
IEEE TRANSACTIONS ON EDUCATION, VOL. 54, NO. 2, MAY 2011 203

Multicore Education Through Simulation
Ozcan Ozturk, Member, IEEE

Abstract—A project-oriented course for advanced undergrad-
uate and graduate students is described for simulating multiple
processor cores. Simics, a free simulator for academia, was utilized
to enable students to explore computer architecture, operating
systems, and hardware/software cosimulation. Motivation for
including this course in the curriculum is provided along with a
detailed syllabus and an assessment demonstrating its successful
impact on the students.

Index Terms—Architecture, chip, experiential learning,
multicore, Simics, simulation.

I. INTRODUCTION

A S COMMONLY accepted, due to power limitations
present in processor design, the current performance

trajectory of doubling chip performance every 24 to 36 months
can only be achieved by integrating multiple processors on a
chip rather than through increasing the clock rate of single pro-
cessors. Multicore architectures have already made their way
into the industry [1]–[6], with more aggressive configurations
being prototyped, such as Intel’s 80-core TeraFlop [7]. Since
future technologies offer the promise of being able to integrate
billions of transistors on a chip, the prospect of having hundreds
of processors on a single chip along with an underlying memory
hierarchy and an interconnection system is entirely feasible.

One of the most important benefits of multicore architec-
ture over a traditional single-processor design is the power
consumption reduction achieved via reduced clock frequency.
Other benefits of multicore architectures include: 1) scalability
provided through many dimensions of parallelism, such as
thread-level, loop-level, and instruction-level; 2) simpler veri-
fication, which in turn reduces the time-to-market and lowers
chip costs; 3) better use of the available silicon area since the
cores share common logic; and 4) faster and cheaper on-chip
communication.

Despite the many advantages of multicore architectures over
uniprocessor architectures, one of the key questions raised by
many researchers concerns their effectiveness [8], [9]. One as-
pect of this problem is due to the infancy of the software solu-
tions targeting such architectures. Current programs, compilers,
and software architecture techniques in general rely on the fact
that there is only one core running in the background [10], and
hence it becomes very difficult to effectively use the underlying
processing power. There are some initial attempts to target this
problem, yet these techniques are relatively new [10].

Manuscript received August 28, 2009; revised September 14, 2010; accepted
December 07, 2010. Date of publication January 13, 2011; date of current ver-
sion May 04, 2011. This work was supported in part by EC FP7-PEOPLE Marie-
Curie IRG under Grant 239446.

The author is with the Computer Engineering Department, Bilkent University,
Ankara 06800, Turkey (e-mail: ozturk@cs.bilkent.edu.tr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TE.2010.2102027

Clearly, teaching multicore architectures to today’s computer
engineers is a desirable goal in every curriculum. In general,
computer engineering curricula aim to provide a balanced
education in the design and analysis of computer software
and computer hardware. According to the IEEE Computer
Society and ACM Joint Task Force on Computer Engineering
Curricula [11]: “Computer engineers are solidly grounded in
the theories and principles of computing, mathematics and
engineering, and apply these theoretical principles to design
hardware, software, networks, and computerized equipment
and instruments to solve technical problems in diverse ap-
plication domains.” In practice, however, this is not always
the case. Hence, many computer engineering schools concen-
trating on software topics lack hardware knowledge, and vice
versa [12]–[14].

On the other hand, current language extensions or class li-
braries are not sufficient to use the available processing power.
Software designers need to understand the nature of multicore
architectures and learn how to enforce code sequencing on mul-
tiple cores. Therefore, it is critical to include multicore educa-
tion in both undergraduate and graduate computer engineering
curricula.

In order to equip students with a better understanding of
multicore architecture and its programming, a chip multi-
processors course can be offered with parallel programming
concepts on these architectures. This pairing will enable stu-
dents to learn about state-of-the-art multicore architectures
while giving them the opportunity to write parallel programs
on these architectures.

Of the multicore-related courses that exist, many [15], [16]
use actual hardware to provide a hands-on experience, but this
may not always be desirable or possible. First, target architec-
tures may not be available to students due to financial reasons.
This is especially true if multiple architectures are being used.
Second, maintaining and setting up various architectures may
not be feasible. Third, the time required to learn each architec-
ture may not fit within the scope of a course. Hence, it may be
preferable to use a software simulator [17] to enable multicore
education.

Using a Simics-like simulator in teaching such a course has a
number of benefits. First, it is especially valuable for universi-
ties with limited financial resources. Second, students are able
to run a script to switch from one architecture to another without
locating or configuring hardware. Third, debugging and testing
is easier in the simulation environment. Fourth, simulators pro-
vide system state saving, fault injection, and forward or reverse
execution, features that are not available in a hardware environ-
ment. Clearly, a simulator is not as accurate or fast as hardware
and does not provide the hands-on experience, but it provides
a feasible platform for multicore education purposes. It is es-
pecially valuable when learning different architectures with dif-
ferent properties in a limited time frame. It also enables tackling

0018-9359/$26.00 © 2011 IEEE

204 IEEE TRANSACTIONS ON EDUCATION, VOL. 54, NO. 2, MAY 2011

the same problem in different architectures, thereby providing
“experiential learning.”

This paper demonstrates how the Simics platform can be
used in teaching different multicore architecture concepts.
Specifically, the Simics toolkit was used in the Chip Multi-
processors course at Bilkent University in Ankara, Turkey, to
help graduate and senior undergraduate students understand
the hardware/software issues related to chip multiprocessors.
This particular course enables student participation through
the implementation of a semester-long project and continuous
discussions.

The remainder of this paper is structured as follows.
Section II describes related work. Section III gives details
about the Simics platform and how it is used in teaching
the above-mentioned chip multiprocessors course. A course
overview, including student backgrounds, objectives, teaching
methodology, and course plan, is given in Section IV. Section V
gives the details of various projects implemented by the stu-
dents. The course assessment is given in Section VI, while
future work and conclusions are presented in Section VII.

II. RELATED WORK

While it is critical to equip students with sufficient multi-
core architecture knowledge, the important question is how
this should be done. To tackle this problem, many computer
engineering education conferences and workshops [18]–[21]
have recently addressed the importance of multicore education.
For example, during the 40th ACM Technical Symposium on
Computer Science Education [20], Intel organized a session
named “Merging onto the Parallel Programming Highways,”
where teaching parallel programming in multicore architec-
tures was the main theme of the session. As a result of such
efforts, there have been initial attempts to develop an overall
computer engineering curriculum incorporating multicore
education [22], [23].

As stated earlier, multicore courses [15], [16] are conducted
in various universities. However, there are no published papers
specifically addressing a multicore course. To the best of the
author’s knowledge, this paper is the first to present a complete
multicore course description and teaching strategy, with detailed
discussion on student background, curriculum, and assessment.

III. SIMICS PLATFORM

Simics [17] is a full-system simulator designed by Virtutech
to strike a balance between accuracy and speed in simulation.
Specifically, Simics simulates systems containing binary com-
piled code on several different industry standard architectures
(ISAs). Simics can be considered a virtual hardware system that
runs the same binary software as the physical target system, in-
cluding firmware, drivers, the operating system, and the soft-
ware. It is able to simulate contemporary microprocessors such
as PowerPC, x86, ARM, and MIPS.

A. System Simulation

There are both advantages and disadvantages to using simu-
lators. First, with only slight modifications to the configuration
file, it is very easy to modify the target architecture. Similarly,
it is very convenient to switch to a different architecture. Set-
ting up a particular target system is a matter of running a script,

Fig. 1. Simics architecture [17].

without any need to locate or configure hardware boards. Also,
debugging and testing is simplified through various debug op-
tions and tracing, which are normally not available in physical
hardware. Moreover, Simics enables saving system states, in-
jecting faults, forward and reverse execution, replay, and many
other features. Being able to test different architectures with
minor modifications is one of the key benefits of Simics for this
course.

As with any fast simulator, Simics lacks accuracy and timing.
A basic Simics setup does not include a cache system since mod-
eling a hardware cache model would slow down the simulation.
Instead, it uses the memory system to obtain high-speed simu-
lation. Another limitation in Simics is that it assumes all trans-
actions are executed coherently. That is, memory is always up
to date with the latest CPU. Moreover, it assumes device trans-
actions and memory accesses are atomic. On the other hand, in
a real processor, transactions have already gone through the L1
and L2 caches before coming to the processor, which may in-
volve cache misses.

However, these are not major concerns for the purposes of
this class, as the main objective is to enable students to explore
and experience multicore architectures, rather than to perform
cycle-accurate simulations. Within this context, Simics has been
used to model and evaluate different designs.

B. Simics Architecture

Simics is based on run-time loadable modules that are
typically either an extension such as a multilevel cache hier-
archy [24] or a device such as an application specified integrated
circuit (ASIC) or a field programmable gate array (FPGA).
Fig. 1 shows the general Simics architecture [17], where the
core Simics platform is composed of the target machine and
other components, such as configuration, event handling,
memory, and an interpreter. When a configuration file is
loaded, the necessary modules are automatically loaded by
Simics, whereas the Simics API is responsible for facilitating
the external interface. Using Simics, a user can run arbitrary
configurations with multiple processors, address spaces, device
models, networking models, and clusters.

As shown in Fig. 2, Simics provides a range of accuracy/
speed options. Specifically, the simulation platform provides
functional accuracy and sufficient abstraction while achieving
tolerable performance levels. It is fast enough to run realistic

OZTURK: MULTICORE EDUCATION THROUGH SIMULATION 205

Fig. 2. Correlation between simulation accuracy and speed.

benchmarks on a wide set of unmodified operating systems, in-
cluding Solaris, Linux, and Windows XP. Moreover, systems
ranging from a basic embedded system to a complex multipro-
cessor environment can be modeled in Simics.

Various statistics can be collected about the system perfor-
mance, ranging from total execution time, to core utilization, to
cache statistics. For example, it is possible to profile the cache
accesses by using the timing-model interface of Simics.

Simics provides modeled machines that can be modified
to test different multicore characteristics. Publicly available
Simics targets include AlphaPC (Alpha 21164, also known as
EV5), ARM SA1110 (Intel StrongARMv5), Ebony (PPC440GP
32-bits processor), Fiesta (Sun Blade 1500), IA-64 460GX
(Itanium2 processors), Malta/MIPS4kc (32 bit MIPS-4Kc
processor), PM/PPC (32-bit PowerPC 750 processor), Simple
PPC64 (64-bit PowerPC 970FX processor), Serengeti (Sun
Fire 3800-6800 server), SunFire (Sun Enterprise 3000-6500
server), and x86 440BX (x86 compatible processors). Each of
these targets comes with an underlying operating system and
standard PC devices, such as graphics devices, north and south
bridges, and floppy and hard disks. A student can pick a certain
target machine and use its preconfigured machine description
provided in the target’s subdirectory of the Simics tool set.

For example, to run the Tango system (a preconfigured x86
processor with a Linux OS), the following command must be ex-
ecuted: ./simics targets/tango/tango-common.simics. In this ex-
ample, “tango-common.simics” is a configuration file that de-
scribes the machine properties. In Tango, a Fedora Core 5 is
installed, and the base configuration has a single 20-MHz Pen-
tium 4 processor, 256-MB memory, one 19-GB IDE disk, and
one IDE CD-ROM.

When the target machine boots up, the corresponding OS will
be executed. To access the files in the target machine, the user
can employ SimicsFS utility, a Linux kernel file system module
that talks to the simulated device. Moreover, it is possible to
trace what is going on with the memory accesses, I/O accesses,
control register writes, and exceptions during the simulation.
Additionally, Simics enables Checkpoints, where the complete
state of a simulation can be saved.

As stated, each of the targets comes with an underlying op-
erating system. Therefore, Simics can run the entire software
stack, thereby eliminating the need for stubbing or recompiling
the target software. More specifically, Simics runs the exact
same binaries that run on the physical hardware.

Simics’s configuration system represents a simulated ma-
chine as a set of objects. Each object (processors, memories,
and devices) is defined by a number of attributes. A processor
object, as in Fig. 2, will have an attribute, called freq_rm mhz,
to define its clock frequency. The following example shows a
x86-440bx target configuration description:

"

"

Students can easily modify different parts of the system and
test various effects.

C. Simics in Education

Computer architecture-related courses can benefit from such
a platform since it is flexible enough to support a wide range of
microprocessor types, instruction sets, operating systems, and
memory hierarchies. In addition to these attributes, Simics is
offered through the Academic Licensing Program [25] to uni-
versities at no cost. Simics can be used in many different types
of courses, from low-level computer architecture to parallel pro-
gramming on different systems. At the computer architecture
level, Simics can be used to teach the effects of system parame-
ters on performance and energy. System properties can easily be
modified through a configuration file, thereby opening up possi-
bilities to experiment with machines of different configurations.
Another important use is to teach students assembly language
programming. Programs can be executed instruction by instruc-
tion, providing the contents of registers and memory changes.

It is also possible to simulate a multicore environment using
Simics, even if the host is a single processor. This method pro-
vides greater flexibility in testing arbitrary configurations, in-
cluding multiple processors, multiple nodes, and multiple de-
vice configurations. A sample configuration for two processors
and a shared memory is given in Fig. 3. In this configuration,
there are two x86 processors, namely cpu0 and cpu1, both run-
ning at 3500 MHz and sharing the memory space designated
as mem0. In addition to these two processors (defined as the
first two objects), there is also a memory object that includes
a map of the address space for different devices in the system.
This specification can be modified to generate various systems
ranging from single-processor architectures to heterogeneous
chip multiprocessors with different memory hierarchies.

IV. COURSE OVERVIEW

The Chip Multiprocessors course at Bilkent University was
first offered in Spring 2008, with an initial enrollment of eight
students who were graduate and senior undergraduate students
and all computer engineering majors. This course was the first
advanced computer architecture course to be offered in the
Computer Engineering Department. As such, initial enrollment
was not high. However, the number of students doubled in

206 IEEE TRANSACTIONS ON EDUCATION, VOL. 54, NO. 2, MAY 2011

Fig. 3. Sample configuration for two processors with a shared memory.

Spring 2009, making the course among the most popular
graduate courses in the department.

A. Objectives

The course is designed to provide a deep understanding of
multicore architectures. Although the computer engineering
curriculum is designed to provide a balanced education in
both software and hardware, in practice, many students have a
significant lack of hardware knowledge. This course aims to fill
this gap for average students while providing deeper knowledge
to the more interested ones.

Instead of students passively listening to an instructor’s lec-
ture, Chip Multiprocessors aims to achieve continuous in-class
discussions on Simics-based multicore projects, thereby pro-
viding students with an experiential learning environment. Stu-
dents are able to react to lecture material from their personal
experiences and apply the course material to real-life situations
and/or to new problems. In addition, cooperative learning is
achieved through project groups, where structured groups of
students are assigned certain research projects.

B. Student Background

Students in the class had no previous exposure to advanced
computer architecture topics, except for what had been covered
in a sophomore computer organization class. However, students
were expected to know general processor design and the basic
concepts of pipelining and caches. Computer engineering stu-
dents had already been exposed to such experience through a
Verilog-based processor design project required in the CS224
Computer Organization course. Students also needed to be pro-
ficient in programming in C/C++, which is necessary for Simics
modifications. Since this course is offered to senior undergrad-
uate and graduate students, it is assumed that students have the
required background.

C. Course Organization

Experiential learning is a term used to describe the sort of
learning undertaken by students who are able to acquire and
apply knowledge, skills, and feelings in an immediate and rele-
vant setting [26]. This course aimed to provide such an environ-
ment through simulation.

To achieve this goal, the first part of the course covers multi-
core evolution, starting from Moore’s law, with examples from

TABLE I
CHIP MULTIPROCESSORS COURSE SYLLABUS

state-of-the-art multicore architectures. Next, issues such as
communication, memory hierarchy, cache coherency, data dis-
tribution, task assignment, and operating system involvement
are covered. The third part of the course deals with program-
ming on such architectures, using OpenMP and MPI. In the
fourth part, advanced topics such as heterogeneous multicore
architectures, cache design, network-on-chip architectures, and
the like are discussed. The last part is solely dedicated to project
development and demonstration.

The overall organization of the course for a 15-week semester
is shown in Table I. There are three lecture sessions per week
where technical discussions and project meetings are held. Note
that project discussions start right after the second week to pro-
vide sufficient time for students to work on their projects. Simics
is introduced in the third week to allow the students to start using
the simulator.

There is no textbook that covers all the course topics. As
a result, Multiprocessor Systems-on-Chips [27], which covers
the majority of the topics, was adopted as the course textbook.
Students were also referred to other sources of information for
topics, such as OpenMP and MPI.

Student learning and instructional effectiveness are measured
by student assessment. Assessment instruments used in the Chip
Multiprocessors course are exams, homework, and a semester-
long project. Midterm/final exams as well as the homework and
programming assignments are spread throughout the semester.
While all of these instruments comprise the assessment, the
project is the most important parameter as it provides hands-on
experience.

V. SIMICS PROJECTS

Simics projects in the Chip Multiprocessors course can be
classified into two groups. The first of these deals with the ar-
chitectural properties of multicores, whereas the second tries to
optimize/parallelize a certain application onto different multi-
core architectures. Examples of the first type of project include
the following.

• One student team studied the cache protocols on distributed
caches, namely snoop protocols and directory-based proto-
cols. For this project, students used the General Execution-
driven Multiprocessor Simulator (GEMS) [24], a module
built on top of Simics that simulates the memory system in

OZTURK: MULTICORE EDUCATION THROUGH SIMULATION 207

Fig. 4. Sample Simics (gcache) cache configuration file.

greater detail. More specifically, they wrote the aforemen-
tioned cache coherency protocols within the GEMS frame-
work. They experimented with different numbers of CPUs,
ranging from 2 to 64, keeping the interconnection network
bandwidth same. Results collected from Splash2 bench-
marks [28] (PARSEC benchmarks are now available [29])
express the pros and cons of the two protocols.

• Another team performed a tradeoff analysis between
shared versus private caches at levels L1 and L2 on several
benchmarks. A sample benchmark tested is dense ma-
trix-matrix multiplication, where a naive algorithm has an

complexity. This application is parallelized using
OpenMP and tested with different variables such as the
cache hierarchy, line size, associativity, cache replacement
policy, and number of cache lines. A sample of this cache
configuration (gcache) file is shown in Fig. 4.

Examples of the second type of project, which tried to par-
allelize real-life applications on multicore architectures using
Simics, include the following.

• One group of students parallelized Sparse Matrix Vector
Multiplication using OpenMP. After the parallelization
step, programs were executed on different multicore con-
figurations to measure the scaling of these algorithms
with OpenMP. They analyzed different data partitioning
heuristics on different architectures, as shown in Fig. 5. In
this figure, a sparse matrix populated primarily with zeros
is shown, where empty boxes indicate zero entries and
nonzero entries are indicated with an “X.”

• One student team used Simics to compare a hybrid
OpenMP-MPI approach with pure-MPI and pure-OpenMP

Fig. 5. Data partitioning for matrix multiplication.

scenarios. For the specific application in question, students
found out that the hybrid OpenMP-MPI performs better
than the pure-MPI and pure-OpenMP schemes.

• Other examples of application parallelization projects in-
cluded parallelization of a 3-D Voronoi Diagram Gener-
ation Algorithm and an optimization for a facesim—face
recognition—algorithm.

A. Sample Project

Most of the student projects tried to modify the architectural
properties of a given multicore architecture and measure the
effects of various parameters. In this context, a team of stu-
dents considered die-area optimization in multicore architec-
tures. Specifically, they performed a tradeoff analysis between
the cache size and the number of cores. They designed different
multicore architectures using Simics, where the number of cores
ranged from 1 to 32. For example, they used a 65-nm 145-mm
Intel Core 2 Duo as a reference design, where the size of a core
is equal to the size of 3-MB L2 cache.

A Pentium 4 architecture with 200-MHz clock is selected
for each of the multicore platforms tested. The Simics g-cache
mechanism is used to handle the cache configuration of these
multicore architectures. While a unified L2 cache is shared by all
the processors, each core has a private L1 instruction cache and
a private L1 data cache. The L1 instruction cache and L1 data
cache are both 16 kB, whereas the L2 cache size configuration
varies depending on the number of cores. Assuming the total
die area is equal to 13 MB worth of cache area, students tested
three different cases: 1) one core with 10-MB L2 cache; 2) two
cores with 7-MB L2 cache; and 3) four cores with 1-MB L2
cache. The Simics configuration script for the two-core case is
shown in Fig. 4. As can be seen from this example, the number
of cores can be modified by the parameter.
In this example, is the shared L2 cache, where sharing is
indicated by . On the
other hand, , , , and are private L1 instruction
and data caches for cores 0 and 1. For each cache in the system,
the user can specify the size of the cache, number of cache lines,
associativity, and many other characteristics of the cache con-
figuration. Note that some of the important parts of the con-
figuration file, such as the snooping configuration, transaction
splitter, timing model, and so on, have been omitted due to space
limitations.

Die-area tradeoff analysis was also performed for the
high-end cluster processors with a higher number of cores.
To test different processor designs, students parallelized the

208 IEEE TRANSACTIONS ON EDUCATION, VOL. 54, NO. 2, MAY 2011

Fig. 6. Experimental results collected in the tested system.

MiBench benchmarks using OpenMP and collected results.
Specific benchmarks used in this framework were Image
Blending, Gaussian Filter, Digit Recognition, Corner Detec-
tion, Merge Sort, Matrix Multiplication, the Dijkstra SSSP
(single source shortest path) algorithm, and AES Encryption.
Benchmarks were mostly chosen from application domains
that can benefit from parallel processing.

Students observed that input sizes and dataset properties
significantly affect the run-time performance. To see this effect,
they tuned the input data sizes with various cache sizes. While
data-bound applications favor an increase in the cache size,
simple applications with few data accesses favor an increased
number of cores. As can be seen in Fig. 6, 32 core architectures
suffer due to the small cache size in Dijkstra SSSP or Merge
Sort, whereas applications such as Blending and Gaussian
Filter improve with a higher number of cores.

Another student observation was the speed of the simulation
in Simics. When the configuration of the target system gets com-
plicated, simulation time is drastically affected, although it is
still manageable with high-end systems.

VI. COURSE ASSESSMENT

Course assessment is performed using both student feedback
and industry feedback. Student feedback was collected in the
2008 and 2009 Spring semesters, while industry feedback was
only available for the 2008 graduates since it is collected toward
the end of the year following the course.

A. Student Feedback

Students provided anonymous feedback through the standard
Bilkent University course evaluation surveys given at the end
of every semester. Table II shows the average responses to
six questions about the course in the university surveys for
Spring 2008 and Spring 2009. In this table, 1 indicates “strongly
disagree,” whereas 5 indicates “strongly agree.” The responses
to questions 1–3 indicate that students found the course inter-
esting and valuable. Moreover, the results for questions 4–6
indicate that students valued the course’s contribution to their
career and feel that they have gained competency in the area.

Students’ written responses reflected their reactions to the
following statements: “Provided real world context with the

TABLE II
ANONYMOUS STUDENT FEEDBACK COLLECTED IN THE COURSE EVALUATION

SURVEYS. � � ������	
 ������� AND � � ������	
 ����

emerging multicore architectures”; “Helped me to understand
how multicores work”; “I discovered a new career path.”

When the Spring 2008 and Spring 2009 responses are com-
pared, it can be seen that almost all the averages dropped, mainly
due to the difference in the class compositions in 2008 and
2009. While most of the students in Spring 2008 were grad-
uate students focused in the subject area, students enrolled in
Spring 2009 were a mix of undergraduate students and graduate
students.

In addition to the anonymous course evaluation surveys, the
course was discussed with students in an informal environment
after the semester had finished. This discussion showed that stu-
dents are very keen to learn more about multicore architectures,
programming, and application development on such architec-
tures. The majority of them suggested that it would be a good
idea to introduce this topic earlier and integrate it as a part of
the computer engineering undergraduate curriculum.

B. Industry Feedback

The Bilkent University Computer Engineering Department
meets with its External Advisory Board (EAB) toward the end
of every year. The EAB is composed of the department faculty
members and industry executive partners from Turkey’s leading
companies in the field. These companies include both local and
global leaders—among them, for example, Microsoft.

Most graduates begin their employment (if local) in one of
these companies. After one year of employment, the former
students’ performances are evaluated in the discussions at this
meeting. This valuable feedback promotes university–industry
alignment by keeping the curriculum current with global in-
dustry needs.

In the Spring 2009 EAB meeting, industry partners provided
feedback on the students who graduated in Spring 2008, which
included students who took the Chip Multiprocessors course.
Table III shows the responses to the relevant questions from the
survey, where and .
While the second column in Table III shows the overall average
for all graduates, the third column shows the average for those
who took the Chip Multiprocessors course.

When the averages in the second and third columns in
Table III are considered, students who took the course per-
formed better than the rest of the graduates. Although multicore
education cannot be claimed as the only reason for these higher
scores, it definitely contributed, especially when questions 1
and 2 in Table III are considered.

OZTURK: MULTICORE EDUCATION THROUGH SIMULATION 209

TABLE III
INDUSTRY FEEDBACK COLLECTED IN THE EAB MEETING

VII. FUTURE WORK AND CONCLUSION

In future work, it is planned to evaluate the course contin-
uously through student and industry feedback. Simultaneously,
an appropriate undergraduate-only version of this course will be
developed as a third/fourth-year course. This will be valuable
for computer engineering graduates in the multicore computing
era.

This paper presents multicore education using a simulator. In-
stead of universities buying a big and expensive server for stu-
dents to try and run parallel programs with real workloads, a
full-system simulation platform can be used. Simics was used
to implement different multicore architectures and for writing
parallel programs on these architectures. This simulation frame-
work provides great advantages for teaching and learning mul-
ticore architectures and parallel programming when the hard-
ware is not available. From student feedback, industry feed-
back, and final project results, this simulation-based approach
was successful.

REFERENCES

[1] Intel, “Intel Xeon processor 5600 series (quad-core),” Santa Clara,
CA, 2010 [Online]. Available: http://www.intel.com/Assets/PDF/
prodbrief/323501.pdf

[2] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy, “Introduction to the cell multiprocessor,” IBM J. Res. Dev.,
vol. 49, no. 4–5, pp. 589–604, 2005.

[3] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way mul-
tithreaded SPARC processor,” IEEE Micro, vol. 25, no. 2, p. 21, Mar./
Apr. 2005.

[4] R. McGowen, “Adaptive designs for power and thermal optimization,”
in Proc. 2005 IEEE/ACM Int. Conf. Comput.-Aided Design, San Jose,
CA, 2005, pp. 118–121.

[5] D. Pham, H. Anderson, E. Behnen, M. Bolliger, S. Gupta, P. Hofstee,
P. Harvey, C. Johns, J. Kahle, A. Kameyama, J. Keaty, B. Le, S. Lee,
T. Nguyen, J. Petrovick, M. Pham, J. Pille, S. Posluszny, M. Riley, J.
Verock, J. Warnock, S. Weitzel, and D. Wendel, “The design and im-
plementation of a first-generation cell processor,” in Proc. Solid-State
Circuits Conf., 2005, vol. 1, pp. 184–592.

[6] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M.
Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and
A. Agarwal, “The RAW microprocessor: A computational fabric for
software circuits and general purpose programs,” IEEE Micro, vol. 22,
no. 2, pp. 25–35, 2002.

[7] Intel, “Intel’s Teraflops research chip,” Santa Clara, CA, Last ac-
cessed Dec. 9, 2010 [Online]. Available: http://download.intel.com/
pressroom/kits/Teraflops/Teraflops_Research_Chip_Overview.pdf

[8] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Hetero-
geneous chip multiprocessors,” Computer, vol. 38, no. 11, pp. 32–38,
Nov. 2005.

[9] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas, “Single-ISA heterogeneous multicore architectures for multi-
threaded workload performance,” in Proc. 31st Annu. ISCA, 2004.

[10] L. Sarno, W. W. Hwu, C. Lund, M. Levy, J. R. Larus, J. Reinders, G.
Cameron, C. Lennard, and T. Yoshimori, “Corezilla: Build and tame
the multicore beast,” in Proc. Design Autom. Conf., Jun. 4–8, 2007, pp.
632–633.

[11] IEEE Computer Society and ACM Joint Task Force on Computer En-
gineering Curricula, “Curriculum guidelines for undergraduate degree
programs in computer engineering,” 2004 [Online]. Available: http://
www.acm.org/education/curricula-recommendations

[12] J. N. Amaral, P. Berube, and P. Mehta, “Teaching digital design to
computing science students in a single academic term,” IEEE Trans.
Educ., vol. 48, no. 1, pp. 127–132, Feb. 2005.

[13] N. L. V. Calazans and F. G. Moraes, “Integrating the teaching of
computer organization and architecture with digital hardware design
early in undergraduate courses,” IEEE Trans. Educ., vol. 44, no. 2, pp.
109–119, May 2001.

[14] G. Puvvada and M. A. Breuer, “Teaching computer hardware design
using commercial CAD tools,” IEEE Trans. Educ., vol. 36, no. 1, pp.
158–163, Feb. 1993.

[15] J. Cavazos, “CISC 879—Machine learning for solving systems prob-
lems,” Last accessed Dec. 9, 2010 [Online]. Available: http://www.cis.
udel.edu/~cavazos/cisc879/

[16] A. Lanterma, “Multicore and GPU programming for video games,”
Last accessed Sep. 4, 2010 [Online]. Available: http://users.ece.gatech.
edu/lanterma/mpg08/related_classes.html

[17] Wind River, “Virtutech Simics,” Alameda, CA, Last accessed Dec. 9,
2010 [Online]. Available: http://www.virtutech.com/

[18] “International Computing Education Research Workshop (ICER
2009),” Berkeley, CA, Aug. 2009.

[19] “International Congress on Engineering and Computer Education
(ICECE 2009),” Buenos Aires, Argentina, Mar. 2009.

[20] “The 40th ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE 2009),” Chattanooga, TN, Mar. 2009.

[21] “The 14th Annual Conference on Innovation and Technology in Com-
puter Science Education (ITiCSE 2009),” Paris, France, Jul. 2009.

[22] W. Hu, T. Chen, and Q. Shi, “Exploring multicore computing education
in China by model curriculum construction,” in Proc. 1st ACM SCE,
Beijing, China, 2008, Article no. 1.

[23] B. Mike, “How the multicore module will integrate into the existing CS
programme at Trinity College Dublin,” in Proc. Intel MCCC, 2006.

[24] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A.
R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Comput. Archit. News, vol. 33, no. 4, pp. 92–99, Nov. 2005.

[25] Wind River, “Wind River University Program,” Alameda, CA, Last ac-
cessed Dec. 9, 2010 [Online]. Available: http://www.windriver.com/
universities

[26] D. A. Kolb and R. Fry, “Toward an applied theory of experiential
learning,” in Theories of Group Process, C. Cooper, Ed. London,
U.K.: Wiley.

[27] W. Wolf and A. Jerraya, Multiprocessor Systems-On-Chips (Systems
on Silicon). San Mateo, CA: Morgan Kaufmann, 2004.

[28] W. Heirman, “SPLASH-2 for Solaris on SPARC on Simics,” Last ac-
cessed Dec. 9, 2010 [Online]. Available: http://trappist.elis.ugent.be/
~wheirman/simics/splash2/

[29] Princeton University, “The PARSEC benchmark suite,” Princeton,
NJ, Last accessed Dec. 9, 2010 [Online]. Available: http://parsec.cs.
princeton.edu/

Ozcan Ozturk (M’07) was born in Istanbul, Turkey, in 1978. He received the
Bachelor’s degree from Bogazici University, Istanbul, Turkey, in 2000, the
M.Sc. degree from the University of Florida, Gainesville, in 2002, and the
Ph.D. degree from Pennsylvania State University, University Park, in 2007, all
in computer engineering.

He is currently an Assistant Professor with the Department of Computer En-
gineering, Bilkent University, Ankara, Turkey. Prior to joining Bilkent Univer-
sity, he was a Software Optimization Engineer with the Cellular and Handheld
Group, Intel (Marvell), Chandler, AZ. He also held Visiting Researcher posi-
tions with the ALCHEMY Group of INRIA, Paris, France, and with the Pro-
cessor Architecture Laboratory (LAP), Swiss Federal Institute of Technology
of Lausanne (EPFL), Lausanne, Switzerland. His research interests are in the
areas of multicore and manycore architectures, power-aware architectures, and
compiler optimizations.

Dr. Ozturk is a Member of the Association for Computing Machinery
(ACM), the Gigascale Systems Research Center (GSRC), and the European
Network of Excellence on High Performance and Embedded Architecture and
Compilation (HiPEAC). He is currently serving as an Editor and a reviewer
on leading IEEE, ACM, and other journals. He is a recipient of the 2006
International Conference on Parallel and Distributed Systems (ICPADS) Best
Paper Award, a 2009 IBM Faculty Award, and a 2009 Marie Curie Fellowship
from the European Commission.

