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Abstract
Chip multiprocessors (CMPs) are expected to be the building blocks
for future computer systems. While architecting these emerging
CMPs is a challenging problem on its own, programming them is
even more challenging. As the number of cores accommodated in
chip multiprocessors increases, network-on-chip (NoC) type com-
munication fabrics are expected to replace traditional point-to-point
buses. Most of the prior software related work so far targeting CMPs
focus on performance and power aspects. However, as technology
scales, components of a CMP are being increasingly exposed to both
transient and permanent hardware failures.

This paper presents and evaluates a compiler-directed power-
performance aware reliability enhancement scheme for network-
on-chip (NoC) based chip multiprocessors (CMPs). The proposed
scheme improves on-chip communication reliability by duplicating
messages traveling across CMP nodes such that, for each original
message, its duplicate uses a different set of communication links
as much as possible (to satisfy performance constraint). In addition,
our approach tries to reuse communication links across the differ-
ent phases of the program to maximize link shutdown opportunities
for the NoC (to satisfy power constraint). Our results show that the
proposed approach is very effective in improving on-chip network
reliability, without causing excessive power or performance degrada-
tion. In our experiments, we also evaluate the performance oriented
and energy oriented versions of our compiler-directed reliability en-
hancement scheme, and compare it to two pure hardware based fault
tolerant routing schemes.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers, memory management, optimiza-
tion

General Terms Experimentation, Management, Design, Perfor-
mance

Keywords Chip multiprocessors, reliability, NoC, Compiler

1. Introduction
As processor design has become severely power and performance
limited, it is now commonly accepted that staying on the current
performance trajectory (doubling of chip performance every 24 to
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36 months) will come about through the integration of multiple
processors (cores) on a chip rather than through increases in the clock
rate of single processors. Several chip manufacturers already have
dual core chips on the market (e.g., Intel’s dual core Montecito [28],
the dual core AMD Athlon [2]), with more aggressive configurations
being delivered or prototyped (e.g., Sun’s eight core Niagara [23],
IBM’s Cell [20], Intel’s quad core Xeon [19], and Intel’s 80 core
TeraFlop [18]). In the long run, one can expect the number of cores
in chip multiprocessors (CMPs) to increase.

It is expected that CMPs will be very successful in data and com-
munication intensive parallel applications such as multimedia data
processing, scientific computing, and bioinformatics. However, to
achieve the desired performance-power-reliability tradeoffs, suitable
software support is critical for CMPs. In fact, it is clear that CMP
hardware cannot evolve independently of the proper software infras-
tructure, and software development tools are really the key to real-
izing the benefits offered by CMPs. While an overwhelming major-
ity of prior CMP software related efforts focused on performance
or power optimizations, there are very few studies that target at im-
proving hardware reliability. This is unfortunate, because as transis-
tor sizes and voltages of electronic circuits continue to scale, one can
expect reliability to be even more challenging for future CMPs.

There are several aspects of hardware reliability as far as CMPs
are concerned. For example, correct execution of instructions is vital
and can be helped with techniques such as dual execution [5]. Sim-
ilarly, due to their relatively large sizes, memory components of a
CMP can be vulnerable to hardware failures. Conventional methods
for addressing potential memory related faults include error detection
and correction codes. Another emerging problem area is the on-chip
communication fabric. Since future technologies offer the promise of
being able to integrate billions of transistors on a chip, the prospects
of having hundreds of processors on a single chip along with an
underlying memory hierarchy and an interconnection system will
be entirely feasible. Once the number of cores on one CMP passes
some threshold (∼16 cores), conventional point-to-point buses will
no longer be sufficient. These future CMPs will require an on-chip
network (an NoC, Network-on-Chip [11]) in order to be able to han-
dle the required communications between the cores in a scalable,
flexible, programmable, and reliable fashion. Consider, as an exam-
ple, a 2D mesh NoC that can be used to connect the cores in a CMP.
There are several advantages of this kind of on-chip network. First,
meshes work well with the conventional VLSI technology (which
is 2D). Second, meshes scale very well as the number of cores is in-
creased due their high bisection bandwidths and low diameter. Third,
communication can be packet based and more regular, and as a re-
sult, it can easily be exposed to software for optimization purposes.
Fourth, switches in a NoC can be used for strengthening signals flow-
ing through them, helping to reduce data loses.

A NoC can be affected by both permanent failures (e.g., a link is
broken) and transient errors such as crosstalks and coupling noises.
Technology scaling makes this reliability problem even worse, de-
manding solutions in both hardware and software. However, since
many CMP systems that require fault tolerance also work under
severe power-performance constraints, any reliability optimization
should be carried out considering the impact on power and perfor-
mance. A daunting challenge, therefore, involves developing solu-
tions for addressing the NoC reliability problems that are both per-
formance and power aware. This is the problem addressed in this
work.
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Our belief is that significant power-performance-reliability gains
can be achieved by exposing the NoC-based CMP architecture to
the compiler and letting the compiler optimize a given application
code for both thread assignment and inter-thread communications.
In this work, we present and evaluate a compiler directed, power-
performance aware message reliability enhancement scheme for
NoC-based CMPs. The proposed scheme improves on-chip com-
munication reliability by duplicating messages traveling across the
CMP nodes such that, for each original message, its duplicate uses
a different set of links as much as possible (to satisfy performance
constraint). In addition, our approach tries to reuse communication
links across the different phases of the program to maximize link
shutdown opportunities for the NoC (to satisfy power constraint).

Prior work studied performance-oriented compiler techniques for
CMPs [10, 25, 31], application/IP block mapping schemes [4, 17],
and link power optimizations [8, 9, 21, 26, 27, 34]. Our work is
different from these studies in that it is oriented toward improving
“reliability” under performance and energy constraints. There also
exist several efforts that target modeling/improving network reliabil-
ity [6, 30, 42, 44, 45]. To our knowledge, this paper presents the
first compiler-based approach to NoC reliability, or even to network
reliability in general.

1.1 Contributions
• We propose a compiler directed NoC reliability enhancement
scheme that duplicates communication packets using non-intersecting
paths. A unique characteristic of this scheme is that it is both perfor-
mance and power conscious. In this approach, the compiler identifies
program phases and solves the problem for each phase using integer
linear programming (ILP). The solution times experienced in our
experiments were not very high (between 16.1 seconds and 2.7 min-
utes on a 2GHz Sun Solaris machine). We also discuss performance
oriented and power oriented variants of our baseline implementation.

• We present an experimental evaluation of the proposed scheme
and compare its behavior to a hardware based reliability scheme. The
results obtained using the parallelized versions of the SPECFP2000
benchmarks [35] clearly show that our approach is much more effec-
tive than alternate approaches to NoC reliability. We also observed
that most of the time (more than 90%) our approach was able to send
the original message and its replica over non-intersecting paths.

• To show that our approach can also be used along with profiling
to handle a larger set of application codes, we also report results
from three applications (mpeg, g.721, and specjbb) where the parallel
code structure cannot be fully captured at compile time. In our
experiments, we also compare our approach to two pure hardware
based fault tolerant routing schemes. Our results indicate that the
proposed scheme is better than these hardware based fault tolerant
routing schemes in terms of performance, power, and reliability.

1.2 Roadmap
The rest of this paper is organized as follows. The next section in-
troduces our NoC based CMP architecture. Section 3 introduces the
main data structure (Unweighted Memory Access Graph, UMAG)
used by our approach, and Section 4 explains how we identify phases
in a parallel program using the UMAG. Our approach to reliability
enhancement is described in Section 5, and the ILP formulations and
an example are presented. Section 6 presents an experimental evalu-
ation of our scheme, and Section 7 concludes the paper.

2. NoC Based CMP Abstraction
We focus on an NoC based CMP architecture where the nodes form
a two-dimensional (2D) mesh. In this architecture, each node has
a processor core, a memory, and a network interface. The specific
NoC we focus on is a 2D mesh but our approach can be adapted
to work with other NoC topologies, as long as the topology is ex-
posed to the compiler. The nodes of this mesh are connected to each
other using switches and bi-directional links. The on-chip memory
in a node is organized as a hierarchy with each node having a pri-
vate L1 cache and a portion of the shared on-chip memory space
(i.e., this is a shared memory CMP). The latency of a data access
in this shared on-chip space is a function of the distance between
the requester core and the node that holds the data (similar to the
NUCA concept [16, 22] except that our on-chip memory space is
managed by compiler). We assume static thread and data mappings,

i.e., before our approach is applied, parallel threads are mapped to
the CMP nodes and data blocks are mapped to the on-chip memory
spaces (we will discuss these mappings later in more detail). When a
core requires a data element, it accesses that data from either the on-
chip memory space of one of the CMP nodes or the off-chip mem-
ory space, depending on the location of the data. While we do not
consider data migration/replication within the CMP in our baseline
implementation, our approach can also be made to operate under an
on-chip memory management scheme that employs data migration
and/or replication.

In our discussion we use the terms “message” and “packet” in-
terchangeably, though in reality a message is composed of multiple
packets. Each packet in turn is composed of multiple flits. We fur-
ther assume that all flits of a given message follow the same path on
the NoC. Also, while the traditional reliability/fault-tolerance the-
ory distinguishes between the terms “error,” “fault,” and “failure,”
in this work we use these terms interchangeably as long as the con-
text/meaning is clear.

In our approach, the selection of the routing paths is done by the
compiler. The hardware needed for such “compiler-directed routing”
is similar to that used in the Intel Teraflops Processor [15] and [26].
We assume an NoC switch that supports two types of routings: de-
fault X-Y routing and compiler-directed routing. The former is used
by some of the schemes against which we compare our approach.
The header of each packet contains a flag bit indicating which rout-
ing mechanism is used for this packet. A packet using the default
X-Y routing contains the id of the destination node in its header, as
shown in the upper part of Figure 1. When a switch receives such
a packet, it uses the X-Y routing algorithm. For a 5 × 5 network,
the header of a packet that employs compiler-directed routing con-
tains three fields (see the lower part of Figure 1): the hop counter (4
bits), the orientation (2 bits), and the routing command sequence (13
bits). For each switch on the path from source node to destination
node, there is a corresponding bit in the routing command sequence
of the packet, which (along with the orientation value) tells the switch
which output port to use. Figure 3 gives the meaning of the routing
commands for the different values of the orientation field. The hop
counter is reduced by one each time the packet is forwarded from
one switch to another. It becomes zero, when the packet has arrived
at its destination node.

Figure 1. The fields in the header of a packet (Top: default X-Y
routing; Bottom: compiler-directed routing).

Orientation 00 00 01 01 10 10 11 11
Routing Command 0 1 0 1 0 1 0 1

Output Port N E N W S E S W

Figure 2. Output ports used based on the orientation and routing
command bits (N: North; S: South; W: West; E: East).

Future CMPs will contain a number of dynamic power optimiza-
tions. For example, each node or a set of nodes may be placed in a
voltage island to support dynamic frequency and voltage scaling. The
power feature that we are taking advantage of in this paper is NoC
link shutdown [34]. When a link has been idle for some period of
time, it is shut down to save energy. Shutting some of the links down
may result in higher link sharing. This in turn can affect the perfor-
mance of the application. In addition to this, link state transition (i.e.,
shutdowns and startups) overheads must be taken into account.

Note that multiple applications can be mapped to and executed
on this CMP architecture concurrently. However, we assume that
each application is assigned/given a contiguous partition of nodes
of the CMP, and no communication links or cores are shared at the
same time by the threads that belong to different applications. We
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assume that the interface between the application and the OS allows
the former to request a partition (a sub-mesh) from the latter.

3. Unweighted Memory Access Graph
Our approach has four steps. In the first step, we build a data structure
that represents the parallel application and, in the second step, we
use this structure to identify different program phases. The third step
optimizes each phase in isolation for reliability enhancements using
ILP. The last phase modifies the code to insert duplicate messages.
Due to space limitation, we only discuss the details of the first three
steps.

In the first step, the compiler analyzes the input code and builds a
Unweighted Memory Access Graph (UMAG) to capture the memory
access behavior of the parallel application based on the architecture
defined in Section 2. A UMAG1, which is built using static analysis,
is a directed graph where each vertex represents a memory-related
activity or a construct in the parallel code and each edge represents
the flow. In mathematical terms, we map the given parallel program,
T , to its graph representation G(T ), where

G(T ) = V (T ) ∪ E(T )

E(T ) ⊆ V (T ) × V (T ).

There are five types of vertices in a UMAG:

V (T ) = L(T ) ∪ B(T ) ∪ A(T )∪ D(T ) ∪ W (T ),

where a vertex l ∈ L(T ) represents a loop, more specifically, the
entry point of a loop. Similarly, b ∈ B(T ) represents a back-jump
of a loop, ap ∈ A(T ) represents an address packet transmission,
dp ∈ D(T ) represents a data packet transmission, and wp ∈ W (T )
represents a write packet transmission. The ap and dp vertices cap-
ture the memory read activity, while the wp vertices capture the
memory write activity.

Data accesses are captured using vertices in A(T ), D(T ), and
W (T ). More specifically, a data request is represented by a vertex
api ∈ A(T ); the actual data transfer is represented by a vertex
dpj ∈ D(T ). In the case of a write packet, both the address and the
data to be updated are sent in one packet by wpk ∈ W (T ). An edge
e ∈ E(T ) is categorized based on the classification of the vertices it
connects. We have:

E(T ) = EControl(T ) ∪ EData(T ) ∪ EComp(T ).

There are three types of edges, namely, control edges (EControl),
memory access edges (EData), and computation edges (EComp).

•EControl(T ) ⊆ B(T )×L(T ): A back-jump edge that connects
a back-jump vertex, b ∈ B(T ), to a loop vertex, l ∈ L(T ).

• EData(T ) ⊆ D(T ) × A(T ): A data access edge that connects
a data packet vertex, dp ∈ D(T ), to an address packet vertex,
ap ∈ A(T ), that belongs to a different loop nest.

Finally, EComp(T ) = EL(T ) ∪ EB(T ) ∪ EA(T ) ∪ ED(T ) ∪
EW (T ) gives the computation edges:

• EL(T ) ⊆ L(T ) × (A(T ) ∪ D(T ) ∪ W (T )): A control edge
that connects a loop vertex, l ∈ L(T ), to either an address packet
vertex, ap ∈ A(T ), or a data packet vertex, dp ∈ D(T ), or a write
packet vertex, wp ∈ W (T ).

• EB(T ) ⊆ (A(T ) ∪ D(T ) ∪ W (T )) × B(T ): A control edge
that connects an address packet vertex, ap ∈ A(T ), or a data packet
vertex, dp ∈ D(T ), or a write packet vertex, wp ∈ W (T ), to a
back-jump vertex, b ∈ B(T ).

• EA(T ) ⊆ A(T )× (D(T ) ∪ W (T )): A computation edge that
connects an address packet vertex, ap ∈ A(T ), to a data packet
vertex, dp ∈ D(T ), or a write packet vertex, wp ∈ W (T ).

• ED(T ) ⊆ D(T )× (A(T )∪W (T )): A computation edge that
connects a data packet vertex, dp ∈ D(T ), to an address packet
vertex, ap ∈ A(T ), or a write packet vertex, wp ∈ W (T ).

• EW (T ) ⊆ W (T )× (A(T )∪D(T )): A computation edge that
connects a write packet vertex, wp ∈ W (T ), to an address packet
vertex, ap ∈ A(T ), or a data packet vertex, dp ∈ D(T ).

1 While not used in this paper, one can also envision a weighted version of the
memory access graph (WMAG) for implementing link voltage scaling.

//Process 1
l1: for(...) { 

//request to read d1
send_ap(1, 2, d1,...);
//address packet ap1 is sent
recv_dp(1, 2, d1,...);
//data packet dp1 is received
read(1, 2, d1,...);
//reading d1 is finalized

//compute d3 and send
recv_ap(1, 2, d3,...);
//address packet ap3 is received
computing dcomputing d33;
//d3 is ready
send_dp(1, 2, d3,...);
//data packet dp3 is sent

}

//Process 2
l2: for(...) { 

//compute d1 and send
recv_ap(2, 1, d1,...);
//address packet ap1 is received
computing dcomputing d11;
//d1 is ready
send_dp(2, 1, d1,...);
//data packet dp1 is sent
l3: for(...) { 

//compute d4 and send
recv_ap(2, 3, d4,...);
//address packet ap4 is received
computing dcomputing d44;
//d4 is ready
send_dp(2, 3, d4,...);
//data packet dp4 is sent

//request to read d2
send_ap(2, 3, d2,...);
//address packet ap2 is sent
recv_dp(2, 3, d2,...);
//data packet dp2 is received
read(2, 3, d2,...);
//reading d2 is finalized
computing;

}
//request to read d3
send_ap(2, 1, d3,...);
//address packet ap3 is sent
recv_dp(2, 1, d3,...);
//data packet dp3 is received
read(2, 1, d3,...);
//reading d3 is finalized

}

//Process 3
l4: for(...) { 

//request to read d4
send_ap(3, 2, d4,...);
//address packet ap4 is sent
recv_dp(3, 2, d4,...);
//data packet dp4 is received
read(3, 2, d4,...);
//reading d4 is finalized

//compute d2 and send
recv_ap(3, 2, d2,...);
//address packet ap2 is received
computing dcomputing d22;
//d2 is ready
send_dp(3, 2, d2,...);
//data packet dp2 is sent

}

Figure 3. Program code of a shared memory parallel program.

l1

ap1

dp3

b1

l2

dp1

ap3

b2

l3

dp4

ap2

b3

l4

ap4

dp2

b4

Process 1 Process 2 Process 3

Phase 1 Phase 2

send_ap(1, 2, d1,...);

recv_dp(1, 2, d1,...);

send_dp(1, 2, d3,...);

recv_ap(1, 2, d3,...);

Figure 4. An example UMAG and the corresponding parallel computation
phases.

send_ap

l1 l2

recv_ap

send_dp

recv_dp

address packet

data     

packet

compute

Figure 5. Details of an address/data packet transmission.
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Figure 3 shows an example parallel code fragment composed of
three different processes and four different loop nests (l1 through
l4). Details of the computation statements as well as local mem-
ory accesses are not shown for clarity. However, read and write
accesses to non-local memories are shown explicitly. Although
there are many parameters involved in a read/write request, we are
mostly interested in the source/target process (node) and the data
element being accessed. More specifically, a read request is given
as read (requesterid, processid, dataid,...), where requesterid
is the requesting process (i.e., the one executing the read request),
processid represents the process that is executing in the node that
contains the memory which holds or will hold the requested data, and
dataid is the requested data item from that memory. Similarly, write
(processid, dataid,...) writes dataid to the memory of the node that
is executing processid. In case of a write, a single write packet is
sufficient since the address and the data to write can be transferred
simultaneously in one packet.

Read and write accesses to non-local memories described above
are represented with packets in our UMAG representation. Figure 4
shows the UMAG for the example in Figure 3. A read access is
denoted by two packets, address and data. First, requesting pro-
cess sends an address packet containing the address of the data el-
ement and the corresponding data packet contains the requested data
element. However, as mentioned earlier, in case of a write, a sin-
gle write packet is sufficient. This packet includes both the address
and the value to be written. Note that data dependencies are also
expressed using edges in our UMAG representation. Also, we use
dashed edges to represent inter-iteration dependencies, whereas solid
edges are used to represent intra-iteration dependencies. Lastly, the
nodes used for data and address packets (api, dpi, and wpi) do
not mean that the actual packet transmissions occur at these nodes,
rather they indicate that specific packets have been sent/received.
Figure 5 shows the actual address and data packet transmissions in
our UMAG representation. Edges represent the actual packet trans-
missions which, for clarity, we do not show in this much detail in
Figure 4. A read request is an address packet followed by a data
packet transmission. For example, as can be seen in Figure 3, pro-
cess 1 initiates the the read request by sending an address packet,
send ap(1, 2, d1, ...). This request is received by process 2 with the
recv ap(2, 1, d1, ...) statement and the requested data is sent once
the data is available (possibly after a computation step), through
a data packet with send dp(2, 1, d1, ...). This data packet is re-
ceived by the requester with a recv dp(1, 2, d1, ...) call. Although
not shown here explicitly, a write request can also be represented
similarly.

4. Phase Identification
After obtaining the UMAG representation, we divide it into parallel
computation phases (PCPs). In this context, a PCP represents a set of
loops that will execute in parallel (at runtime) and communicate with
each other (through accessing some common data elements). We then
apply our reliability enhancement scheme at a PCP granularity.

In order to formally express a PCP, we first define the concept of
loop connectivity. Two loops are said to be connected if there is a
packet transmission between them. For example, in Figure 4, loops
l1 and l2 are connected due to data and address packet transmissions,
whereas loops l2 and l3 do not have any connection. We express loop
connectivity using li =⇒ lj and formally define it as:

li =⇒ lj if ∃e ∈ (EA(T ) ∪ ED(T ) ∪ EW (T ))

s.t. e.source ∈ li, e.dest ∈ lj , i �= j.

Loop connectivity is a transitive property, that is, if li =⇒ lj
and lj =⇒ lk, then we have li =⇒ lk. Similarly, we use li ◦ lj
to express that loops li and lj are not connected. Using this notion
of loop connectivity, collection of PCPs (or simply phases) form the
loop nodes given with L(T ):

L(T ) =
n[

i=1

PCPi, s.t. lj ◦ lk, ∀lj /∈ PCPi and ∀lk ∈ PCPi.

This definition implies that there cannot be a single lj ∈ PCPs

connected to another lk ∈ PCPt directly or indirectly. For example,

the UMAG in Figure 4 can be divided into two PCPs: PCP1 =
(l1, l2) and PCP2 = (l3, l4).

Once the parallel program is decomposed into phases, the rest
of our approach operates on one phase at a time. Since PCPs do
not have any data dependencies between them, we can treat each
phase as an independent execution unit and optimize it in isolation.
For example, in Figure 4, there is no data dependence indicated by
data/address packet transmissions between PCP1 and PCP2. This,
in turn, allows our scheme to optimize two PCPs in isolation. Note
that, the edges between dp1 and l3 as well as l3 and ap3 are control
edges which do not prevent us from optimizing PCPs individually.
Since each phase typically has a different inter-node communication
pattern, it makes sense to formulate and solve a separate linear
problem for each phase. Section 5 explains the ILP formulation we
implement for a given phase (PCP).

5. Reliability Enhancement
In this section, we present our ILP formulation for the NoC re-
liability enhancement scheme that duplicates messages using non-
intersecting paths. We implemented our ILP approach such that the
number of links traversed between the source and the destination
is minimum. Specific constraints that satisfy this property have not
been shown explicitly for clarity reasons. We used Xpress-MP [43], a
commercial tool, to formulate and solve our ILP problem. Note that,
as explained above, the paths selected by the compiler may be differ-
ent from those that would be adopted by conventional X-Y routing.

5.1 Reliability Centric Formulation
As explained earlier, we focus on a 2D mesh-based CMP, which is
represented by a directed graph G = (V, E). Each node in V is
assigned an identifier, e.g., i, and each edge in E is denoted using
its corresponding nodes, e.g., (i, j). Using static program analysis as
explained above, we first identify concurrent messages within each
program phase. For example, if phase n has K concurrent messages
to be transmitted, each message is represented by (sk, tk, bk) for
k = 1, . . . , K, where sk and tk are the source node and destination
node, respectively, and bk captures the bandwidth required by this
message.

We also employ a binary variable Mp,k
i,j to describe the routing

decision for message k in phase p at link (i, j). Setting the value
of this variable to 1 means that message k is transmitted through
link (i, j); otherwise, message k does not pass through link (i, j). In
order to capture the participation of node n at the transmission of a
message k within phase p, we use Ap,k,n. More specifically, a node
participates at the communication if a neighbor is part of the same
communication and the link connecting these two nodes is active (not
shutdown). We use a different 0-1 variable to capture the activity of
a link:

Ep,i,j =

j
1, if the link between i and j is active during phase p.
0, otherwise.

Recall that, in our NoC-based CMP architecture, there are bi-
directional links between neighboring nodes denoted by i, j. A link
can be active in one phase of the program and inactive during the
next phase. This enables us to control the NoC state, taking into ac-
count the communication requirements exhibited by a given phase.
As explained earlier, to include a node in a communication activity,
we need to ensure that a neighbor is part of the communication and
the connecting link is active. This can be expressed as follows:

Ap,k,j ≥ Ap,k,i + Mp,k
i,j − 1, ∀p, i, j. (1)

In order to improve the reliability of the NoC, our approach dupli-
cates the messages in the system. To capture this within our ILP
formulation, we use Rp,k

i,j . Similar to Mp,k
i,j , this captures the com-

munication behavior of the duplicate of message k.

Rp,k
i,j =

8<
:

1, if message k is transmitted through link (i, j)
during phase p.

0, otherwise.
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Like a regular message, a node will be included in the communica-
tion activity, if a duplicate message is being transmitted through:

Ap,k,j ≥ Ap,k,i + Rp,k
i,j − 1, ∀p, i, j. (2)

The neighbors indicated here correspond to the nodes on the north,
south, west and east of the node represented by Ap,k,i. The nodes
that are on the borders of the NoC have a subset of these constraints
(depending on their specific locations). Note that, the source and the
destination of each message are already known and given by sk and
tk, respectively. For each node designated as the source or the target,
we set these variables to 1. More specifically, we have:

Ap,k,i = 1, if i = sk or i = tk,∀p, k, i. (3)

We need to ensure that, if a message is sent through a link, that link
should be active. We capture this as follows:

Ep,i,j ≥ Mp,k
i,j ,∀p, k, i, j. (4)

Similarly, a link needs to be active during the transmission of a
duplicate message over it:

Ep,i,j ≥ Rp,k
i,j ,∀p, k, i, j. (5)

We also need to make sure that both the original and the duplicate
messages should follow different routes (paths) to the target. We can
express this as follows:

Mp,k
i,j + Rp,k

i,j ≤ 1,∀p, k, i, j. (6)

Next, we introduce Sp,i,j , the binary variable to indicate whether
a link is shared by multiple messages during a phase:

Sp,i,j =

j
1, if link (i, j) is shared during phase p.
0, otherwise.

To capture the behavior of this variable correctly, we need to consider
all the message pairs including the original messages and duplicates.
Consequently, we have:

Sp,i,j ≥ Mp,k1
i,j + Mp,k2

i,j − 1,

Sp,i,j ≥ Mp,k1
i,j + Rp,k2

i,j − 1,

Sp,i,j ≥ Rp,k1
i,j + Rp,k2

i,j − 1,

∀p, i, j, k1, k2 such that k1 �= k2. (7)

If any two messages are identified to exercise a link, that link is
marked as a shared link, that is, Sp,i,j is set to 1.

We also need to capture the link state transitions (i.e., shutdowns
and startups). It might be possible to hide the performance overhead
due to these activations/deactivations by using a preactivation strat-
egy (i.e., by activating a link ahead of the time before it is really
needed so that it will be ready when it is needed). However, the en-
ergy overheads due to such activities cannot be hidden. To capture
this overhead, we use AEp,i,j and DEp,i,j for activation (startup)
and deactivation (shutdown), respectively. These constraints can be
expressed as follows:

AEp,i,j ≥ Ep,i,j − Ep−1,i,j ,

DEp,i,j ≥ Ep−1,i,j − Ep,i,j , ∀p, i, j. (8)

In the above expression, we check each communication link’s activ-
ity in neighboring phases (PCPs) p and p − 1. If there is any change
in the activity (state) of any link (i.e., any transition), one of the cor-
responding variables (AE or DE) will be triggered (i.e., the corre-
sponding variable will be set to 1). This overhead is included in our
objective function.

Having specified the necessary constraints to be satisfied by our
ILP formulation, we next discuss our objective function for reliability
enhancement. We define our cost function (to minimize) as the sum
of two separate cost factors: one to capture the performance concern
and the other to capture the energy concern. Thus, our objective
function can be expressed as follows:

min

PX
p=1

nX
i=1

nX
j=1

C1 × Sp,i,j + C2 × (AEp,i,j − DEp,i,j). (9)

In this expression, C1 and C2 capture the weights for the perfor-
mance concern and energy concern, respectively. Note that, Sp,i,j is
used for the number of shared links, whereas (AEp,i,j − DEp,i,j)
represents the number of links activated during this phase. The value
of (AEp,i,j − DEp,i,j) could be negative meaning that the specific
link is deactivated at the given phase. Also, if C1 > C2 the solu-
tion found will be more oriented towards improving performance (by
minimizing the number of links shared by the messages in a given
phase), whereas C1 < C2 favors an energy oriented solution (by
maximizing the link reuse between neighboring phases).

5.2 Performance Centric Formulation
The formulation presented above duplicates every original message
in the phase. This can have performance consequences despite the
fact that our approach tries to route original and duplicate messages
using non-intersecting paths as much as possible. In this subsec-
tion, we present an alternate formulation which favors performance.
Specifically, we try to maximize the number of duplicates while not
allowing any links to be shared by two or more messages (dupli-
cate or original) in a given phase. We have to make several modifi-
cations to the reliability centric formulation presented above to ob-
tain this performance centric formulation. First, Expression (7) above
should be modified in order to capture this new constraint. If we con-
sider two different messages, k1 and k2, we will have four variables,
Mp,k1

i,j and Mp,k2
i,j for the original messages, and Rp,k1

i,j and Rp,k2
i,j

for their duplicates. All these messages should follow different routes
in order satisfy the minimum performance overhead constraint. This
can be captured as follows:

Mp,k1
i,j + Mp,k2

i,j + Rp,k1
i,j + Rp,k2

i,j ≤ 1,

∀p, i, j, k1, k2 such that k1 �= k2. (10)

We also need to modify the constraints to reflect the fact that a
duplicate may not exist. To do this, we introduce another binary
variable, RMEp,k, which indicates whether there exists a duplicate
for message k in phase p. All the routing variables related to the
duplicates are dependent on this variable. More specifically,

Rp,k
i,j ≤ RMEp,k,∀p, k, i, j. (11)

Similarly, our objective function given originally by Expression (9)
has to be modified to reflect this change:

min
PX

p=1

(C2 ×
nX

i=1

nX
j=1

(AEp,i,j − DEp,i,j)) +

(C3 ×
KX

k=1

(1 − RMEp,k)). (12)

This objective function tries to minimize the energy consumption and
maximize the number of duplicate messages. The portion preceded
by a weight of C2 captures the energy metric, whereas the portion
preceded by a weight of C3 captures the reliability metric. RMEp,k

indicates whether the duplicate exists and
PK

k=1(1−RMEp,k) sums
up the non-duplicated messages.

5.3 Energy Centric Formulation
Similar to the performance centric routing, we may formulate an
energy centric routing as well. In this case, duplicate messages are
not routed through links that were not active in the previous phase,
that is, the extra energy consumed due to reliability enhancement
is reduced. Expression (5) above ensures that a duplicate message
is transmitted through link if that link is already active. In addition
to this, our goal is not to keep a link active if only duplicates are
transmitted through this link:

Ep,i,j ≤
KX

k=1

Mp,k
i,j ,∀p, k, i, j. (13)

The right-hand side of the above constraint captures the total number
of original messages transmitted over the link. If this sum is 0, then
the corresponding link will not be active, forcing duplicates to follow
different routes. In addition to this, we introduce RMEp,k to indicate
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Figure 6. An example showing our ILP-based approach.

whether a duplicate of message k exists during phase p. This is
similar to RMEp,k that is used in Section 5.2. Hence, we use the
corresponding constraint given in Expression (11) to indicate that a
duplicate message can be transmitted only if the duplicate exists.

Our new objective function can be written as:

min
PX

p=1

(C1 ×
nX

i=1

nX
j=1

Sp,i,j) + (14)

(C2 ×
nX

i=1

nX
j=1

(AEp,i,j − DEp,i,j)) + (C3 ×
KX

k=1

(1 − RMEp,k)).

Coefficients C1, C2, and C3 can be selected based on the relative
weights of the performance concern, energy concern, and reliability
concern, respectively. We have all three weights (C1, C2, and C3),
since we still need to capture the energy concern. This follows from
the fact that we still have link activations and deactivations.

5.4 Example
Figure 6 shows an example 4 × 4 NoC and the corresponding ILP
solution based on our baseline formulation discussed in Section 5.1.
In this example, we assume that there are two original messages that
have to be transmitted in a phase: a message from s1 to t1 and a
message from s2 to t2. Source nodes are represented using solid
circles, whereas the destination nodes are represented using dashed
circles. Furthermore, we assume that active links from the previous
phase are known and denoted using double edges between the NoC
nodes. Figure 6(a) shows the messages, their source and destination
nodes, and the active links.

With our baseline (reliability centric) formulation (i.e., all mes-
sages have their attached duplicates which follow different paths
from the original messages as much as possible), three of the four
messages (two original and two duplicate) will follow the routes
given in Figure 6(b). Note that the shortest paths are used in order
not to increase energy consumption. Similarly, for m1, the ILP solver
returns this route as one of the routes for messages from s1 to t1 no
matter what the C1 and C2 parameters are. In order to satisfy these
routes, some links that were not active in the previous phase will need
to be activated. These links are identified by attaching an A next to
the edges in Figure 6(b). In total, there are 4 additional link activa-
tions required to transmit the 3 messages in this phase.

So, the question becomes how to route the duplicate message
from s1 to t1. There are two different routes, marked using 1 and
2 in Figure 6(c). If this message is sent through route 1, there will
be an additional activation required on the first link. On top of
this link activation, one of the links will be shared with m2 and
another link will be shared with m3. Instead, if this message is sent
through route 2, there will be two link activations followed by a
shared link with m3. Figure 6(d) shows the overall behavior of the
system during this phase. Either we will follow route 1 and incur

Table 1. Our simulation parameters and their default values.
Parameter Value

NoC 5 × 5 2D mesh
Core two-issue

CPU Frequency 1GHz
Data/Instr L1 Capacity 8KB (per node)

Local On-Chip Memory 256KB (per node, banked)
Link Speed 1GHz

Link Activation Latency 1 µsec
Link Activation Energy 140 µjoule

Packet Header Size 3 flits
Flit Size 39 bits

(4A) + (2S + A) = 2S + 5A, or we will follow route 2 and incur
(4A) + (S + 2A) = S + 6A. If we consider our objective function
in Expression (9), the cost function will be 2 × C1 + 5 × C2 for
route 1, and C1 + 6×C2 for route 2. At this point, selecting a route
from these two depends on the values of C1 and C2. If C1 = C2

either one of the routes could be chosen by the ILP solver. However,
if C1 > C2, the objective function will be minimized when route
2 is selected. This follows from the fact that weight of performance
is now increased, i.e., the route with fewer shared links would be
preferred (as in the case of route 2) over the alternate route with
lower energy consumption. By comparison, if C1 < C2, route 1
will be chosen since, in this case, link sharing is preferred over link
activation.

5.5 Qualitative Comparison Against Existing Schemes
In this section, we discuss how our compiler-directed message du-
plication approach compares to hardware level approaches for NoC
reliability. There are several approaches in the literature that target
improving the resilience of NoCs using error detection and correc-
tion mechanisms. Most error detection mechanisms target transient
link errors and try to cope with them by attaching an error code to
each packet to be sent over the network. This error code, typically
a parity or cyclic redundancy check, is used to detect at the desti-
nation whether the content of the packet has been modified or not.
Such schemes typically require retransmission of the packet if an er-
ror is detected in it (the error is signaled to the source node using
a negative ACK (NACK) signal). An alternate option would be to
use a more sophisticated (error protection) code to allow the target
node itself to correct the error without requiring any retransmission.
As pointed out by prior research [39], as far as power consumption
and implementation complexity are concerned, the first option (de-
tection followed by retransmission) is preferred over the second one
(self-correction). Therefore, in this paper we consider only the first
option, and when we refer to error protection code we mean one that
can detect (using a parity bit) an odd-number of errors. In the rest of
this paper, we use PEC (Parity/retransmission based Error Correc-
tion) to refer to this error protection code based approach.

Such protection codes can only be useful in the context of tran-
sient link errors. In case of permanent link failures (e.g., broken
links), they will not work as the original packet would not have ar-
rived at its destination at the first place. For permanent link failures,
our approach is much more effective, as it sends two copies of the
same packet over non-intersecting paths as much as possible.2 From
the perspective of transient errors, the comparison between our ap-
proach and error protection based schemes is more involved. This is
because our scheme can also be used in conjunction with error pro-
tection coding, that is, both copies can be augmented with an error
protection code. If the copies are not protected with encoding, there
are two cases to consider. If both of the copies reach the destination
and they are the same, chances of transient error(s) having occurred
are very low. Because an error would have had to flip the same bits in
both the copies to escape detection. On the other hand, if only one of
the copies arrives at the destination (due to permanent errors), there
is no way to detect a transient error. If, however, the copies are aug-
mented with protection codes, at the destination we can check both
copies and accept the one without errors (based on parity bits), or ask
for a retransmit if only one copy arrives.

2 Note that our scheme does not require “the knowledge of which links will
fail” at compile time. Instead, it prepares for every scenario, by trying to send
any message and its duplicate using non-intersecting paths.
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To summarize, if permanent link failure occurs, our approach has
a clear advantage over conventional error protection based schemes,
irrespective of whether transient errors also occur or not. On the other
hand, if only transient errors occur and both the copies arrive, our
approach can potentially detect more errors than conventional parity
or CRC based schemes, since we can perform bit-by-bit comparison
of the original message and duplicate message. In our experiments,
we evaluate the impact of our approach in mitigating the effects of
both permanent and transient errors, and compare it with PEC.

There are also approaches in the literature that can be defined as
”hardware based fault tolerant routing” [29, 32, 33, 42, 44]. In many
prior studies, researchers propose using virtual channels. Most of
these approaches employ algorithms that are based on seminal works
such as [13] and [37]. However, if the physical links are broken, such
schemes may not be very effective. Another option is to reserve a
set of physical links to route a message that could not be routed
due to the failure of one or more of the links in its original path.
Note that, apart from the implementation complexities involving in
detecting the failure and re-routing the message, this approach also
reduces the effective network size. To compare our approaches to
hardware based fault tolerant routing schemes, we implemented this
physical link reservation based approach (referred to as HFT-1 here)
and an alternate hardware based fault tolerance scheme based on
link state sharing, which is denoted using HFT-2. While there exist
several implementations of such link state sharing based schemes, the
implementation we adopted is based on the work described in [1]. In
this implementation, each router periodically updates its neighboring
routers with its health (e.g., which, if any, of its links have failed). In
the long run, it is expected that the NoC converges to a stable state
where every router has an idea about the global NoC health. Note that
the periodic updates can flood the on-chip network and also cause
extra power consumption. Therefore, in the implementation of [1]
(and in ours as well), instead of using periodic updates, we perform
updates only when a link fails. The routers, after receiving the new
state information, remove the faulty link from their routing tables
and exchange this new information with their own neighbors, and
so on. At periodic intervals, each router calculates the shortest paths
using Dijkstra’s algorithm. Our preliminary experiments showed that
both HFT-1 and HFT-2 are more energy efficient than the schemes
discussed in [33].

Before moving to our experiments, we want to mention that
the paths selected by our scheme do not lead to a deadlock since
we have an additional set of constraints in our ILP formulation
to prevent potential deadlocks. For the sake of clarity, we do not
present our deadlock prevention constraints in detail. A deadlock will
happen when there is a circular message dependency between two
or more messages. We first identify the deadlock-possible messages
and form deadlock sets. We then use these deadlock sets to generate
our additional deadlock prevention constraints. If, for example, two
messages Mp,k1

i,j and Mp,k2
j,i can cause a deadlock, then we add an

additional constraint, Mp,k1
i,j + Mp,k2

j,i ≤ 1, to prevent both of them
being enabled. We define these constraints for the replica messages
as well.

6. Experiments
6.1 Implementation and Setup
We implemented our compiler directed approach using the SUIF in-
frastructure [14] and performed experiments with all the applications
in the SPECFP2000 benchmark suite [35]. For each of the bench-
marks in our suite, we fast-forwarded the first 500 million instruc-
tions and simulated the next 2 billion instructions. The default values
of our simulation parameters used in our experiments are listed in
Table 1.

Our approach is implemented as a separate compilation phase
within SUIF. Once the SUIF based analysis is performed, the col-
lected information is passed to our ILP solver (Xpress-MP [43]).
The solutions returned by the solver are mapped to SUIF and are
used to modify the code to insert duplicate messages and specify the
paths (routes) that will be used by the original and duplicate mes-
sages. The code modifications required for specifying the routes are
similar to those in [8]. The overall compilation times we experienced
on a 2GHz Sun Solaris machine varied between 19.8 seconds and 2.9
minutes (dominated by the ILP solution times). These solution times,
which correspond to about 30% increase over the original compila-

Table 2. Benchmarks used in our experiments and their important charac-
teristics. Energy values are in mJ, and the latency values are in million cycles.

Benchmark Number of Number of Execution Energy
Name Phases Messages Cycles Consumption
wupwise 72 13.5M 388.1M 781.6mJ (19.3%)

swim 87 22.8M 477.3M 886.1mJ (26.6%)
mgrid 64 11.7M 406.0M 814.2mJ (22.8%)
applu 59 26.9M 461.6M 759.7mJ (15.7%)
mesa 51 14.1M 318.2M 582.8mJ (19.0%)

galgel 89 16.9M 386.7M 609.8mJ (24.8%)
art 37 13.2M 297.3M 424.9mJ (33.2%)

equake 59 9.4M 192.6M 387.2mJ (20.1%)
facerec 73 6.3M 208.9M 390.5mJ (27.4%)
ammp 113 12.7M 241.1M 407.8mJ (24.4%)
lucas 96 5.7M 156.4M 321.4mJ (19.7%)

fma3d 91 9.6M 197.4M 456.3mJ (29.3%)
sixtrack 76 8.2M 148.5M 292.3mJ (28.6%)

apsi 137 12.7M 276.8M 416.7mJ (22.5%)

tion times, are not very large since we formulate a separate linear pro-
gram for each phase (PCP) in isolation. Also, the maximum increase
in code size due to our scheme was less than 3%, and its impact on
instruction cache performance was negligible.

Before our approach is applied, two other phases (steps) are ex-
ecuted: code parallelization and thread-to-core mapping. The code
parallelization phase determines loop iteration distribution and data
decomposition across the CMP nodes. The specific method used in
this phase is very similar to the approach in [3], except that most fre-
quently used data are mapped to the on-chip memory components.
The second step applied before our approach is thread-to-core map-
ping (which we will discuss shortly). After these two steps, our ap-
proach is invoked. Note that, while we use specific code paralleliza-
tion and thread mapping schemes in our experimental evaluation,
our approach can work with other parallelization/mapping schemes
as well. In our experiments, we also present results with different
thread-to-core mappings. Also, in all our experiments, all processor
cores are used but the set of links used depend on the communication
pattern and message routing strategy.

To conduct our experiments, we implemented a flit-level network-
on-chip simulator (built on top of Orion [41]) and connected it
with SIMICS [40], a multi-processor simulator. The network is
parametrized in a similar fashion to that in [11] except that it is
5 × 5. The link speed is set to 1Gb/sec. Each input port of switch
has a buffer that can hold 64 flits, each of which is 128 bits wide
(packet size is 16 flits). The communication links in this network
can be shutdown independently, using a time-out based mechanism
as described in [34]. We set the time-out counter threshold for the
hardware-based power reduction scheme to 1.5µsec based on some
preliminary analysis. The time it takes to switch a link from the
power-down state to the active state is set as 1µsec, and the energy
overhead of this switching is assumed to be 140µJ based on prior
research. For modeling the energy consumption of memory compo-
nents, we used CACTI [38], and for collecting energy data for core-
related activities, we enhanced SIMICS with accurate timing models
and energy models similar to those employed in [7]. The NoC energy
modeling is based on Orion [41]. All the energy numbers presented
include both dynamic and leakage energy.

Table 2 presents the important statistics for our benchmarks under
the default values of our simulation parameters. The second column
lists the number of phases (PCPs) for each benchmark and the next
one shows the number of messages sent over the NoC during the
entire simulation time. The fourth column gives the execution cycles
and the fifth column shows the total energy consumption of the CMP
when no reliability optimization is applied. These values include the
energy spent in the datapath, on-chip and off-chip memory accesses,
and interprocessor communication. The values within parentheses in
the last column give the contribution of the NoC to the total energy
consumption of the chip.

In our evaluation, for each application code in our experimental
suite, we performed experiments with different versions (in addition
to the original version that does not perform any reliability optimiza-
tions but tries to maximize link reuse between neighboring phases to
reduce energy consumption); the details of these versions will be ex-
plained in Section 6.2. In evaluation of all the versions, including
the original one, we assume that a power-saving scheme for NoC is
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Figure 7. Link sharing statistics
for packets.
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Figure 8. Performance degrada-
tion caused by different versions.
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Figure 9. Additional energy con-
sumption caused by different ver-
sions.
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Figure 10. Reliability evaluation
of our approach and PEC regarding
permanent link failures.

already in place. Specifically, as stated earlier, we assume the exis-
tence of a hardware based link power saving scheme that turns off a
link if it has not been used for a while. Note that the original scheme
and optimized schemes use the same parallelization and thread map-
ping steps. Also, we model the overheads incurred by our approach
in detail, and the performance and power numbers presented below
include all overheads (e.g., cost of link shutdowns and startups and
additional link contention due to duplicate messages).

6.2 Results
Unless otherwise stated, when we say ”our approach” in our dis-
cussion below, we mean the reliability centric formulation given in
Section 5.1. We start by presenting the increase in message traffic,
energy consumption and execution cycles when our reliability cen-
tric formulation is used, assuming C1 = C2 in the objective function.
All the numbers presented below are with respect to the correspond-
ing values obtained under the original scheme, i.e., they are given
as percentage degradation over the original scheme (see Table 2 for
the absolute values with the original scheme). Figure 7 gives, for our
scheme, the fraction of packets that share 0, 1, 2 and more than 2
links (denoted > 2), over all the phases of the application. We see
that a large fraction of the packets do not share any links, that is, our
approach is able to send the original and duplicate packets along the
disjoint paths most of the time (90.1% on average). Of the cases when
this is not possible (i.e., there is at least one link shared), the most fre-
quent reason is that the source and destination nodes reside along the
same row or column.3 In some other cases, we simply could not find
disjoint paths due to large number of packets that have to be routed.
To discuss the performance degradation and energy increase caused
by our approach, let us consider the first bars, for each application,
in Figures 8 and 9.

Our main observation from Figure 8 is that the performance
degradation caused by our approach – over the original version –
is not high, and varies between 0.7% and 3.3%. Again, this is due to
the success of our scheme in finding non-intersecting paths, as much
as possible, for the duplicate packets. The increases in energy con-
sumption – given in Figure 9 – are higher, mainly due to the increase
in dynamic energy consumption as a result of duplicate messages.
While our approach keeps the increase in leakage consumption at
minimum by maximizing the link reuse between neighboring pro-
gram phases, it still has to send extra packets (duplicates), which
contribute to the dynamic energy consumption. As a result, on aver-
age, our approach incurs a 19.1% increase in total energy consump-
tion. We also performed experiments with different C1 and C2 val-
ues. When we set C1 = 2 and C2 = 1, we observed that the average
performance penalty reduced to less than 1%, but the average energy
increase jumped to 26.6%. In contrast, when C1 = 1 and C2 = 2, the
percentage increase in execution cycles and energy consumption be-
came 3.8% and 9.7% (on average). These results show that by chang-
ing the values of C1 and C2, one can explore the tradeoffs between
performance and energy loses, and select the appropriate reliability-
centric solution that satisfies the performance and power constraints
at hand. While, for a given power/performance bound, several search
algorithms can be developed for determining the best C1 and C2

values, studying such algorithms is beyond the scope of this work.
We have already implemented in our compiler a simple heuristic that
selects the best C1 and C2 values for a given power/performance
bound. We could not present here the details of this heuristic due to
lack of space.

3 As explained earlier, our baseline approach always uses the minimum num-
ber of links between the source and destination.

We now compare this baseline implementation of ours against
two alternate schemes. The first scheme, called Random, selects the
paths for duplicate messages randomly among all paths of minimum
links (between the source and destination). Due to its random nature,
we can expect this scheme to perform reasonably well as far as per-
formance is concerned. As can be observed from the second bars in
Figure 8, the average performance degradation this alternate scheme
causes is about 3.7% (compared to 2.1% caused by our scheme).
However, since this approach does not care about the link reuse be-
tween neighboring phases of the application, it can cause significant
increase in leakage energy, as can be observed from Figure 9. It leads
to an average increase of 42.6% on total energy consumption. The
second alternate scheme we experiment with is fully leakage ori-
ented. Specifically, the duplicate packets in this scheme are always
routed along the same path as the corresponding original packets.
While this approach is leakage efficient in general, it can also lead
to a significant increase in execution latency. We see from Figures 8
and 9 that it increases execution latency (resp. energy consumption)
by 20.1% (resp. 1.8%). Therefore, considering both performance and
energy consumption, our performance-energy conscious reliability
enhancement clearly strikes the right balance. Though not presented
here, the average performance and energy degradations caused by the
PEC scheme were 3.9% and 4.2%, respectively.

Our next set of experiments study the reliability improvement
brought by our approach in more detail. For this purpose, we eval-
uated the behavior of our approach under both permanent and tran-
sient errors. In the case of permanent errors, we simulated the case
when a certain number of links are disabled and recorded the fraction
of packets that did not arrive at their destination nodes.4 The results
are presented in Figure 10, each bar representing the average value
across all applications. For each application, we have two versions:
1) our approach without any error encoding and 2) error encoding
(PEC) without our approach. We experimented with different num-
bers of link failures (from 1 to 5), and the y-axis in Figure 10 gives the
fraction of packets that could not reach their destinations due to a bro-
ken link. In the case of our approach, we also quantified the fraction
of packets when both copies failed, and those when only one copy
failed. We see that, with our approach, only a small fraction of the
packets could not reach their destinations. The reason for such low
figures is because our approach is, in general, able to route the two
copies using non-intersecting paths. By comparison, the safe deliv-
ery rate under the PEC scheme can be very low, indicating that, as far
as permanent failures are concerned, our approach is very promising,
especially when a large number of links are permanently disabled.

We also quantified the benefits of our approach when transient
errors occur. To cover a large set of possibilities, we experimented
with different error probabilities. We used the same two schemes
above (our approach and PEC). Figure 11 shows the number of errors
that could not be detected under each scheme. As before, each bar
represents an average value across all benchmarks. Note that in PEC
an error may not be detected if it affects an even number of bits.
On the other hand, in our scheme, we may fail to detect an error
if both copies have the same bit (or set of bits) flipped. Clearly,
the likelihood of this is extremely low since the copies usually go
over non-intersecting paths. The results in Figure 11 indicate that
our approach performs much better than the PEC scheme in the case
of transient errors, for all the error injection rates considered.

Let us now quantify the cost of correcting the detected errors
in terms of execution cycles. In the case of PEC, to correct the

4 The fraction of messages lost in transmission is a frequently-used reliability
metric in fault-tolerant network research [44].
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Figure 11. Reliability evaluation
of our approach and PEC regarding
transient link errors.

Figure 12. Time (in cycles) to
correct the transient errors detected.
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Figure 13. Impact of CMP size
regarding permanent link failures.
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Figure 14. Impact of CMP size
regarding transient link errors.

Figure 15. Comparison of reliability
centric, performance centric and en-
ergy centric formulations.

Figure 16. Comparison of our ap-
proach against two hardware based
fault tolerant routing schemes.

error, the packet is retransmitted. Therefore, the total performance
cost of error correction is the time required to retransmit the packet.
For our approach, however, the actual cost depends on whether we
employ any error protection code. If the copies are not protected
with error codes, our approach cannot correct the errors it detects by
message comparison (but we can always request a retransmission, if
desired, as in the case of the PEC scheme). If, on the other hand,
the copies are protected using an error protection code, we can easily
select the copy without the error (if there is one, which is highly
likely), and therefore, the error correction time is expected to be
very short. Figure 12 gives, for the benchmarks in our experimental
suite, the average time to correct the detected errors (note that the
actual time to correct an error depends on the distance between the
source and destination). The results with our approach assume that
the packets are augmented with parity. We see that, as expected,
the error corrections times with our approach are lower than the
corresponding times with the PEC scheme.

As stated earlier, we assume that thread-to-core mapping has al-
ready been performed before our approach is applied. While the
choice of the thread/data mapping scheme used is orthogonal to
the focus of our approach, we may achieve power/performance val-
ues of different magnitudes, depending on the thread/data mapping
used. In our default mapping scheme, we used an affinity-based ap-
proach, wherein the parallel threads are assigned to cores based on
the data sharing between them. To do this, the compiler estimates
the data sharing between each pair of threads, and the pairs that have
high affinity (i.e., share a lot of data between them) are assigned to
neighboring nodes of the CMP. This helps reduce the cost of inter-
processor communication. Also, each data element is assigned to
the on-chip memory of the node that uses that element most. The
infrequently-used data elements are assigned to the off-chip mem-
ory. We changed our thread mapping scheme and performed a sen-
sitivity analysis. The main difference between our new mapping and
our default mapping is that the new one maps the parallel threads to
CMP nodes randomly. However, the parallelization step used along
with both the schemes is still the same. This allows us to see how
our savings change when we do not exploit the affinity among paral-
lel threads. We found that the percentage increases in execution cy-
cles and energy consumption with this alternate thread mapping were
very similar to those obtained with the default mapping used so far.
Also, while both the percentage of lost packets and the percentage
of undetected transient errors increased a little (less than 2.2%) with
this alternate mapping (as a result of the increased number of links
that have to be traversed by a packet), our approach still generated
better reliability results than PEC.

Our next set of experiments study the sensitivity of our approach
to network size. Recall that the default network size we have is 5×5.
We also performed experiments with a larger network (4 × 8), and
the results are presented in Figure 13 (for permanent link failures)

and Figure 14 (for transient errors). Our approach is more successful
with permanent failures with larger networks. This is because a given
broken link has less chance of affecting the packets traveling across
the network. However, we also observe a reverse trend when we
look at the transient errors. More specifically, as the network size is
increased, the percentage of undetected errors go up slightly. While
not presented here in detail, we also performed experiments with
different types of cores (e.g., single issue versus four issue). The
results observed were not very different compared to our default core
configuration which is two issue. Similarly, when we reduce/increase
our default switch buffer capacity (default was 64 flits), the results
did not change too much (within 2%).

We now summarize the results of our experiments with perfor-
mance centric and energy centric formulations discussed in Sec-
tions 5.2 and 5.3, respectively. The increase in execution cycles, in-
crease in energy consumption and percentage of lost packets (when 5
links fail) are presented in Figure 15 for the reliability centric, perfor-
mance centric and energy centric formulations. Each bar represents
the average values across all applications we tested and is obtained
when C1, C2, and C3 (when used) are set to 1. One can see from
these results the tradeoffs between performance, power and reliabil-
ity. Depending on the constraints at hand, these three different for-
mulations can be explored to reach an acceptable solution. We also
want to emphasize that, as mentioned earlier, for each formulation
we have also flexibility of changing the values of C1, C2, and C3.

As stated earlier, we also implemented and performed experi-
ments with two hardware based fault tolerant routing schemes: HFT-
1 and HFT-2. Figure 16 presents the increase in execution cycles,
increase in energy consumption, and fraction of lost packets (again,
under the assumption of 5 link failures). In our HFT-1 implementa-
tion, we reserved 8 links (that cover an area from the upper left cor-
ner to the lower right corner) to be used when any other links fails.
The failed links are selected randomly from among the remaining
links. Each bar represents the average value when all our applica-
tions are considered. The main observation from these results is that
our approach generates better results than these two hardware based
schemes for all these three metrics. The reason that HFT-1 has high
performance overhead is that, under this scheme, part of the network
is not available for use as long as there are no failures. While this
may not hurt performance much in large chip-to-chip networks, in
relatively small NoCs such as ours it may be a big performance bot-
tleneck. The reason that HFT-2 has high performance overhead is
because of two factors. First, sending updates of routing tables to
neighboring nodes floods the network with messages (this is in fact
a general problem with many adaptive routing algorithms). Second,
from time to time, the Dijkstra’s shortest path algorithm is executed
by the switches (in our implementation by the cores) to ensure that
the routing tables are up-to-date. These two factors also contribute
to the high power consumption. HFT-1 cannot completely eliminate
lost packets if one (or more) of the failed links is directly connected
to the reserved path and this link is the only connection between a
node and the reserved path. Similarly, in the HFT-2 case, since it is
not possible to keep all routing tables up-to-date all the time, it is
not possible to eliminate all the lost packets. It is reasonable to ex-
pect that both HFT-1 and HFT-2 are much more costly to implement
– as far as circuit complexities and area demands are considered –
than our approach, so, we believe our approach is preferable over the
hardware based fault tolerant schemes from the circuit angle as well.

Our approach is a static one meaning that the UMAG is deter-
mined at compile time using static analysis. However, in some cases,
we may not have the complete information – at compile time – to
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build the UMAG and identify the phases. In such cases, our ap-
proach can be used with profile information. More specifically, the
application code can be profiled to collect inter-core communication
information and this profile data can be used to build the UMAG.
Note that, in this case, with a different input, the actual communi-
cations can be different from those captured by the UMAG; how-
ever, this does not create any correctness issue. In the worst case,
we incur extra execution cycles and extra power consumption but the
program semantics do not change. To check the feasibility of this ap-
proach, we first considered two applications from the MediaBench
suite [24], mpeg and g.721, whose UMAGs cannot be completely
and accurately captured using static compiler analysis alone. We pro-
filed them, built their UMAGs, and applied our reliability enhance-
ment scheme. Then, we executed the applications with different input
sets to measure input sensitivity. We found that the average perfor-
mance degradation with both the applications varied between 2.4%
and 4.1% depending on the input, and the average increase in energy
consumption ranged from 16.6% to 21.3%, again depending on the
input used. We also observed that, as compared to the PEC scheme,
our approach generated much better reliability results.

We also performed experiments with specjbb [36] which is a
server application that can really put pressure on the NoC. We ran
this benchmark with 12 warehouses, with one client per warehouse,
and the UMAG of this application was extracted again using profil-
ing. Due to lack of space, we do not provide the details of how the
application code is modified to enable message routings. The experi-
ments with our scheme showed that the increases in execution cycles
and energy consumption were around 9.6% and 23.4%, respectively.
Clearly, these values are higher than the average values observed with
the SPEC benchmarks (and the main reason for this in the high link
sharing across different messages). However, when we move to our
performance centric formulation, the increases in cycles and energy
moved to 3.8% and 26.1%, with only a small (2.1%) increase in the
fraction of lost packets. Therefore, we believe that, depending on the
target optimization metric, our approach can be used for improving
reliability for this application as well, under performance and en-
ergy bounds. Further, C1 and C2 parameters can be tuned to reach
the desired tradeoff points. Overall, the results with g.721, mpeg and
specjbb show that our approach can be augmented with profile data
to make it applicable to the cases where the compiler cannot com-
pletely extract the UMAG from the source code.

7. Conclusion
The main contribution of this paper is a compiler directed NoC reli-
ability enhancement mechanism based on packet duplication. In this
approach, the underlying NoC architecture of the CMP is exposed to
the compiler, which in turn determines the routes for both original
and duplicate messages such that the potential impacts of both tran-
sient and permanent link errors could be mitigated. Our approach
also tries to satisfy performance and power constraints by, respec-
tively, minimizing the set of common links between an original mes-
sage and its duplicate and maximizing the link reuse between neigh-
boring program phases. We fully implemented our approach within
an optimizing compiler, and the collected results indicate that it is
much more effective than an alternate approach to NoC reliability
and performs better than two pure hardware based fault tolerance
schemes.
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