
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

J. Parallel Distrib. Comput. 71 (2011) 280–287

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Data locality and parallelism optimization using a constraint-based approach
Ozcan Ozturk
Computer Engineering Department, Bilkent University, 06800, Bilkent, Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 5 January 2010
Received in revised form
4 July 2010
Accepted 4 August 2010
Available online 19 August 2010

Keywords:
Constraint networks
Compilers
Loop transformation
Data transformation
Parallelism
Locality

a b s t r a c t

Embedded applications are becoming increasingly complex and processing ever-increasing datasets. In
the context of data-intensive embedded applications, there have been two complementary approaches to
enhancing application behavior, namely, data locality optimizations and improving loop-level parallelism.
Data locality needs to be enhanced to maximize the number of data accesses satisfied from the higher
levels of the memory hierarchy. On the other hand, compiler-based code parallelization schemes require
a fresh look for chip multiprocessors as interprocessor communication is much cheaper than off-chip
memory accesses. Therefore, a compiler needs tominimize the number of off-chipmemory accesses. This
can be achieved by consideringmultiple loop nests simultaneously. Although compilers address these two
problems, there is an inherent difficulty in optimizing both data locality and parallelism simultaneously.
Therefore, an integrated approach that combines these two can generate much better results than each
individual approach. Based on these observations, this paper proposes a constraint network (CN)-based
formulation for data locality optimization and code parallelization. The paper also presents experimental
evidence, demonstrating the success of the proposed approach, and compares our results with those
obtained through previously proposed approaches. The experiments from our implementation indicate
that the proposed approach is very effective in enhancing data locality and parallelization.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Memory is a key parameter in complex embedded systems
since both the code complexity of embedded applications and
amount of data they process are increasing. This is especially
true for data-intensive embedded applications. In the context
of data-intensive embedded applications, there have been two
complementary approaches, namely, enhancing the data locality
and improving the loop-level parallelism.

The data locality needs to be enhanced tomaximize the number
of data accesses satisfied from the higher levels of the memory
hierarchy. Data locality is improved either by code restructuring
or data transformations. Code structuring aims to modify the data
access pattern of the loop by reorganizing the loop iterations,
thereby aligning suitably with the underlying memory layout
of the data structures. Although loop transformations are well
studied and robust compiler techniques have been developed, the
effectiveness is limited because of the intrinsic data dependencies.
On the other hand, data transformations change the memory
layout of data to make it suitable for a given data access
pattern. Data transformations can be very useful when loop
transformations are not possible for data dependency reasons.

Code parallelization in embedded chip multiprocessor systems
needs to be revisited since off-chip data accesses are costlier when

E-mail address: ozturk@cs.bilkent.edu.tr.

compared to uniprocessor architectures. Therefore, a compiler-
based code parallelization needs to focus on reducing the number
of off-chip requests.Moreover, previously proposed parallelization
approaches mostly handle one loop nest at a time, which results in
poormemory usage. This ismainly due to the fact that data sharing
patterns across different loop nests will not be captured. This can
be achieved by considering multiple loop nests simultaneously.

Although compilers address parallelization and data locality
problems, there is an inherent difficulty in optimizing both
problems simultaneously. This difficulty occurs due to the fact
that effective parallelization tries to distribute the computation
and necessary data across different processors, whereas locality
targets placing data on the same processor [35]. Therefore, locality
and parallelization may demand different loop transformations.
Specifically, for amulti-dimensional array, a loopnestmaydemand
a certain loop transformation to improve the data locality, whereas
the same loop nest may require a different transformation for
efficient parallelization for the said array. This results in a coupling
problem, where the behaviors of two goals are coupled to each
other. Note that it is also possible for a loop nest to have data
dependencies that prevent the parallel execution of its iterations.

Motivated by these observations, this paper takes a different
look at the data locality and code parallelization problems. Since,
as mentioned above, a promising solution to both these problems
should consider multiple loop nests simultaneously and each
loop nest imposes additional constraints on the problem, we
propose a constraint network (CN)-based solution to the locality

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.08.005

Author's personal copy

O. Ozturk / J. Parallel Distrib. Comput. 71 (2011) 280–287 281

and parallelism problem. Constraint networks have been used for
modeling and solving computationally intensive tasks in artificial
intelligence [21,52]. A problem is expressed with a set of variables,
along with variable domains and associated constraints. A search
function is implemented to satisfy all the constraints by assigning
values to variables from their specified domains. More specifically,
the CN is expressed as a triplet (CN = ⟨P , Q, R⟩), inwhich the goal
is to satisfy the set of constraints (R), for a given set of variables (P)
operating on a specific domain (Q). The main contribution of this
paper is to demonstrate that a CN is a very promising solution for
addressing a combined locality and parallelism problem.

We believe that a CN is a viable and effective solution for our
combined locality–parallelization optimization problem since a CN
captures problems that involve multiple constraints that operate
on the same domain, which is exactly what we are trying to
achieve. More specifically, our optimization problem lends itself
to resolving conflicts by reconciling inconsistent values in the CN,
thereby providing an efficient solution.

It needs to be emphasized that, while we present CN-based
solutions in this paper for the data unified locality and loop level
parallelism optimization problem, it is certainly possible to use
other search-based optimization techniques from the artificial
intelligence (AI) domain [49,41] as well. Our point here is not
to claim that a CN-based solution is superior to other possible
search-based approaches. Rather, we simply demonstrate that a
constraint-based approach is a promising alternative to the state-
of-the-art heuristic-based schemes which currently dominate the
practice in optimizing compiler implementations. Hopefully, this
paper will provide part of the motivation for investigating other
search-based techniques in the context of parallelism and locality
related problems.

The main contributions of this paper can be summarized as
follows.

• We propose a unified approach for the solution of data locality
and parallelization problems, which in real-life applications
must be solved simultaneously. These two problems often are
solved separately and by using different techniques, and this
makes this approach an important step forward.

• The CN formulation that we present can easily be modified to
exclude locality or parallelization, if desired.

• We give experimental evidence showing the success of the
proposed approach, and compare our results with those
obtained through previously proposed approaches. The ex-
periments from our implementation (with five embedded
array-based applications) demonstrate the superiority of our
approach.

The rest of this paper is organized as follows. A discussion of the
relatedwork on data locality optimization and code parallelization
is given in Section 2. Our CN-based integrated locality and
parallelization optimization is presented in Section 3. Section 4
presents experimental data to demonstrate the effectiveness of our
strategy. Section 5 concludes the paper by summarizing our major
results and briefly discusses the ongoing work.

2. Discussion of related work

In this section, we discuss the prior work on data locality
optimization and code parallelization.

A majority of the related compiler work on cache locality
optimization is based on loop transformations. Wolf and Lam [56]
define reuse vectors and reuse spaces, and show how these
concepts can be exploited by an iteration space optimization
technique. Li [39] also uses reuse vectors to detect the dimensions
of the loop nest that carry some form of reuse. Carr et al. [10]
employ a simple locality criterion to reorder the computation

to enhance the data locality. The loop-based locality enhancing
techniques also include tiling [18,32,36]. In [20,42,53], the authors
demonstrate how code restructuring can be used for improving the
data locality in embedded applications. On the data transformation
side, O’Boyle and Knijnenburg [45] explain how to generate code
given a data transformation matrix. Leung and Zahorjan [38]
focus more on minimizing memory consumption after a layout
transformation. Kandemir et al. [30] propose a loop optimization
technique based on an explicit layout representation. Applications
of data layout optimizations to embedded codes include [34,33].

Cierniak and Li [15] were among the first to offer a scheme
that unifies loop and data transformations. Anderson et al. [1]
propose a transformation technique that makes data elements
accessed by the same processor contiguous in the shared
address space. They use permutations (of array dimensions)
and strip-mining for possible data transformations. O’Boyle and
Knijnenburg [46] discuss a technique that propagates memory
layouts across nested loops. This technique can potentially be
used for interprocedural optimization as well. Kandemir et al. [29]
present an integrated compiler framework for improving the cache
performance of scientific applications. In this approach, authors
use loop transformations to improve the temporal localitywhereas
data layout optimizations are used to improve the spatial locality.
Our approach is different from all these previous studies, as we
employ a CN-based solution.

There has also been extensive work on reducing the memory
space requirements of array-based applications [25,37,50,51,54,
59,11,12]. Note that these techniques are fundamentally different
from the strategy presented in this paper, as their objective is
to reduce the memory space demand rather than optimize for
data locality and parallelization. While a CN-based framework can
be used for reducing the memory space requirements as well,
exploring that direction is beyond the scope of this paper.

Different schemes have been proposed for automatic code
parallelization within different domains. In the context of high-
end computing, the relevant studies include [2,26,57]. In [28],
the authors implement a mechanism to use a different number
of processor cores for each loop nest. Idle processors are
switched to a low-power mode to reduce energy. Through
the use of a pre-activation strategy, performance penalties are
minimized. In the digital signal processing domain, Bondalapati [7]
try to parallelize nested loops. In [24], the authors try to
automatically parallelize the tiled loop nests using a message-
passing interface (MPI [22]). Loop-level parallelism for coarse-
grained reconfigurable architectures is introduced in [43], while
Hogstedt et al. [27] investigate the parallel execution time of
tiled loop nests. Ricci [48] reduces the complexity of the analysis
needed for loop parallelization through an abstract interpretation.
Lim et al. [40] find the optimal affine partition that minimizes
the communication and synchronization costs in a parallel
application. In [44], the communication and load imbalance is
minimized using a locality graph and mixed integer nonlinear
programming. Beletskyy et al. [5] propose a parallelization strategy
for nonuniform dependences. A three-dimensional (3D) iteration
space visualizer tool [58] has been designed to show the data
dependencies and to indicate the maximal parallelism of nested
loops. In [3], a gated single assignment (GSA)-based approach
to exploit coarse-grain parallelism is proposed. The authors
implement the parallelism with use-def chains between the
statements.

There are also recent efforts on feedback-directed, iterative
and adaptive compilation schemes [6,16,17,19,23,31]. While such
techniques also search for the best solution over a search space (of
possible transformations and their parameters such as tile sizes
and unrolling factors), they typically execute the application to
be optimized multiple times and, based on the results returned

Author's personal copy

282 O. Ozturk / J. Parallel Distrib. Comput. 71 (2011) 280–287

(from these executions), tune the search strategy further to obtain
a better version. In comparison, our approach finds the solution
in one step. We also believe that the iterative and adaptive
solution techniques proposed in the literature can benefit from our
approach in reducing the search space, and we plan to investigate
this issue in our future research.

In our previous CN-based implementation, we exclusively
address the data locality optimization [14,13]. Similarly, our
DAC’06 [47] paper discusses the CN-based parallelization tech-
nique. While our previous implementations attack these two
problems independently, in contrast, this work aims to simultane-
ously optimize the data locality and parallelization. Therefore, we
address the combined data/loop optimization and parallelization
problem, and thus, our framework is more general and subsumes
the previouswork.Moreover, a combined framework of data local-
ity and parallelism generates much better results. The only other
combined data locality and parallelization work we are aware of is
that reported in [8,9]. These studies, however, focus on automat-
ically generating OpenMP parallel code from C using polyhedral
representation of programs.

3. Combined optimization for locality and parallelization

3.1. Problem description

In order to achieve an integrated locality and parallelization
optimization, one needs to select the suitable loop transforma-
tion, data transformation, and correct parallelization. However,
a coupling problem occurs because the same array can be ac-
cessed by multiple loop nests, and in determining its transforma-
tion–parallelization, we need to consider multiple nests. To our
knowledge, only a few studies have focused on this problem pre-
viously.

From a data locality perspective, loop and data transformations
should be carried out such that most of the data reuses take place
in the innermost loop position. In the context of parallelization, the
major goal in the past work has been maximizing the parallelism
and minimizing communication as much as possible. In contrast,
our target is a chip multiprocessor, and hence communication
is not very expensive (it is on-chip). Our main goal instead is
to minimize the number of off-chip accesses, and our CN-based
approach tries to achieve that as much as possible. Note also that
our approach can be integrated with any loop level optimization
technique as it can take the loop level information as an input (as
different ways of parallelizing a loop nest).

Our main goal in this section is to explore the possibility of em-
ploying constraint network theory for solving the integrated local-
ity–parallelization optimization problem. A CN-based solution can
be a promising alternative for our optimization problem since a
CN is very powerful in capturing problems that involve multiple
constraints that operate on the same domain. Note that we are fo-
cused on loop-based affine programs, where array subscript func-
tions and loopbounds are affine functions of enclosing loop indices.
Many programs in the embedded image/video processing domain
fall into this category [12].

Locality is achieved by exploiting the temporal and spatial reuse
exhibited by the innermost loop. While temporal reuse enables
a data element accessed by a reference to be kept in a register,
spatial reuse enables unit-stride accesses to consecutive data. Loop
and data transformations aim to restructure the code such that
most of the data reuses take place in the innermost loop position.
The iterations of a loop nest can be represented using an iteration
vector, each element of which corresponds to the value of a loop
index, starting from the top loop position. For example, in a loop
nest with two loops, i1 (outer) and i2 (inner), where 1 ≤ i1 ≤ N1
and 1 ≤ i2 ≤ N2, the iteration vector has two entries. Note that

Fig. 1. An example code fragment.

each value that can be taken by an iteration vector I⃗ = (i1 i2)T ,
i.e., the set of potential values determined by the loop bounds,
corresponds to an execution of the nest body, and all the values
that can be taken by I⃗ collectively define the iteration space of the
corresponding loop nest.

One can apply a loop transformation represented by a linear
transformation matrix T . If K is the original access matrix,
applying a loop transformation represented by the non-singular
square matrix T generates a new access matrix KT −1. On the
other hand, a linear data transformation [45] can be implemented
as a mapping of the index space of the array. Specifically, for an
m-dimensional array, the data transformation represented by an
m×mmatrix M transforms the original array reference K I⃗ + k⃗ to
MK I⃗+Mk⃗. As opposed to loop transformations [56], the iteration
vector (⃗I) is not affected by data transformations, and the constant
part of the reference (offset vector), k⃗, is transformed to Mk⃗ (the
loop transformations do not affect the offset vector). Our goal is
to select the best combination of loop and data transformations to
achieve better data locality.

While loop/data transformations focus on improving the
locality within a loop nest, it is also important to achieve locality
among these different loop nests. Most of the prior techniques
focus on efficiently parallelizing the individual loop nests. While
this may be optimal for a certain loop, it fails to capture the data
sharings among the different loop nests. Consider the example
code fragment given in Fig. 1. One would prefer to either
(1) parallelize the i loops from the first and second nests and the j
loop from the third nest, or (2) parallelize the j loops from the first
and second nests and the i loop from the third nest. Thiswill enable
that a given processor accesses the same set of array segments (of
arrays X and Y) during the execution of the different nests of the
program.

We express the parallelization of a given loop nest using
a vector. Consider the access pattern for array X in the first
loop nest given in Fig. 1. When the i loop is parallelized, each
processor accesses a set of consecutive columns of this array,and
we can express this access pattern using [∗, block(P)], where
P indicates the processor number. More specifically, the second
dimension of array X is distributed over P processors, whereas
the first dimension is not distributed. Our goal is to select the
parallelizations such that processors access the same portions of
arrays as much as possible.

3.2. Problem formulation

We define our constraint network

CN = {⟨Pv, Pw, Pz⟩, ⟨Qv, Qw, Qz⟩, R},

Author's personal copy

O. Ozturk / J. Parallel Distrib. Comput. 71 (2011) 280–287 283

which captures the data locality and parallelization constraints
derived by the compiler. In our CN, set Pv contains the
transformations for the loop nests and set Pw contains data
(layout) transformations for all the arrays that are manipulated
by the code fragment being optimized, and set Pz contains the
loop parallelizations for all loop nests. That is, we have Pv =

{V1, V2, V3, . . . , Vv}, Pw = {W1, W2, W3, . . . , Ww}, and Pz =

{Z1, Z2, Z3, . . . , Zv}, where v and w correspond to the number
of nests and the number of arrays, respectively. Note that these
are unknowns we determine once the constraint network is
solved; i.e., at the end of our optimization process, we want to
determine a loop transformation for each loop nest in the program,
a data transformation for each array in the program, and a loop
parallelization for each loop nest in the program.

SetsQv, Qw , andQz capture the domains for all variables in sets
Pv, Pw , and Pz , respectively.

To illustrate how this formulation is carried out in practice, we
consider the example code fragment in Fig. 1. Note that, for clarity,
we restrict ourselves to only loop interchange as the only possible
loop transformation and dimension reindexing as the only possible
data transformation. We have

CN = {⟨Pv, Pw, Pz⟩, ⟨Qv, Qw, Qz⟩, R},

where Pv = {V1, V2, V3}, Pw = {W1, W2, W3}, Pz = {Z1, Z2,
Z3}, Qv = {DV1 , DV2 , DV3}, Qw = {DW1 , DW2 , DW3}, and Qz =

{DZ1 , DZ2 , DZ3}. Specifically, V1, V2, and V3 are the loop transfor-
mations for the loop nests, whereas W1, W2, and W3 are the data
transformations for arrays. Similarly, Z1, Z2, and Z3 are the loop
parallelizations we want to determine for the first, second, and
third loop nest, respectively. In the above formulation,Qv, Qw , and
Qz capture our loop transformation, data transformation, and par-
allelizationdomains, respectively, and they canbe expressed as fol-
lows:

Qv =

[
1 0
0 1

]
,

[
0 1
1 0

]
;

[
1 0
0 1

]
,

[
0 1
1 0

]
;[

1 0
0 1

]
,

[
0 1
1 0

]
,

Qw =

[
1 0
0 1

]
,

[
0 1
1 0

]
;

[
1 0
0 1

]
,

[
0 1
1 0

]
;[

1 0
0 1

]
,

[
0 1
1 0

]
,

and

Qz =

[
1
0

]
,

[
0
1

]
;

[
1
0

]
,

[
0
1

]
;

[
1
0

]
,

[
0
1

]
.

In the above expression, there are two parallelization strategies.
The first one, captured by the

1
0

matrix in Qz , corresponds to

the case where the first loop is parallelized and the second one is
run sequentially. The second strategy, captured by

0
1

,on the other

hand, represents an opposite approach, in which the second loop
is parallelized and the first one is executed in a sequential manner.
For the sake of illustration, we assume that we can parallelize
only a single loop from each nest. More specifically, we have two
alternatives; that is, we can parallelize the outer loop or the inner
loop. Note that, in certain cases, itmay not be possible to parallelize
a loop which will reduce the number of entries in the CN search
space.

Loop transformation is another domain we need to explore.
Specifically, the

1 0
0 1

matrix in Qv corresponds to no loop

transformation case, whereas the

0 1
1 0

matrix represents loop

interchange. Recall that we only employ a loop interchange as
the loop transformation. For each of the three loop nests given
in the example, we have the option to keep the loop the same
or interchange it. Qv1 , Qv2 , and Qv3 indicate the possible loop
transformations for loops 1, 2, and 3, respectively. Similarly,
matrices in Qw correspond to no memory layout optimization and
dimension reindexing, respectively.

R, on the other hand, captures the necessary constraints for
data locality andparallelism.More specifically,R = {R1, R2, R3},
whereRi captures the possible locality and parallelism constraints
for the ith loop nest.

One feasible solution from the locality perspective is to keep
the first two loops as they are and apply a loop interchange to
the last loop. In order to improve the locality we also will need
to dimension the reindexing on array X for the first two loop
nests. Note that, so far, we have not yet considered parallelism. The
corresponding loop and data transformationmatriceswill be as the
following:

R1 =

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]
, ϵ

R2 =

[
1 0
0 1

]
,

[
0 1
1 0

]
, ϵ,

[
1 0
0 1

]
R3 =

[
0 1
1 0

]
, ϵ,

[
1 0
0 1

]
, ϵ

.

In each R, the first matrix shows the loop interchange and the
remaining three matrices show the memory layout optimization
for arrays X, Y , and Z , respectively. Our combined approach also
exploits the data reuse across different (parallelized) loop nests.
For the above example, our CN-based solution parallelizes the i
loop for the first two loop nests. On the other hand, we parallelize
the j loop since this will improve the locality of array Y (between
loop nests 1 and 3). Note that we have already performed a loop
interchange on the last loop nest, and as a result j is the outermost
loop in the new loop nest.

3.3. Discussion

Wenowdiscuss howour CN-based formulation can bemodified
if we are to restrict our approach to only determining the
locality or to only determining the parallelization. These simplified
problem formulations may be necessary in some cases. For
example, when we know that the loop/data structures cannot
be modified in the application code being handled (e.g., as a
result of explicit loop parallelization which could be distorted
badly by a subsequent loop transformation), we might want to
determine only parallelizations. Similarly, in some cases it may
not be possible to work with any parallelization. Then, locality
transformations are the only option to improve memory behavior.
Actually, both these cases are easy to handle within our CN-based
data locality and parallelism optimization framework. Basically,
what we do is to drop the corresponding locality/parallelization
constrains from consideration. For example, if we consider
applying data locality optimizations only, we can redefine our
network as CN = {⟨Pv, Pw⟩, ⟨Qv, Qw⟩, R}, instead of CN =

{⟨Pv, Pw, Pz⟩, ⟨Qv, Qw, Qz⟩, R} as we did earlier. Also, in this
case, R holds only the data locality constraints. Since this process
is straightforward, we do not discuss it any further in this paper.

Note that, although a combined framework of data locality
and parallelism generates much better results, it may not always
be possible to achieve the best locality and best parallelization
at the same time. In our experiments, we observe that most of
the combined locality/parallelization frameworks generate a result

Author's personal copy

284 O. Ozturk / J. Parallel Distrib. Comput. 71 (2011) 280–287

Fig. 2. Building blocks of our implementation.

Table 1
Benchmark codes.

Benchmark name Benchmark description Data size (kB) Domain size Sol space size Compilation time (ms) Execution time (ms)

encr Digital signature for security 1137.66 324 7212 34.41 434.63
wood Color-based surface inspection 2793.81 851 17638 104.33 961.58
SP All nodes shortest path 2407.38 688 14096 96.76 984.30
srec Speech recognition 974.19 752 16223 26.05 448.11
jpegview JPEG image display 1628.54 990 20873 82.34 798.76

with one dimension (locality or parallelization) being optimal and
the other one being sub-optimal. However, in caseswhere both the
parallelization and the locality can be optimal simultaneously, our
approach optimizes both of them.

4. Experimental evaluation

There are two goals of our experimental analysis. First,
we would like to see how much improvement our approach
brings over the unoptimized (original) codes. Second, we want
to compare our approach to previously proposed optimization
schemes.

4.1. Set-up

We made experiments with six different versions of each code
in our benchmark suite, which can be summarized as follows.

• Base: This is the base version against which we compare all the
optimized schemes. This version does not apply any locality or
parallelization optimization to the program code.

• Locality: This represents an approach that combines loop and
data transformations under a unified optimizer. It is based
on the algorithm described in [15]. It formulates the locality
problem as one of finding a solution to a nonlinear algebraic
system and solves it by considering each loop nest one by
one, starting with the most expensive loop nest (in terms of
execution cycles).

• Nest-Parallel: This represents a parallelization scheme, which
parallelizes each loop nest in isolation and is referred to as the
nest-based parallelization.

• Locality-CN: This is the locality-only version of our CN-based
approach, as explained in Section 3.3.

• Parallelization-CN: This is the parallelization-only version of our
CN-based approach, as explained in Section 3.3.

• Integ-CN: This is the integrated optimization approach pro-
posed in this paper. It combines locality and parallelization op-
timizations under the CN-based optimization framework.

Fig. 2 depicts the implementation of our CN-based approach.
Note that this implementation includes all three versions, namely,
Locality-CN, Parallelization-CN, and Integ-CN. The input code is
first analyzed by the compiler and possible data/loop transforma-
tions and parallelizations that go well with them are identified on
a loop nest basis (note that these form the entries of our constraint
set R). The module that implements this functionality is called
Space-Builder() since it builds the solution space that is explored

by our search algorithms. This solution space information is subse-
quently fed to the CN-Solver(), which determines the desired par-
allelizations and loop/data transformations (if it is possible). This
information is then fed to the compiler,which implements the nec-
essary codemodifications anddata remappings. The compiler parts
of this picture (i.e., Space-Builder() andCode-Modifier()) are imple-
mented using the SUIF compiler [55]. The CN solver we wrote con-
sists of approximately 1700 lines of C++ code. In our experiments,
we restricted the entries of all loop/data transformation matrices
to 1, −1 and 0.

Our experiments have been performed using the SimpleScalar
infrastructure [4]. Specifically, we modeled an embedded proces-
sor that can issue and execute four instructions in parallel. Thema-
chine configuration we use includes separate L1 instruction and
data caches; each is 16 kB, 2-way set-associative with a line size of
32 bytes. The L1 cache and main memory latencies are 2 and 100
cycles, respectively.We spawned aCPU simulation process for sim-
ulating the execution of each processor in our chip multiproces-
sors, and a separate communication simulation process captured
the data sharing and coherence activity among the processors. Un-
less stated otherwise, all the experiments discussed in this section
used this machine configuration.

Table 1 lists the benchmark codes used in our experimental
evaluation. The second column of this table gives a description of
the benchmark, and the next column gives the total data size (in
kBs)manipulated by each benchmark. The fourth column gives the
size of the domain for each benchmark, and the fifth column shows
the size of the solution space (i.e., the total number of constraints
in the R set). The sixth column gives the compilation times for the
base version described above, and the seventh column gives the
execution times, again under the base version.

4.2. Results

The solution times of the different optimized schemes, normal-
ized with respect to those taken by the base version, are given in
Table 2. These times are collected on a 500 MHz Sun Sparc ar-
chitecture. Note that the solution times given for our CN-based
approaches include the total time spent in the three components
shown in Fig. 2, and are normalized with respect to the sixth col-
umn of Table 1. At least two observations can be made from these
columns. First, as expected, our CN-based schemes take longer
times to reach a solution compared to the previously proposed ap-
proaches. Second, among our schemes, Integ-CN takes the longest
time, since it determines both loop/data transformations and par-
allelizations. It should be noted, however, that since compilation

Author's personal copy

O. Ozturk / J. Parallel Distrib. Comput. 71 (2011) 280–287 285

Table 2
Normalized solution times with different schemes. The values represent the times as multiples of the base version time.

Benchmark name Solution times

Locality Nest-Parallel Locality-CN Parallelization-CN Integ-CN

encr 1.21 1.34 3.83 4.17 5.12
wood 1.36 1.37 3.46 3.77 4.98
SP 1.10 1.28 4.08 4.90 6.22
srec 1.47 1.89 3.61 4.15 5.46
jpegview 1.28 1.42 2.38 2.92 3.87

Fig. 3. Normalized execution cycles with different schemes.

Fig. 4. Normalized execution cycleswith different schemes and cache sizes (wood).

is essentially an offline process and code quality is a strong re-
quirement in embedded computing, our belief is that these solu-
tion times are within tolerable limits.

The bar chart in Fig. 3 gives the execution times. Each bar is
normalized with respect to the corresponding value of the base
scheme (see the last column of Table 1). The first observation one
can make from this graph is that the Integ-CN scheme generates
the best savings across all five benchmark codes tested. The
average savings it achieves are around 30.1%. In comparison, the
average savings with the Locality-CN and Parallelization-CN are
15.8% and 18.9%, respectively. These results clearly emphasize
the importance of considering both loop/data transformations
and parallelization. When we look at the other schemes tested,
the average savings are 10.3% and 10.8% for Locality and Nest-
Parallel, respectively. Considering the results for Integ-CN, one can
conclude that the CN-based approach is very successful in practice.

In our next set of experiments, we change the data cache
size (keeping the remaining cache parameters fixed) and see how
this effects the behavior of the schemes tested. The results are
presented in Fig. 4. Recall that the default cache size used in our

Fig. 5. Speedups with different number of processors (SP).

experiments was 16 kB. It is easy to see from this graph that, as
we increase the size of the data cache, all the optimized versions
tend to converge to each other. This is understandable when one
remembers that the y-axis of this figure is normalizedwith respect
to the execution cycles taken by the base version. The base version
takes great advantage of increasing the cache size, and since all
the versions are normalized with respect to it, we observe relative
reductions in savings with increasing size. The second observation
from Fig. 4 is that, when the data cache size is reduced, we witness
the highest savings with the Integ-CN version. These results are
very encouraging when one considers the fact that the increase
in data set sizes of embedded applications is far exceeding the
increase in on-chip storage capacities. Therefore, one can expect
the Integ-CN scheme to be even more successful in the future.

We now evaluate the behavior of the different versions when
the number of processors is changed. While we present results
in Fig. 5 only for the benchmark SP, the observations we make
extend to the remaining benchmarks as well. When these results
are considered, one can see that scalability exhibited by the Integ-
CN version is the best as we increase the number of processors.
This is due to the fact that both nest-based locality optimizations
and parallelization optimizations are considered simultaneously.
Hence, the on-chip cache is utilized by maximizing the data reuse
in the application.

5. Conclusions and ongoing work

The increasing gap between the speeds of processors and
memory components in embedded systems makes the design and
optimization of memory systems one of the most challenging
issues in embedded system research. This is even more critical for
chipmultiprocessors, where effective utilization of limited on-chip
memory space is of utmost importance due to high cost of off-chip
memory accesses. The goal behind thework described in this paper
is to make best use of on-chip memory components. Along this
direction, this paper proposes a unified approach that integrates
locality and parallelization optimizations for chipmultiprocessors.
We formulate the problem in a constraint network (CN), and
solve it using search algorithms. The paper also presents an
experimental evaluation of our CN-based approach and compares
it quantitatively to alternative schemes. The results obtained from

Author's personal copy

286 O. Ozturk / J. Parallel Distrib. Comput. 71 (2011) 280–287

our implementation show that not only is a CN-based approach a
viable option (since its solution times are reasonable) but it is also
a desirable one (since it outperforms all the other schemes tested).

Our ongoing work includes incorporating other program
optimizations in our CN-based infrastructure and developing
customized search algorithms for different optimizations. Work is
also underway in developing a CN-based solution to the problem
of memory space minimization, and in using other search-based
optimization schemes from the AI domain.

Acknowledgments

This research was supported by a Marie Curie International
Reintegration Grant within the 7th European Community Frame-
work Programme, by a grant from IBM Corporation, and by
TUBITAK grant #108E233.

References

[1] J.M. Anderson, S.P. Amarasinghe, M.S. Lam, Data and computation transforma-
tions formultiprocessors, in: Proceedings of the 5th ACMSIGPLAN Symposium
on Principles and Practice of Parallel Programming, 1995, pp. 166–178.

[2] J.M. Anderson, M.S. Lam, Global optimizations for parallelism and locality on
scalable parallel machines, in: PLDI’93: Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and Implementation, 1993,
pp. 112–125.

[3] M. Arenaz, J. Tourino, R. Doallo, A GSA-based compiler infrastructure to extract
parallelism from complex loops, in: Proc. of the 17th Annual International
Conference on Supercomputing, 2003, pp. 193–204.

[4] T. Austin, E. Larson, D. Ernst, Simplescalar: an infrastructure for computer
system modeling, IEEE Computer 35 (2) (2002) 59–67.

[5] V. Beletskyy, R. Drazkowski, M. Liersz, An approach to parallelizing non-
uniform loops with the Omega calculator, in: Proc. of the International
Conference on Parallel Computing in Electrical Engineering, 2002.

[6] F. Bodin, T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, E. Rohou, Iterative
compilation in a non-linear optimisation space, in: Proc. Workshop on Profile
and Feedback Directed Compilation, 1998.

[7] K. Bondalapati, Parallelizing DSP nested loops on reconfigurable architectures
using data context switching, in: Proc. of the 38th Design Automation
Conference, 2001, pp. 273–276.

[8] U. Bondhugula, Effective automatic parallelization and locality optimization
using the polyhedral model, Ph.D. Thesis, Columbus, OH, USA, 2008.

[9] U. Bondhugula, A. Hartono, J. Ramanujam, P. Sadayappan, A practical
automatic polyhedral parallelizer and locality optimizer, in: PLDI, 2008,
pp. 101–113.

[10] S. Carr, K.S. McKinley, C.-W. Tseng, Compiler optimizations for improving data
locality, SIGPLAN Notices 29 (11) (1994) 252–262.

[11] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P. Kjeldsberg, T.V.
Achteren, T. Omnes, Data Access and Storage Management for Embedded
Programmable Processors, Kluwer Academic Publishers, Boston, MA, USA,
2002.

[12] F. Catthoor, E. de Greef, S. Suytack, Custom Memory Management Methodol-
ogy: Exploration of Memory Organisation for Embedded Multimedia System
Design, Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[13] G. Chen, M. Kandemir, M. Karakoy, A constraint network based approach
to memory layout optimization, in: Proc. of the Conference on Design,
Automation and Test in Europe, 2005, pp. 1156–1161.

[14] G. Chen, O. Ozturk, M. Kandemir, I. Kolcu, Integrating loop and data
optimizations for locality within a constraint network based framework,
in: Proc. of International Conference on Computer-Aided Design, 2005.

[15] M. Cierniak, W. Li, Unifying data and control transformations for distributed
shared-memorymachines, in: PLDI’95: Proceedings of the ACM SIGPLAN 1995
Conference on Programming Language Design and Implementation, 1995,
pp. 205–217.

[16] A. Cohen, S. Girbal, O. Temam, A polyhedral approach to ease the composition
of program transformations, in: Proc. of Euro-Par, 2004.

[17] A. Cohen,M. Sigler, S. Girbal, O. Temam, D. Parello, N. Vasilache, Facilitating the
search for compositions of program transformations, in: ICS’05: Proceedings
of the 19th Annual International Conference on Supercomputing, 2005,
pp. 151–160.

[18] S. Coleman, K.S. McKinley, Tile size selection using cache organization and
data layout, in: PLDI’95: Proceedings of the ACM SIGPLAN 1995 Conference
on Programming Language Design and Implementation, 1995, pp. 279–290.

[19] K.D. Cooper, A. Grosul, T.J. Harvey, S. Reeves, D. Subramanian, L. Torczon,
T. Waterman, ACME: adaptive compilation made efficient, in: LCTES’05:
Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, 2005, pp. 69–77.

[20] M. Dasygenis, E. Brockmeyer, F. Catthoor, D. Soudris, A. Thanailakis, Improving
the memory bandwidth utilization using loop transformations, in: 15th
International Workshop on Integrated Circuit and System Design, Power and
Timing Modeling, Optimization and Simulation, 2005, pp. 117–126.

[21] R. Dechter, J. Pearl, Network-based heuristics for constraint-satisfaction
problems, Artificial Intelligence 34 (1) (1987) 1–38.

[22] M.P.I. Forum, MPI-2; extensions to the message-passing interface, 1997. URL:
http://www.mpi-forum.org/docs/docs/html.

[23] G.G. Fursin, M.F.P. O’Boyle, P.M.W. Knijnenburg, Evaluating iterative compila-
tion, in: Proc. Workshop on Languages and Compilers for Parallel Computing,
2002.

[24] G. Goumas, N. Drosinos, M. Athanasaki, N. Koziris, Automatic parallel code
generation for tiled nested loops, in: Proc. of the ACM Symposium on Applied
Computing, 2004, pp. 1412–1419.

[25] P. Grun, A. Nicolau, N. Dutt, Memory Architecture Exploration for Pro-
grammable Embedded Systems, Kluwer Academic Publishers, Norwell, MA,
USA, 2002.

[26] M.H. Hall, S.P. Amarasinghe, B.R. Murphy, S.-W. Liao, M.S. Lam, Detecting
coarse-grain parallelism using an interprocedural parallelizing compiler,
in: Supercomputing’95: Proceedings of the 1995 ACM/IEEE Conference on
Supercomputing, 1995, p. 49 (CDROM).

[27] K. Hogstedt, L. Carter, J. Ferrante, On the parallel execution time of tiled loops,
IEEE Transactions on Parallel and Distributed Systems 14 (3) (2003) 307–321.

[28] I. Kadayif, M. Kandemir, M. Karakoy, An energy saving strategy based
on adaptive loop parallelization, in: Proc. of the 39th Design Automation
Conference, 2002, pp. 195–200.

[29] M. Kandemir, A. Choudhary, J. Ramanujam, P. Banerjee, Improving locality
using loop and data transformations in an integrated framework, in: MICRO
31: Proceedings of the 31st Annual ACM/IEEE International Symposium on
Microarchitecture, 1998, pp. 285–297.

[30] M. Kandemir, J. Ramanujam, A. Choudhary, A compiler algorithm for
optimizing locality in loop nests, in: ICS’97: Proceedings of the 11th
International Conference on Supercomputing, 1997, pp. 269–276.

[31] P.M.W. Knijnenburg, T. Kisuki, M.F.P. O’Boyle, Combined selection of tile sizes
and unroll factors using iterative compilation, Journal of Supercomputing 24
(1) (2003) 43–67.

[32] I. Kodukula, N. Ahmed, K. Pingali, Data-centric multi-level blocking, in:
PLDI’97: Proceedings of the ACM SIGPLAN 1997 Conference on Programming
Language Design and Implementation, 1997, pp. 346–357.

[33] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor, H.D. Man, Cache conscious data
layout organization for embedded multimedia applications, in: DATE, 2001,
pp. 686–693.

[34] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor, H.D. Man, Cache conscious
data layout organization for conflict miss reduction in embedded multimedia
applications, IEEE Transactions on Computers 54 (1) (2005) 76–81.

[35] M.S. Lam, Locality optimizations for parallel machines, in: CONPAR 94—VAPP
VI: Proceedings of the Third Joint International Conference on Vector and
Parallel Processing, 1994, pp. 17–28.

[36] M.D. Lam, E.E. Rothberg, M.E. Wolf, The cache performance and optimizations
of blocked algorithms, in: Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,
1991, pp. 63–74.

[37] V. Lefebvre, P. Feautrier, Automatic storage management for parallel
programs, Parallel Computing 24 (3–4) (1998) 649–671.

[38] S. Leung, J. Zahorjan, Optimizing data locality by array restructuring, Tech. Rep.
TR-95-09-01, 1995. URL: citeseer.ist.psu.edu/leung95optimizing.html.

[39] W. Li, Compiling for numa parallel machines, Ph.D. Thesis, Cornell University,
Ithaca, NY, USA, 1993.

[40] A.W. Lim, G.I. Cheong, M.S. Lam, An affine partitioning algorithm to maximize
parallelism and minimize communication, in: Proc. of the 13th International
Conference on Supercomputing, 1999, pp. 228–237.

[41] G. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem
Solving, Addison-Wesley, 2004.

[42] P. Marchal, J.I. Gomez, F. Catthoor, Optimizing the memory bandwidth with
loop fusion, in: Proceedings of the 2nd IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, 2004, pp. 188–193.

[43] B. Mei, S. Vernalde, D. Verkest, H.D. Man, R. Lauwereins, Exploiting loop-
level parallelism on coarse-grained reconfigurable architectures usingmodulo
scheduling, in: Proc. of the Conference on Design, Automation and Test in
Europe, 2003, pp. 10296–10301.

[44] A. Navarro, E. Zapata, D. Padua, Compiler techniques for the distribution of data
and computation, IEEE Transactions on Parallel and Distributed Systems 14 (6)
(2003) 545–562.

[45] M.F.P. O’Boyle, P.M.W. Knijnenburg, Nonsingular data transformations: defini-
tion, validity, and applications, International Journal of Parallel Programming
27 (3) (1999) 131–159.

[46] M.F.P. O’Boyle, P.M.W. Knijnenburg, Integrating loop and data transformations
for global optimization, Journal of Parallel and Distributed Computing 62 (4)
(2002) 563–590.

[47] O. Ozturk, G. Chen, M. Kandemir, A constraint network based solution to code
parallelization, in: Proc. Design Automation Conference, DAC, 2006.

[48] L. Ricci, Automatic loop parallelization: an abstract interpretation approach,
in: Proc. of the International Conference on Parallel Computing in Electrical
Engineering, 2002, pp. 112–118.

Author's personal copy

O. Ozturk / J. Parallel Distrib. Comput. 71 (2011) 280–287 287

[49] S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Pearson
Education, 2003.

[50] M.M. Strout, L. Carter, J. Ferrante, B. Simon, Schedule-independent storage
mapping for loops, SIGPLAN Notices 33 (11) (1998) 24–33.

[51] W. Thies, F. Vivien, J. Sheldon, S. Amarasinghe, A unified framework
for schedule and storage optimization, in: PLDI’01: Proceedings of the
ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation, 2001, pp. 232–242.

[52] E. Tsang, A glimpse of constraint satisfaction, Artificial Intelligence Review 13
(3) (1999) 215–227.

[53] S. Verdoolaege, M. Bruynooghe, G. Janssens, F. Catthoor, Multi-dimensional
incremental loops fusion for data locality, in: 14th IEEE International
Conference on Application-Specific Systems, Architectures, and Processors,
2003, pp. 17–27.

[54] D. Wilde, S.V. Rajopadhye, Memory reuse analysis in the polyhedral model,
in: Euro-Par’96: Proceedings of the Second International Euro-Par Conference
on Parallel Processing, 1996, pp. 389–397.

[55] R.P. Wilson, R.S. French, C.S. Wilson, S.P. Amarasinghe, J.M. Anderson, S.W.K.
Tjiang, S.-W. Liao, C.-W. Tseng, M.W. Hall, M.S. Lam, J.L. Hennessy, SUIF: an
infrastructure for research on parallelizing and optimizing compilers, SIGPLAN
Notices 29 (12) (1994) 31–37.

[56] M.E. Wolf, M.S. Lam, A data locality optimizing algorithm, in: Proceedings of
the Conference on Programming Language Design and Implementation, 1991,
pp. 30–44.

[57] M.E. Wolf, M.S. Lam, A loop transformation theory and an algorithm to
maximize parallelism, IEEE Transactions on Parallel and Distributed Systems
2 (4) (1991) 452–471.

[58] Y. Yu, E.H. D’Hollander, Loop parallelization using the 3D iteration space
visualizer, Journal of Visual Languages and Computing 12 (2) (2001) 163–181.
URL: citeseer.ist.psu.edu/yu01loop.html.

[59] Y. Zhao, S. Malik, Exact memory size estimation for array computations
without loop unrolling, in: Proceedings of the 36th ACM/IEEE Conference on
Design Automation, 1999, pp. 811–816.

Ozcan Ozturk is an Assistant Professor in the Department
of Computer Engineering at Bilkent University. Prior to
joining Bilkent, he worked as a software optimization
engineer in Cellular andHandheldGroup at Intel (Marvell).
He received his Ph.D. from Pennsylvania State University,
his M.S. degree from the University of Florida, and his
B.Sc. degree from Bogazici University, all in Computer
Engineering. His research interests are in the areas of
chip multiprocessing, computer architecture, many-core
architectures, and parallel processing. He is a recipient of
2009 IBM Faculty Award and 2009 Marie Curie Fellowship

from the European Commission.

