case: Let us use P to denote the number of
CPUs in our chip multiprocessor. We assume that the on-
chip memory space is divided into L units (also called slices) of
equal size. We define a module (also called bank) as a number
of units put together; that is, the units are the building blocks
for the modules. Each module can be shared or private. If it is
private, it can be accessed by only one processor (its owner). If
it is shared, any number of processors can access it, as
determined by our approach. We proceed in two steps:

† In the first step, we divide the available memory space between
private and shared modules. Let Ptotal =

∑P−1
c=0 |P(c)| and

Ctotal =
∑P−1

c=0

∑P−1
c′=0,c′.c |C(c, c′)|. That is, Ptotal and Ctotal

hold the total number of private elements and shared elements,
respectively. Using these two numbers, we allocate Lp units of
memory for the private data and Lc units of memory for the
shared data, where Lp and Lc are defined as follows

Lp = Ptotal

Ptotal+Ctotal

× L

⌊ ⌋
and Lc =

Ctotal

Ptotal + Ctotal

× L

⌈ ⌉

Note that L = Lp + Lc. Note also that, this allocation makes
sense as it gives more memory to whichever type of data
(private or shared) dominates the other.

† In the second step, we focus on Lp and Lc separately, and
divide them across the processors and processor pairs
respectively. Specifically, the private memory allocated to
processor c, denoted Lpc

, is computed as

Lpc
= |P(c)|

Ptotal

× Lp

⌊ ⌋

Similarly, the shared memory allocated to processors c and c′

is calculated as

Cpc,c′
= |C(c, c′)|

Ctotal

× Lc

⌊ ⌋

It is to be noted that, we have

L′ =
∑
∀c

Lpc
+

∑
∀c

∑
∀c′s.t. c′.c

Cpc,c′

{ }
≤ L

Here, L′ is the number of units (slices) that are actually
partitioned. If L′

, L, our current implementation gives
the extra units (L − L′) to the smallest module (bank). If
there exist more than one such module, the selection
among them is arbitrary.

2.2.2 Extension to higher-order data sharing: In
this subsection, we discuss how our approach can be
487

& The Institution of Engineering and Technology 2010

48

&

www.ietdl.org
extended to capture higher order data sharing. A drawback of
the scheme presented so far is that it allows a memory module
to be shared by at most two processors. Consequently, if three
or more processors share significant amount of data, the
approach presented above may not be particularly efficient
since it creates a separate shared module for each pair of
processors that share data. There are at least two ways of
getting around this problem, which are discussed below.

(a) Extended Presburger formulation-based approach: In this
approach, we extend the C(c, c′) sets explained above to
capture data sharings between three or more processors. As
an example, C(c, c′, c′′) holds the data elements shared by
processors c, c′, and c′′. Returning to our running example,
we compute C(c, c′, c′′) as

C(c, c′, c′′) = {(a1, a2) | (a1, a2) [Stotal(c)

^ (a1, a2) [Stotal(c
′) ^ (a1, a2) [Stotal(c

′′)}

Then, in the memory partitioning part, we take into account
|C(c, c′, c′′)| values, and compute Cpc,c,c′

(the amount of shared
memory allocated to processors c, c′ and c′′) as well, in
addition to Cpc,c′

and Lpc
. One can easily extend this

approach to capture even higher levels of sharing (i.e. those
between four processors and beyond). However, we do not
further elaborate on the details of this process, as we have
not yet automated this extension fully. Instead, we
implemented the post-processing based idea explained in
the following subsection.

(b) Post-processing-based approach: In this approach, starting
with the memory configuration determined by the base
approach described above in Section 2.2.1, we hierarchically
build larger memories, by a process called module merging.
We do this by merging the shared memory modules if they
have a common processor assigned to them. Let us assume
that we ran the base approach explained in Section 2.2.1,
and determined a memory partitioning for our chip
multiprocessor. We use the notation share(i, j, T) to
indicate that processors i and j share common memory
module T (resulted from our approach). Then, we merge
share(i1, j1, T1) and share(i2, j2, T2) into share(i1, j1, j2, T1 +
T2) if i1 = i2. Assuming that T3 = T1 + T2, in the next step,
we merge share(i1, j1, j2, T3) and share(k1, l1, T4) (if there is
such one) into share(i1, j1, j2, k1, T3 + T4) if l1 = j1, and so
on. Clearly, at the end of this process, we can reach a memory
configuration with only a few modules, all of which are
heavily shared (in addition to private modules). However, it is
to be noted that, it is also possible to stop this module
merging process before we reach the point at which no
further merging is possible.

2.3 Discussion

We now discuss how our hybrid memory architecture
operates. Note that there are three scenarios for the
outcome of a memory access in the hybrid on-chip memory
architecture:
8
The Institution of Engineering and Technology 2010
† Local hit: When the processor finds the data in one of the
memory modules it has access to.

† Remote hit: In this case, the lookup among its assigned
module(s) fails, but the data are found in another (on-chip)
module that is not assigned to the processor that issued the
memory request.

† On-chip miss: In this case, the data are not in any of the on-
chip modules, and requires an off-chip access. The access cost
in this case will involve the cost of the off-chip access.

We also need to explain what happens in the case of a
remote hit or on-chip miss. This largely depends on how
the software manages the local memory space. Basically,
when a processor accesses a data item that is not in the
memory modules assigned to the processor, we have two
options: either (1) we can use that data from its original
location (i.e. we do not copy it to the modules that we have
access to), or (2) we can bring the accessed data to one of
the modules that we have access to. In our current
implementation, we use the second approach as we
optimistically expect that the data that has just been
accessed will exhibit some temporal reuse in the near
future, and thus, keeping it in close proximity will lower
the power consumption when it is subsequently accessed.
Then, the important question is where (i.e. to which
module) should we bring the data. Ideally, if we could
know how the data will be shared, we would make a good
decision. But, since we do not keep track of runtime data
sharing/movements, in this study, we select a random
shared module that we have access to, and bring the data
there if there is available space. If not, we select an
alternate shared module that we have access to, and store
the data there, and so on. If none of our shared modules
has any available space, we return to the first module we
checked and select a victim data from that module and
send it to the off-chip memory. While different algorithms
can be employed to decide the victim, our current
implementation uses an LRU-based replacement scheme.

3 Application-specific dynamic
design
In this section, we propose a dynamic memory partitioning
scheme that changes memory partitioning during execution
when we move from one execution phase to another.

3.1 High-level view

Our goal is to develop a dynamic on-chip memory architecture
for chip multiprocessors. What we mean by ‘dynamic’ in this
context is that it adapts its behaviour to the dynamic
changes in memory requirements of individual processors
and interprocessor data sharing patterns. The proposed
approach is depicted in Fig. 3. The application code is read
and analysed by our optimising compiler, and the sets that
IET Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
doi: 10.1049/iet-cdt.2009.0089

IE
d

www.ietdl.org
represent private and shared data items are built and passed to
the Omega Library. The Omega Library in turn generates a
code that enumerates the elements in these sets and passes
them to the memory partitioner. The memory partitioner
has two major modules. The first module determines a
memory configuration for each program phase (a loop nest
in our current implementation), and the second module is
responsible from deciding the memory banks to use in the
architecture. Once the bank configuration is decided, this
information is fed-back to the compiler, which modifies the
application source to insert special instructions to change
on-chip memory configuration at runtime. Note that the
high-level view shown in Fig. 3 is also valid for the static
scheme discussed in Section 2, except that an entire program
is considered as a single phase.

Fig. 4 illustrates our approach during the execution of a
typical scenario with two separate loop nests (program
phases in our current implementation). As will be discussed

Figure 3 Overview of the proposed approach to dynamic
on-chip memory partitioning

Figure 4 Example scenario where two loop nests (program
phases) use the same set of banks in different ways

Each bank is constructed from a set of consecutive slices. Each
arrow (from processors to banks) indicate that the processor
can access that bank
T Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
oi: 10.1049/iet-cdt.2009.0089
in the next subsection in detail, the dynamic
reconfiguration of on-chip memory is actually managed at a
bank granularity (instead of a slice granularity), where each
bank consists of a set of consecutive slices. Once the bank
structure for a given application is determined, each loop
nest tries to use these banks in the most energy efficient
way. Energy efficiency is achieved by allowing each
processor to access the right amount of memory space and
making sure that the processors that heavily share data are
assigned a common (shared) bank.

It should be observed that proper use of memory banks is
critical from a power consumption viewpoint. For example, if
a processor is assigned a large bank than necessary, this can
increase per access power consumption. On the other hand,
if its memory bank is small, this can lead to frequent
accesses to off-chip memory (due to not being able to
capture all frequently-accessed data in the on-chip
memory), which again increases power consumption.

3.2 Slice/bank management

In our slice-based organisation, each processor is assigned a set
of slices, and they form its local memory. The slices assigned to
other processors in the system collectively form a remote
memory for this processor. Finally, the system also has an
off-chip memory. The success of an application in achieving
energy efficiency in this architecture depends strongly on the
percentage of data requests satisfied from local, remote and
off-chip memories. As has been discussed in the static case,
we normally want all data requests to be satisfied from the
local memory (first choice) or remote memory (second
choice), i.e. as far as possible, we do not want to go to the
off-chip memory. The memory management within a
program phase in the dynamic scheme is the same as that in
the static scheme discussed in Section 2.3.

Our approach actually manages the on-chip memory at the
banks level, not at the slice level. The main reason for this is
that slice level management is too fine-granular for dynamic
assignment, and this can have serious consequences as far as
area requirements and chip interconnect complexity are
concerned. In this context, a bank corresponds to a set of
slices consecutive in the on-chip memory space. The process
of determining the banks to use for a given application is
explained in Section 3.4. An important characteristic of our
bank-based memory management strategy is that each loop
nest can use the banks in a different fashion. For example,
while in a loop nest a memory bank can be shared between
processors 0 and 1, in the next loop nest it can be shared
between processors 1 and 3. Similarly, while processor 2 has
a private bank in the first nest (in addition to the bank(s) it
shares with the others), it is possible that it does not have a
private memory bank in the second loop nest. This dynamic
bank allocation (or coarse-grain slice allocation) is necessary
to make sure that we adapt the on-chip memory configuration
to the dynamically changing requirements of the application
at hand.
489

& The Institution of Engineering and Technology 2010

49

&

www.ietdl.org
To manage bank allocation across program phases, we
propose to employ a table in the memory controller (called
the bank table) as shown in Fig. 5 for a sample chip
multiprocessor architecture with six processors and eight
banks. In the bank table, the columns denote the memory
banks and the rows denote the processors. An ‘X’ in the table
indicates that the corresponding bank is assigned to the
specified processor. An important characteristic of this table is
that it resides within the memory controller, and its contents
can be manipulated using special instructions that are inserted
by the compiler (this code modification part will be discussed
in Section 3.5). When a memory request comes from a
processor, we simply look at the corresponding row and
identify the relevant banks (local memory), calculate the
memory location that needs to be accessed, and then go to
that location to access the data if it is in a location in the local
memory. If not, we access it from a remote bank or off-chip
memory (depending on its location), and bring it to the local
memory of the processor. We would like to emphasise at this
point that, using this table-based allocation one can generate
very different memory configurations (bank partitions). For
example, when there exist multiple ‘X’s in a given column (as
in the case of bank 5 in Fig. 5), this means that some banks
are shared by multiple processors. It is also to be noted that,
in this architecture, changing bank allocation (i.e. changing
on-chip memory configuration) means changing the contents
of the bank table. Therefore, changing the bank configuration
means rewriting the entries of the bank table. The three
important questions addressed here are: (1) How can we
determine individual bank structures required by processors in
a given program phase? (2) How can we determine banks for
the entire application considering the individual bank
requirements of the program phases? and (3) How can we
assign banks to processors as we move from one program
phase to another during execution? These three questions are
addressed in Sections 3.3–3.5 respectively.

3.3 Determining bank requirements for
a program phase

This is very similar to the static case discussed earlier in
Section 2. As an example, let us consider the loop nest
shown in Fig. 6. We can represent the iteration space of
this loop nest using the following Presburger formulation

I = {(i1, i2, i3) | (L1 ≤ i1 ≤ U1) ^ (L2 ≤ i2 ≤ U2)

^ (L3 ≤ i3 ≤ U3)}

Figure 5 Example bank table
0
The Institution of Engineering and Technology 2010
When a loop is parallelised across the processors in our chip
multiprocessor, each processor typically executes a subset of
the iteration points in the iteration space. For example,
assuming that the compiler/user chose to parallelise the first
loop (i1-loop) in the nest in Fig. 6, processor s is assigned
the following loop iterations, assuming that we have P
processors, each processor gets a set of successive loop
iterations, and P evenly divides (U1 − L1)

W(s) =
{

(k1, k2, k3)| L1 +
s(U1 − L1 + 1)

P
≤ k1

(

, L1 + (s + 1)(U1 − L1 + 1)

P − 1

)

^ (L2 ≤ k2 ≤ U2) ^ (L3 ≤ k3 ≤ U3)

}

For this example, the array elements accessed by processor s
can be found using the following Presburger formulation,
which makes use of the subscript functions:

T tot(s) = T (s, U [i3, i1 + i2 + 3]) < T (s, U [i2 + i3, i3 − i2])

< T (s, U [i2 + 2, i3 + i1 − 1)}

where

T (s, U [i3, i1 + i2 + 3]) = {(a1, a2) | ∃(i1, i2, i3) such that

(i3 = a1 ^ i1 + i2 + 3 = a2) ^ (i1, i2, i3) [W(s)}

T (s, U [i2 + i3, i3 − i2]) = {(a1, a2) | ∃(i1, i2, i3) such that

(i2 + i3 = a1 ^ i3 − i2 = a2) ^ (i1, i2, i3) [W(s)}

T (s, U [i2 + 2, i3 + i1 − 1]) = {(a1, a2) | ∃(i1, i2, i3)

such that

(i2 + 2 = a1 ^ i3 + i1 − 1 = a2) ^ (i1, i2, i3) [W(s)}

In order to capture data sharing between processors, we need
to identify the set of common elements accessed by each pair
of processors. Let N (s, s′) represent the set of common array
elements accessed by processors s and s′. We can write this set
as follows

N (s, s′) = {(a1, a2) | (a1, a2) [T tot(s)

^ (a1, a2) [T tot(s
′)}

Based on this, the private data elements for processor s
(i.e. those that are accessed only by processor s) can be

Figure 6 Example loop nest
IET Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
doi: 10.1049/iet-cdt.2009.0089

IE
do

www.ietdl.org
computed as

G(s) = T tot(s) −
⋃

∀s′s.t.s′=s

N (s, s′)

where ‘ 2 ’ denotes set subtraction. If we have multiple arrays
in the loop nest of interest, we determine G(s) and N (s, s′)
considering all the arrays. Specifically, let N (s, s′, Uj) be
the set of the elements of array Uj shared by processors s
and s′. So, we have

N (s, s′) =
⋃

j

N (s, s′, Uj)

and

G(s) = T tot(s) −
⋃

∀s′s.t.s′=s

N (s, s′)

Here, the first one of these equalities gives the set of all shared
data elements between processors s and s′ when considering
all the arrays in the loop nest, and the second one gives us
the set of data elements private to processor s, assuming
that T tot(s) is the total number of elements (from all arrays)
accessed by processor s.

The next task is to determine the number of elements in
G(s) and N (s, s′) sets. To do this, we need to be able to
enumerate the elements in these sets. As in the static case,
for this purpose, we use the codegen utility provided by the
Omega Library. For our example loop nest in Fig. 6, the
code generated for counting the elements in N (0, 2) is
shown in Fig. 7 (in this code, intMod refers to the integer
modulus operation), under the assumption that Lj = 1 and
Uj = 1000 for all ij , where j = 1, 2, 3. The space
partitioning for private and shared components are handled
in a similar fashion to the static case.

3.4 Determining memory banks

The previous section presented a scheme using which one
can come up with a memory partitioning for each loop
nest in a given application. However, it is not trivial (if
not impossible) to dynamically change the on-chip
memory configuration (at runtime) at a slice level. Instead,
our approach builds a banked (module based) architecture,
considering the individual memory partitions obtained for
each nest. An important characteristic of such a banked
architecture is that it combines the characteristics of the
individual partitionings (determined for each program
phase as described above) as much as possible, and as
mentioned earlier, the different loop nests can use the
banks in a different fashion. Our approach can be
explained as follows. First, we determine, for each loop
nest (program phase), the memory partitionings (bank
structure) as discussed in the previous section. An example
is illustrated in Fig. 8 for four separate loop nests and a
total of 32 kB on-chip memory space. Each column in
T Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
i: 10.1049/iet-cdt.2009.0089
this figure corresponds to a different phase of the
application. An entry marked ‘xKB-p’ indicates an x KB
private memory, and an entry marked ‘yKB-s’ means a y
KB shared memory. Here, we use the term ‘virtual banks’

Figure 7 Example (enumeration) code generated with the
help of the Omega Library

Variable |N (0, 2)| holds the number of elements shared between
processors 0 and 2
491

& The Institution of Engineering and Technology 2010

49

&

www.ietdl.org
to refer to the bank structure determined for each program
phase. Our goal is to come up with a final bank
configuration (called the ‘physical banks’ in the rest of this
paper) such that it satisfies the individual requirements of
the loop nests of the application as much as possible. Our
implementation tries to achieve this by using an integer
linear programming (ILP)-based formulation. For
simplicity, we assume, for a total 32 kB of on-chip
memory space, that the only possible bank sizes available
are 1, 2, 4, 8, 16 and 32 kB, all of which can be shared
or private. In this subsection, we refer to these banks as
type-1, type-2, type-4, type-8, type-16, and type-32 in
that order.

Let li, j denote the number of banks of type-i demanded by
loop nest j, and let ui be the number of banks of type-i in the
final (physical bank) configuration. Note that, we want to
determine the ui values (for the application under
consideration), whereas the li, j values are given (as in
Fig. 8). Our approach employs an objective function that
tries to minimise the disparities between the li, j and ui

values to the greatest extent possible. In mathematical
terms, we want to minimise

∑Q

j=1

wj

∑
i=1,2,4,8,16,32

|ui − li,;j |

where Q is the total number of nests in the application, and
wj is the ‘weight’ attached to nest j (i.e. informally, its relative
importance across all the nests in the application). However,
we are not allowed to exceed the available memory capacity.
Therefore, the following constraint should also be satisfied

∑
i=1,2,4,8,16,32

i × ui ≤ 32

The ui values determined from these constraints give us the
final memory configuration. However, this does not solve
the entire problem since we also need to explain how this

Figure 8 Example memory partitionings (virtual banks) for
four different phases (total on-chip memory capacity ¼
32 kB)
2
The Institution of Engineering and Technology 2010
final configuration will be used by each loop nest in the
application. This issue is addressed in the following section.
There are two important issues here that need to be clarified.
First, the values of the wj parameters should be determined
based on the relative importance of the program phases with
respect to each other. Since our program phases are loop
nests, we use the number of iterations in nest j as wj . Second,
the ILP formulation described above does not consider the
problem of determining the number of ports for each bank.
We postpone this problem to the next section where we
determine how each program phase uses each bank. Simply
put, if we determine that a bank needs to be shared between
two processors in at least one program phase, then we make it
double-ported; otherwise, it has a single port.

3.5 Memory reconfiguration across
program phases

The physical bank configuration determined from the ILP
formulation discussed in the previous section tries to satisfy
as many of the loop nests as possible (based on their
relative importance as indicated by the wj values). We now
discuss how each loop nest utilises these banks. Our
approach is a greedy heuristic that operates as follows. We
first build a virtual bank list for each nest (such as the one
shown in Fig. 8), not concerning ourselves with the
number of ports or with the question of whether a bank
will be shared by processors or not. In the next step, we
traverse the bank list of each processor, and map its virtual
banks to the physical banks determined (in Section 3.4) for
the entire application. In doing so, it might be necessary to
assign multiple virtual banks to a single large physical bank;
or, a single large virtual bank to a set of small physical
banks. For example, Fig. 9a shows how the bank lists

Figure 9 Two example mappings between virtual banks
(see Fig. 8) and physical banks

The physical banks used in the first mapping are 8, 8, 4, 4, 4, 2 and
2 kB, whereas those used in the second mapping are 16, 4, 4, 2, 2,
1, 1, 1 and 1 kB
IET Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
doi: 10.1049/iet-cdt.2009.0089

IE
do

www.ietdl.org
shown in Fig. 8 are handled if the physical banks (determined
by the approach explained in the previous section) are 8, 8, 4,
4, 4, 2 and 2 kB. Let us focus on the mapping for the first
phase in Fig. 9a, and discuss it in more detail. The virtual
bank list for this phase is 16, 8, 4, 1, 1, 1 and 1 kB. Since
we do not have a 16 kB physical bank, the 16 kB virtual
bank requirement of this phase is satisfied by giving it two
8 kB physical banks. Then, we give two 4 kB physical
banks to meet its 8 kB virtual bank requirement. The next
virtual bank (4 kB) is directly mapped to a 4 kB physical
bank. Then, the two 1 kB virtual bank requirements are
satisfied by mapping them to a 2 kB physical bank (this
pattern occurs twice). It is also important to consider the
consequences of this mapping. First, satisfying the 16 kB
virtual bank requirement with two 8 kB physical banks
increases the port requirements (as any of these two banks
can be accessed simultaneously; so, we need to assign two
ports per bank). Using two 8 kB banks (instead of one
16 kB bank) can also increase the area demand. Now, let us
consider the other case, where 1 kB requirements share a
2 kB bank. This would typically increase the power
consumption. The rest of Fig. 9a shows the mappings for
the remaining phases under this physical bank structure. In
comparison, Fig. 9b illustrates the virtual-to-physical bank
mappings when the physical bank configuration considered
is 16, 4, 4, 2, 2, 1, 1, 1 and 1 kB.

3.6 Locality across program phases

An important point that we have not discussed so far is the
importance of data locality when the memory configuration
is changed across the program phases. As an example,
suppose that a processor is assigned a two 4 kB banks in a
program phase, and it is assigned a 4 kB bank in the next
phase. In this scenario, it might be a good idea, for this
processor, to retain (in the second phase) one of the banks it
used in the first phase, in an attempt to exploit some inter-
phase data reuse. We use ILP to capture these assignments
and optimise the locality across program phases. We use
Ap,bs,n,ph, returned by the heuristic explained above, for
capturing the assignment of memory banks to processors,
where p, bs,n, and ph stand for the processor, bank, and
phase respectively. Note that, bs,n is composed of two
parameters: size and id. Also, the size parameters (captured
by s) are assumed to be in multiples of KBs, whereas ids (n)
range from one to total memory size (Ms/s), depending
on the bank size. More specifically, Ap,bs,n,ph indicates that
whether processor p is using bank bs,n during phase ph. If
ILP returns this value as 1, then we conclude that the bank
is being used by processor p. Otherwise, we conclude that it
has not been used by the processor. Here we assume that
total memory size is given in KBs and the minimum bank
size is 1 kB. Recall that the heuristic given in the previous
section gives the individual virtual bank information. Our
goal here is to exploit this information to improve data
locality across the neighbouring program phases

Kp,bs,n ,ph ≥ Ap,bs,n ,ph + Ap,bs,n ,ph−1 − 1, ∀p, b, s, n, ph (1)
T Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
i: 10.1049/iet-cdt.2009.0089
In the above formulation, Kp,bs,n,ph is returned 1 if the bank in
question is assigned to the same processor. Based on this
expression, our goal would be to choose the next assignment
given by Ap,bs,n,ph in such a way that, it maximises the
number of Kp,bs,n,ph values. We perform this ILP
optimisation after each phase (ph 2 1) to achieve the
maximum locality for the next phase (ph). Therefore, our
heuristic performs the following ILP objective once the
virtual banks are identified for that phase

max
∑P

p=1

∑Ms

s=1

∑Ms/s

n=1

Kp,bs,n,ph, ∀ph (2)

Note that, in the above expression we do not decide on any
virtual bank, rather we map the physical banks to processors
in the most locality efficient way.

4 Experimental evaluation
4.1 Setup

We implemented the two schemes proposed in this paper
using an optimising compiler and the Omega Library [1].
The compiler part is implemented using the SUIF
framework from Stanford University [5]. We simulated a
set of applications using a custom multi-bank memory
simulator. This simulator takes as input the application
executable and memory hierarchy (which can be pure
shared, pure private, or hybrid as described here), and keeps
track of accesses to different memory banks. Each access is
associated with an energy consumption value, whose
magnitude depends on the size of the bank and the
number of ports it has. The per access energy consumption
values are obtained from an input file. The default number
of processors used in the experiments is eight, and the
default total on-chip memory size is 32 kB. The
benchmark codes used in this study are given in Fig. 10,
along with the relevant statistics obtained using our
simulator with eight processors. The last column of the
table in Fig. 10 gives the ratio F tot/Etot, i.e. the ratio

Figure 10 Benchmark codes used in our experiments

Each of these benchmarks has both array-based and pointer-
based implementations. In this work, we used the array-based
implementations
493

& The Institution of Engineering and Technology 2010

49

&

www.ietdl.org
between the total number of shared data elements and the
total number of private data elements. We see that, as far
as this ratio is concerned, our benchmarks exhibit different
behaviours. Specifically, while Usonic is private data
intensive, SP exhibits high interprocessor data sharing. The
remaining benchmarks fall in between these two extremes.
We restrict our exploration mostly to private banks and
banks shared between two processors. To support this
decision, we give in Fig. 11 the cumulative distribution
function (CDF) for data sharing between processors. Each
(x, y) point on a curve in this graph says that y% of the
total data elements are shared by x or more processors.
Note that the y value corresponding to the difference
between the x ¼ 1 case and the x ¼ 2 case gives the
percentage of private data. We see from this graph that
most of interprocessor sharing occurs between two
processors; therefore, it is reasonable to consider shared
banks only for processor pairs. Fig. 12 gives the normalised
per access energy consumption values for software-managed
SRAMs with different capacities and number of ports
(for the 0.07 m process technology). These values have
been obtained from CACTI [6] models by making
appropriate modifications for software-managed memory
(e.g. eliminating tag checks, etc). All values are
normalised to that of 2 kB, one port memory. Since the
default on-chip capacity is 32 kB, in the pure shared
memory case, all processors access a 32 kB memory (in this
case, we use three ports since we found this value performs
better than the other values we tested). On the other hand,
in the pure private memory case, each processor has a
single-ported 4 kB private memory (as we have eight
processors). As explained earlier, in our banked
architecture, if a bank is private, it is single-ported;
otherwise (i.e. if it is shared between two processors), it has
two ports. Also, we assume a per access memory energy of
6.32 nJ for the off-chip memory (assuming that it is
16 MB). In the rest of the paper, when we mention
‘memory energy’, we mean the energy consumed in on-chip
and off-chip memory accesses, including the energy
expended while waiting to resolve port/bus conflicts. We
used the publicly available lp_solve [7] tool for determining
physical banks. The ILP solution times with this tool
ranged from 34.4 s to 4.1 m.

Figure 11 CDF for interprocessor data sharing
4
The Institution of Engineering and Technology 2010
4.2 Results

Unless stated otherwise, the presented results are obtained
without running our locality optimisation pass explained in
Section 3.6. Later, we also present results quantifying the
impact of this additional optimisation. Fig. 13 gives the
memory energy consumption values for four different
management schemes. The bars marked as ‘Private’ and
‘Shared’ correspond to pure private and pure shared
memory configurations respectively. The bar marked as
‘Application-Specific’ shows the result when a fixed,
application-specific memory hierarchy is designed for the
application. To obtain the results for this version, we used
the strategy discussed in Section 2. Finally, ‘Application-
Specific + ’ represents the results of the dynamic
partitioning approach discussed in this paper. For each
application, all bars are given as fractions of the value the
first bar represents (i.e. the pure private memory case). Our
first observation from this figure is that the proposed
dynamic memory partitioning approach generates the best
results (among all schemes) for all the applications tested in
the experiments. Second, the ‘Application-Specific’ version

Figure 12 Per access energy values with different SRAM
sizes and number of ports

All values are normalised with respect to the per access energy
consumption of a 2 kB, one port memory

Figure 13 Memory energy results (eight processors and
32 kB total on-chip memory space)

Each value is given as a fraction of the value for the pure private
memory case
IET Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
doi: 10.1049/iet-cdt.2009.0089

IE
do

www.ietdl.org
improves upon both the ‘Private’ and ‘Shared’ cases. The
third observation is that, while absolute savings change
from one application to another, there is a difference
between ‘Application-Specific’ and ‘Application-Specific + ’
in all except two benchmarks, indicating the importance of
dynamic reconfiguration at runtime. In Hyper and
Jpegview, the two schemes generate the same results, due
to the fact that all the program phases in these applications
demand similar virtual banks configurations. When
averaged over all benchmarks, ‘Application-Specific + ’
reduces the memory energy consumption of ‘Application-
Specific’ by around 10%, which in turn improves upon the
pure private and pure shared cases by 13.1% and 11.5%
respectively. Although we do not present here in detail,
when we allow sharing of a bank by more than two
processors (using the approach summarised in Section
2.2.2), we observed an average of about 2% more savings
for both ‘Application-Specific’ and ‘Application-Specific + ’.

In the rest of our experimental evaluation (except for the
performance results), we focus only on the ‘Application-
Specific + ’ version. There are two reasons for this decision.
First, the sensitivity results with the ‘Application-Specific’
version are very similar to those with the ‘Application-
Specific + ’ version. Second, since ‘Application-Specific + ’
generally performs better than ‘Application-Specific’, it
makes more sense to study it in detail.

In our next set of experiments, we change the number of
processors, and study the behaviour of the ‘Application-
Specific + ’ version. We see from the results given in Fig. 14
that the effectiveness of our approach increases when the
number of processors is increased (keeping the total on-chip
memory capacity the same). This result can be explained as
follows. When the number of processors is increased, the
pure private memory case suffers from the fact that a lot of
data are duplicated across the processors, leading to memory
space underutilisation. Therefore, the normalised savings
increase. It should also be mentioned that (though not
presented here in detail) the pure shared memory case also

Figure 14 Memory energy results with different processor
sizes (32 kB total on-chip memory space)

Each value is given as a fraction of the value for the pure private
memory case
T Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
i: 10.1049/iet-cdt.2009.0089
suffers badly when the number of processors is increased,
mainly due to the significant increase in port conflicts.
These results show that our dynamic on-chip memory
partitioning approach exhibits better scalability than the
other schemes when the number of processors is increased.
Fig. 15 explores what happens when the number of
processors is fixed at eight, and the available on-chip memory
space is changed from 8 to 256 kB. We see that, in general,
our approach generates better savings with small memory
capacities. This is because a small capacity renders the
problem of memory space management a very important issue.
The exceptions observed in this graph are due to the heuristic
nature of the proposed approach. Note that, while
sophisticated circuit packaging technologies are able to
squeeze more and more memories into the same silicon area,
the application data set sizes increase at a much higher
rate than the increase in (bit/unit area) rate. Consequently, one
can expect our scheme to be even more successful in the future.

The next set of experiments study the impact of varying
the remote access and off-chip access energies on our
savings. In the graph shown in Fig. 16, point ‘X’
corresponds to the default per access energy consumption
for off-chip memory (x-axis) and remote memory (y-axis)
for the Srec application. The other values are given
multiples or fractions of these default values, while keeping
the per access costs for local memory the same as the
original. The z-axis gives the memory energy
consumption, normalised with respect to that of the pure
private memory. We see that the effectiveness of our
approach increases when the relative cost of either off-chip
or remote access increases. We also observe that the
impact of off-chip access cost is more pronounced. The
experiments with the remaining applications in our
experimental suite generated similar trends; so, we do not
present their results.

The next set of results we present are on execution cycles.
Fig. 17 gives the execution cycle results for different memory

Figure 15 Memory energy results with different on-chip
memory capacities (eight processors)

Each value is given as a fraction of the value for the pure private
memory case
495

& The Institution of Engineering and Technology 2010

49

&

www.ietdl.org
management schemes, normalised with respect to the cycles
taken by the pure private memory scheme. We see that
while our approaches outperform the remaining schemes
from the performance viewpoint as well, the improvements
are lower than the energy consumption reductions. The
main reason for this is the fact that, as we move from one
configuration to another, we may lose some data locality, as
has been explained in Section 3.5. We believe that a more
sophisticated implementation that addresses this data
locality problem during phase transitions can generate
better results.

Recall that, so far in our experimental evaluation of the
‘Application-Specific + ’ version, we did not activate the
locality optimisation pass, described in Section 3.6. We
now present the results with this additional pass and show
how much additional improvement it brings. The graph in
Fig. 18 gives the normalised energy consumption and
execution cycle results with and without this locality

Figure 16 Memory energy results with different per access
energy costs for Srec (eight processors and 32 kB total
on-chip memory space)

Each value is given as a fraction of the value for the pure private
memory case

Figure 17 Execution cycle results (eight processors and
32 kB total on-chip memory space)

Each value is given as a fraction of the value for the pure private
memory case
6
The Institution of Engineering and Technology 2010
optimisation pass for the ‘Application-Specific + ’ version
under our default simulation parameters. The version with
the locality optimisation pass is denoted using ‘Application-
Specific++’. We see from these results that optimising
inter-phase locality brings reasonable improvements in both
energy consumption and execution cycles in most of our
benchmark codes. The average energy and performance
improvements are about 6% over the case without locality
optimisation, emphasising the importance of optimising
data locality across the program phases.

5 Related work
Most of the prior work on memory synthesis and
management focus on single processor-based systems [8–
19]. In comparison, Abraham and Mahlke focus on an
embedded system consisting of a VLIW processor,
instruction cache, data cache and second-level unified cache
[20]. Cotterell and Vahid [21] develop an automated
simulation environment to find the best loop cache
architecture for a given application and technology. In that
work, a hierarchical approach of partitioning the system
into its constituent components and evaluating each
component individually is explored. Meftali et al. [22]
focus on the memory allocation problem, which they
formulate based on an integer linear programming model.
Their solution permits one to obtain an optimal distributed
shared memory architecture, minimising the global cost to
access the shared data in the application and the memory
cost. The effectiveness of the proposed approach is
demonstrated by a packet routing switch example. Gharsalli
et al. [23] present a new methodology for embedded
memory design for application-specific multiprocessor
system-on-chips. Their approach facilitates the integration
of standard memory components. Further, the concept
of memory wrapper they introduce allows automatic
adaptation of physical memory interfaces to a
communication network that may have a different number
of access ports. Li and Wolf [16] introduced a hardware/

Figure 18 Normalised energy consumption and execution
cycle results with and without locality optimisation pass
for the ‘Application-Specific+’ version under our default
simulation parameters
IET Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
doi: 10.1049/iet-cdt.2009.0089

IE
do

www.ietdl.org
software co-synthesis algorithm of distributed real-time
systems that optimise the memory hierarchy along with the
rest of the architecture. Dasygenis et al. [24] propose a
formalised technique that uses data reuse, lifetime of the
arrays of an application and application specific prefetching
opportunities. Using these parameters, authors perform a
trade-off exploration for different memory layer sizes.
Issenin et al. [25], on the other hand, introduces a
multiprocessor data reuse analysis technique to explore a
wide range of customised memory hierarchy organisations
with different sizes. In [26], authors implement an
incremental technique for hierarchical memory size
requirement estimation. The difference between our work
and these is that we focus on a general approach based on a
polyhedral tool (the Omega Library) driven analysis and on
power consumption. In addition, our dynamic approach
changes the memory configuration dynamically as we move
from one phase of execution to another. In other words, we
want each program phase to work with the most suitable
memory configuration if it is possible to do so. Several
prior studies [27, 28] discusses several advantages of chip
multiprocessors over complex single-processor-based
designs. Liu et al. [29] present an L2 cache partitioning
approach that decides the L2 partitions allocated to
processors at runtime based on dynamic L2 demands of
processors. In comparison, we focus on software-managed
on-chip memory partitioning and make use of a compiler-
directed mechanism. Consequently, our partitioning
strategies and the process of determining partitions are
entirely different from [29].

6 Concluding remarks and future
work
Deciding a suitable on-chip memory configuration is one of
the most important aspects of designing an application-
specific memory for chip multiprocessors. Unfortunately,
several problems such as identifying and counting the
number of data items shared across processors, determining
the privately accessed data, and the fact that data sharing
patterns can change from one phase of the execution
to another make this a very hard problem to solve. This
paper proposes two application-specific memory design
algorithms. The first scheme aims at finding suitable
allocation of on-chip memory space across processors. We
attacked this problem using a two-step approach: (1)
determining the amount of data that are shared by
processors and the amount of data that are private to each
processor, and (2) allocating memory space across private
and shared data and over all processors. Our experimental
analysis demonstrates that our approach generates better
results than conventional architectures based on pure shared
and pure private on-chip memories. The results also show
that the energy benefits are consistent across a wide range
of parameters. However, the main problem with this
scheme is that the memory partitioning determined is valid
throughout the entire execution of the application. The
T Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
i: 10.1049/iet-cdt.2009.0089
second scheme proposed in this paper is a dynamic on-chip
memory management strategy that changes the memory
allocation and bank sharing across processors during the
course of execution according to a statically-determined
schedule. The proposed approach is implemented using an
optimising compiler and the Omega Library, and tested
using a set of embedded applications. Our results indicate
that the proposed technique not just only improves over
conventional memories such as pure private and pure
shared memories, but it also generates better results than
an application-specific memory design methodology that
uses the same design for the entire execution of the
application. We plan to extend this study by allowing a
general on-chip memory hierarchy (with multiple levels)
and by developing accompanying code restructurings to
achieve better memory energy savings. Work is also
underway in porting our entire simulation infrastructure to
an FPGA-based platform.

7 Acknowledgments
This research is supported in part by NSF grants CNS
#0720645, CCF #0811687, CCF #0702519, CNS
#0202007, CNS #0509251, by a grant from Microsoft
Corporation, by a grant from IBM, and by a Marie Curie
International Reintegration Grant within the 7th European
Community Framework Programme.

8 References

[1] KELLY W., PUGH W.: ‘Finding legal reordering transformations
using mappings’. Proc. 7th Int. Workshop of Languages and
Compilers for Parallel Computing (LCPC), 1995, pp. 107–124

[2] BANERJEE U.: ‘Loop parallelization’ (Kluwer Academic
Publishers, 1994)

[3] KOELBEL C.H., LOVEMAN D.B., SCHREIBER R.S.: ‘The high
performance Fortran handbook’ (MIT Press, 1993)

[4] ‘The openMP application program interface’, version
2.5, http://www.openmp.org/mp-documents/spec25.pdf,
May 2005

[5] WILSON R.P., FRENCH R.S., WILSON C.S., ET AL.: ‘Suif: an
infrastructure for research on parallelizing and optimizing
compilers’, SIGPLAN Not., 1994, 29, (12), pp. 31–37

[6] REINMAN G., JOUPPI N.P.: ‘Cacti 2.0: an integrated cache
timing and power model’. Compaq, Technical report,
February 2000

[7] BERKELAAR M., EIKLAND K., NOTEBAERT P.: ‘lp solve: open
source (mixed-integer) linear programming system’.
Version 5.0.0.0., 2004
497

& The Institution of Engineering and Technology 2010

49

&

www.ietdl.org
[8] SUH G.E., RUDOLPH L., DEVADAS S.: ‘Dynamic partitioning of
shared cache memory’, J. Supercomput., 2004, 28, (1),
pp. 7–26

[9] RANGANATHAN P., ADVE S.V., JOUPPI N.P.: ‘Reconfigurable
caches and their application to media processing’, SIGARCH
Comput. Archit. News, 2000, 28, (2), pp. 214–224

[10] ANGIOLINI F., BENINI L., CAPRARA A.: ‘Polynomial-time
algorithm for on-chip scratchpad memory partitioning’.
Proc. Int. Conf. on Compilers, Architecture and Synthesis
for Embedded Systems, 2003, pp. 318–326

[11] UDAYAKUMARAN S., BARUA R.: ‘Compiler-decided dynamic
memory allocation for scratch-pad based embedded
systems’. Proc. Int. Conf. on Compilers, Architecture and
Synthesis for Embedded Systems, CASES’03, 2003,
pp. 276–286

[12] CAO Y., TOMIYAMA H., OKUMA T., YASUURA H.: ‘Data memory
design considering effective bitwidth for low-energy
embedded systems’. Proc. 15th Int. Symp. on System
Synthesis, ISSS’02, 2002, pp. 201–206

[13] PANDA P.R., DUTT N.D., NICOLAU A.: ‘Architectural exploration
and optimization of local memory in embedded systems’.
Proc. 10th Int. Symp. on System Synthesis, ISSS’97, 1997,
pp. 90–97

[14] RAMACHANDRAN A., JACOME M.F.: ‘Xtream-fit: an energy-
delay efficient data memory subsystem for embedded
media processing’. Proc. 40th Conf. on Design
Automation, DAC’03, 2003, pp. 137–142

[15] SHIUE W.-T., CHAKRABARTI C.: ‘Memory exploration for low
power, embedded systems’. Proc. 36th ACM/IEEE Conf. on
Design Automation, DAC’99, 1999, pp. 140–145

[16] LI Y., WOLF W.: ‘Hardware/software co-synthesis with
memory hierarchies’, IEEE Trans. Comput. – Aided Des.
Integr. Circuit Syst., 1999, 18, pp. 1405–1417

[17] PANDA P.R., CHITTURI L.: ‘An energy-conscious algorithm
for memory port allocation’. Proc. 2002 IEEE/ACM Int.
Conf. on Computer-aided Design, ICCAD’02, 2002,
pp. 572–576

[18] CATTHOOR F., DE GREEF E., SUYTACK S.: ‘Custom memory
management methodology: exploration of memory
organisation for embedded multimedia system design’
(Kluwer Academic Publishers, Norwell, MA, 1998)

[19] KANDEMIR M., CHOUDHARY A.: ‘Compiler-directed
scratch pad memory hierarchy design and management’.
8
The Institution of Engineering and Technology 2010
Proc. 39th Conf. on Design Automation, DAC’02, 2002,
pp. 628–633

[20] ABRAHAM S.G., MAHLKE S.A.: ‘Automatic and efficient
evaluation of memory hierarchies for embedded systems’.
Proc. 32nd Annual ACM/IEEE Int. Symp. on
Microarchitecture, Haifa, Israel, 1999, pp. 114–125

[21] COTTERELL S., VAHID F.: ‘Tuning of loop cache architectures
to programs in embedded system design’. Proc. 15th Int.
Symp. on System Synthesis, Kyoto, Japan, 2002, pp. 8–13

[22] MEFTALI S., GHARSALLI F., ROUSSEAU F., JERRAYA A.A.: ‘An optimal
memory allocation for application-specific multiprocessor
systemon-chip’. Proc. 14th Int. Symp. on Systems
Synthesis, ISSS’01, 2001, pp. 19–24

[23] GHARSALLI F., MEFTALI S., ROUSSEAU F., JERRAYA A.A.: ‘Automatic
generation of embedded memory wrapper for
multiprocessor soc’. Proc. 39th Conf. on Design
Automation, DAC’02, 2002, pp. 596–601

[24] DASYGENIS M., BROCKMEYER E., DURINCK B., CATTHOOR F., SOUDRIS D.,
THANAILAKIS A.: ‘A memory hierarchical layer assigning and
prefetching technique to overcome the memory
performance/energy bottleneck’. Proc. Conf. on Design,
Automation and Test in Europe, DATE’05, IEEE Computer
Society, 2005, pp. 946–947

[25] ISSENIN I., BROCKMEYER E., DURINCK B., DUTT N.:
‘Multiprocessor system-on-chip data reuse analysis for
exploring customized memory hierarchies’. Proc. 43rd
Ann. Conf. on Design automation, DAC’06, New York, NY,
USA, 2006, pp. 49–52

[26] HU Q., VANDECAPPELLE A., PALKOVIC M., KJELDSBERG P.G., BROCKMEYER

E., CATTHOOR F.: ‘Hierarchical memory size estimation for loop
fusion and loop shifting in data-dominated applications’.
Proc. 2006 Conf. on Asia South Pacific Design Automation,
ASP-DAC’06, 2006, pp. 606–611

[27] KRISHNAN V., TORRELLAS J.: ‘A chip-multiprocessor
architecture with speculative multithreading’, IEEE Trans.
Comput., 1999, 48, (9), pp. 866–880

[28] NAYFEH B.A., HAMMOND L., OLUKOTUN K.: ‘Evaluation of
design alternatives for a multiprocessor microprocessor’.
Proc. 23rd Ann. Int. Symp. on Computer Architecture,
ISCA’96, 1996, pp. 67–77

[29] LIU C., SIVASUBRAMANIAM A., KANDEMIR M.: ‘Organizing the
last line of defense before hitting the memory wall
for CMPs’. Proc. 10th International Symposium on High
Performance Computer Architecture, 2004, p. 176
IET Comput. Digit. Tech., 2010, Vol. 4, Iss. 6, pp. 484–498
doi: 10.1049/iet-cdt.2009.0089

