Lecture 1
Introduction to Analysis of Algorithms

View in slide-show mode
Grading

- Midterm: 20%
- Final: 20%
- Classwork: 54%
- Attendance: 6%
Classwork (54% of the total grade)

- Like small exams, covering the most recent material
- There will be 7 classwork sessions
- Thursdays: 17:40 – 19:30?
- Open book (clean and unused). No notes. No slides.
- See the syllabus for details.
Algorithm Definition

- **Algorithm**: A sequence of computational steps that transform the input to the desired output.

- **Procedure vs. algorithm**
 - *An algorithm must halt within finite time with the right output*.

- **Example**:

 a sequence of \(n \) numbers \[\xrightarrow{\text{Sorting Algorithm}}\] \(n \) numbers in sorted permutation of input sequence
Many Real World Applications

- **Bioinformatics**
 - Determine/compare DNA sequences
- **Internet**
 - Manage/manipulate/route data
- **Information retrieval**
 - Search and access information in large data
- **Security**
 - Encode & decode personal/financial/confidential data
- **Computer Aided Design**
 - Minimize human effort in chip-design process
Course Objectives

- Learn basic algorithms & data structures
- Gain skills to design new algorithms
- Focus on efficient algorithms
- Design algorithms that
 - are fast
 - use as little memory as possible
 - are correct!
Outline of Lecture 1

- Study two sorting algorithms as examples
 - Insertion sort: *Incremental* algorithm
 - Merge sort: *Divide-and-conquer*

- Introduction to runtime analysis
 - Best vs. worst vs. average case
 - Asymptotic analysis
Sorting Problem

Input: Sequence of numbers

\[\langle a_1, a_2, \ldots, a_n \rangle \]

Output: A permutation

\[\Pi = \langle \Pi(1), \Pi(2), \ldots, \Pi(n) \rangle \]

such that

\[a_{\Pi(1)} \leq a_{\Pi(2)} \leq \ldots \leq a_{\Pi(n)} \]
Insertion Sort
Insertion Sort: Basic Idea

- Assume input array: A[1..n]
- Iterate j from 2 to n

![Diagram of insertion sort process]

- already sorted
- insert into sorted array
- sorted subarray
Pseudo-code notation

- Objective: Express algorithms to humans in a clear and concise way

- Liberal use of English

- Indentation for block structures

- Omission of error handling and other details

\[\rightarrow \text{needed in real programs}\]
Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. \hspace{1em} key $\leftarrow A[j]$;
3. \hspace{1em} $i \leftarrow j - 1$;
4. \hspace{1em} while $i > 0$ and $A[i] >$ key do
5. \hspace{2em} $A[i+1] \leftarrow A[i]$;
6. \hspace{1em} $i \leftarrow i - 1$;
7. \hspace{1em} endwhile
8. \hspace{1em} $A[i+1] \leftarrow key$;
9. endfor
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$ do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
endwhile
7. $A[i+1] \leftarrow key$;
endfor

Loop invariant:

The subarray $A[1..j-1]$ is always sorted.

Iterate over array elts j
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$ do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
7. endwhile
8. $A[i+1] \leftarrow key$;
endfor

Shift right the entries in $A[1..j-1]$ that are $> key$
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. \hspace{1em} key \leftarrow A[j];
3. \hspace{1em} $i \leftarrow j - 1$;
4. \hspace{1em} while $i > 0$ and $A[i] > key$ do
5. \hspace{2em} $A[i+1] \leftarrow A[i]$;
6. \hspace{2em} $i \leftarrow i - 1$;
7. \hspace{1em} endwhile
8. \hspace{1em} $A[i+1] \leftarrow key$;

endfor

Insert key to the correct location

End of iter j: $A[1..j]$ is sorted
Insertion Sort - Example

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=2

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration $j=3$

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > \text{key}$ do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
 endwhile
7. $A[i+1] \leftarrow \text{key}$;
endfor

What are the entries at the end of iteration $j=3$?
Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=4

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor

What are the entries at the end of iteration j=5?
Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=6

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Insertion Sort Algorithm - Notes

- **Items sorted in-place**
 - Elements rearranged within array
 - At most constant number of items stored outside the array at any time (e.g. the variable *key*)
 - Input array *A* contains sorted output sequence when the algorithm ends

- **Incremental approach**
 - Having sorted *A*[1..j-1], place *A*[j] correctly so that *A*[1..j] is sorted
Running Time

- Depends on:
 - Input size (e.g., 6 elements vs 6M elements)
 - Input itself (e.g., partially sorted)

- Usually want upper bound
Kinds of running time analysis

- **Worst Case** *(Usually)*
 \[T(n) = \text{max time on any input of size } n \]

- **Average Case** *(Sometimes)*
 \[T(n) = \text{average time over all inputs of size } n \]
 Assumes statistical distribution of inputs

- **Best Case** *(Rarely)*
 \[T(n) = \text{min time on any input of size } n \]
 BAD*: Cheat with slow algorithm that works fast on some inputs
 GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time
 - Check whether input constitutes an output at the very beginning of the algorithm*
Running Time

- For **Insertion-Sort**, what is its **worst-case** time?
 - Depends on speed of primitive operations
 - **Relative speed** (on same machine)
 - **Absolute speed** (on different machines)

- **Asymptotic analysis**
 - Ignore machine-dependent constants
 - Look at **growth** of $T(n)$ as $n \to \infty$
Θ Notation

- Drop low order terms
- Ignore leading constants

 e.g.

\[2n^2 + 5n + 3 = \Theta(n^2)\]

\[3n^3 + 90n^2 - 2n + 5 = \Theta(n^3)\]

- Formal explanations in the next lecture.
• As n gets large, a $\Theta(n^2)$ algorithm runs faster than a $\Theta(n^3)$ algorithm.
Insertion Sort – Runtime Analysis

Cost	**Insertion-Sort (A)**
c_1 | 1. for $j \leftarrow 2$ to n do
c_2 | 2. key $\leftarrow A[j]$;
c_3 | 3. $i \leftarrow j - 1$;
c_4 | 4. while $i > 0$ and $A[i] >$ key do
c_5 | 5. $A[i+1] \leftarrow A[i]$;
c_6 | 6. $i \leftarrow i - 1$;
c_7 | 7. $A[i+1] \leftarrow$ key;

endfor

t_j: The number of times while loop test is executed for j
How many times is each line executed?

<table>
<thead>
<tr>
<th># times</th>
<th>Insertion-Sort (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1. for j ← 2 to n do</td>
</tr>
<tr>
<td>n−1</td>
<td>2. key ← A[j];</td>
</tr>
<tr>
<td>n−1</td>
<td>3. i ← j - 1;</td>
</tr>
<tr>
<td>k₄</td>
<td>4. while i > 0 and A[i] > key do</td>
</tr>
<tr>
<td>k₅</td>
<td>5. A[i+1] ← A[i];</td>
</tr>
<tr>
<td>k₆</td>
<td>6. i ← i - 1;</td>
</tr>
<tr>
<td>n−1</td>
<td>7. A[i+1] ← key;</td>
</tr>
<tr>
<td></td>
<td>endfor</td>
</tr>
</tbody>
</table>

\[
k_4 = \sum_{j=2}^{n} t_j \\
k_5 = \sum_{j=2}^{n} (t_j - 1) \\
k_6 = \sum_{j=2}^{n} (t_j - 1)
\]
Insertion Sort – Runtime Analysis

- Sum up costs:

\[T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n - 1) \]

- What is the **best case** runtime?

- What is the **worst case** runtime?
Question: If $A[1...j]$ is already sorted, $t_j = ?$

Insertion-Sort (A)

1. **for** $j \leftarrow 2$ **to** n **do**
2. \hspace{0.5cm} **key** $\leftarrow A[j]$;
3. \hspace{0.5cm} $i \leftarrow j - 1$;
4. \hspace{0.5cm} **while** $i > 0$ **and** $A[i] > \text{key}$ **do**
5. \hspace{1.5cm} $A[i+1] \leftarrow A[i]$;
6. \hspace{1.5cm} $i \leftarrow i - 1$;
7. \hspace{1.5cm} **endwhile**
8. \hspace{0.5cm} $A[i+1] \leftarrow \text{key}$;
9. **endfor**

$A = [2, 4, 5, 6, 1, 3]$ is sorted. $j = 6$, $\text{key} = 6$.

$t_j = 1$
Insertion Sort – Best Case Runtime

- Original function:

\[
T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + \\
c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n - 1)
\]

- Best-case: Input array is already sorted

\[
t_j = 1 \text{ for all } j
\]

\[
T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)
\]
Q: If A[j] is smaller than every entry in A[1..j-1], t_j = ?

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
7. endwhile
8. A[i+1] ← key;
9. endfor
Insertion Sort – Worst Case Runtime

- **Worst case**: The input array is reverse sorted
 \[t_j = j \text{ for all } j \]

- **After derivation, worst case runtime**:
 \[
 T(n) = \frac{1}{2} (c_4 + c_5 + c_6) n^2 + \\
 (c_1 + c_2 + c_3 + \frac{1}{2} (c_4 c_5 c_6) + c_7) n (c_2 + c_3 + c_4 + c_7)
 \]
Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A)

1. **for** \(j \leftarrow 2 \) **to** \(n \) **do**
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \) \(\Theta(1) \)
4. **while** \(i > 0 \) **and** \(A[i] > \text{key} \) **do**
5. \(A[i+1] \leftarrow A[i]; \) \(\Theta(1) \)
6. \(i \leftarrow i - 1; \)
7. **endwhile**
8. \(A[i+1] \leftarrow \text{key}; \) \(\Theta(1) \)
9. **endfor**
Asymptotic Runtime Analysis of Insertion-Sort

- **Worst-case** (input reverse sorted)
 - *Inner loop is* $\Theta(j)$

 $$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^2)$$

- **Average case** (all permutations equally likely)
 - *Inner loop is* $\Theta(j/2)$

 $$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$

 - Often, average case not much better than worst case

- **Is this a fast sorting algorithm?**
 - Yes, for small n. No, for large $n.$
Merge Sort
Merge Sort: Basic Idea

Input array A

Divide

sort this half

Conquer

sort this half

Combine

merge two sorted halves
Merge-Sort (A, p, r)

if \(p = r \) then return;
else

\[q \leftarrow \lfloor \frac{p+r}{2} \rfloor; \quad \text{(Divide)} \]

Merge-Sort (A, p, q);

Merge-Sort (A, q+1, r);

Merge (A, p, q, r);

endif

- Call **Merge-Sort**(A,1,n) to sort A[1..n]
- Recursion bottoms out when subsequences have length 1
Merge Sort: Example

Merge-Sort \((A, p, r)\)

if \(p = r\) then
 return
else
 \(q \leftarrow \lfloor (p+r)/2 \rfloor\)

 \[\text{Merge-Sort} \ (A, p, q) \]
 \[\text{Merge-Sort} \ (A, q+1, r) \]

 Merge\((A, p, q, r)\)
endif
How to merge 2 sorted subarrays?

- HW: Study the pseudo-code in the textbook (Sec. 2.3.1)
- What is the complexity of this step? $\Theta(n)$
Merge Sort: Correctness

Merge-Sort (A, p, r)

if p = r then
 return
else
 q ← ⌊ (p+r)/2 ⌋
 Merge-Sort (A, p, q)
 Merge-Sort (A, q+1, r)

endif

Base case: p = r
→ Trivially correct

Inductive hypothesis: MERGE-SORT is correct for any subarray that is a strict (smaller) *subset* of A[p, r].

General Case: MERGE-SORT is correct for A[p, r].
→ From inductive hypothesis and correctness of *Merge*.

Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University
Merge-Sort: Complexity

\[
\text{Merge-Sort} \ (A, p, r) \quad \rightarrow \quad T(n)
\]

\[
\text{if } p = r \text{ then}
\]

\[
\rightarrow \quad \Theta(1)
\]

\[
\text{return}
\]

\[
\rightarrow \quad \Theta(1)
\]

\[
\text{else}
\]

\[
q \leftarrow \lfloor (p+r)/2 \rfloor
\]

\[
\rightarrow \quad \Theta(1)
\]

\[
\text{Merge-Sort} \ (A, p, q) \quad \rightarrow \quad T(n/2)
\]

\[
\text{Merge-Sort} \ (A, q+1, r) \quad \rightarrow \quad T(n/2)
\]

\[
\text{Merge}(A, p, q, r) \quad \rightarrow \quad \Theta(n)
\]

\[
\text{endif}
\]
Merge Sort – Recurrence

- Describe a function recursively in terms of itself
- To analyze the performance of recursive algorithms
- For merge sort:

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]
How to solve for T(n)?

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases} \]

- Generally, we will assume \(T(n) = \Theta(1) \) for sufficiently small \(n \).
- The recurrence above can be rewritten as:

\[T(n) = 2T(n/2) + \Theta(n) \]

- How to solve this recurrence?
Solve Recurrence: \(T(n) = 2T \left(\frac{n}{2} \right) + \Theta(n) \)
Solve Recurrence: \(T(n) = 2T \left(\frac{n}{2} \right) + \Theta(n) \)
Solve Recurrence: \(T(n) = 2T \left(\frac{n}{2} \right) + \Theta(n) \)
Merge Sort Complexity

- **Recurrence:**
 \[T(n) = 2T(n/2) + \Theta(n) \]

- **Solution to recurrence:**
 \[T(n) = \Theta(n \log n) \]
Conclusions: **Insertion Sort vs. Merge Sort**

- \(\Theta(n\log n) \) grows more slowly than \(\Theta(n^2) \)

- Therefore **Merge-Sort** beats **Insertion-Sort** in the worst case

- In practice, **Merge-Sort** beats **Insertion-Sort** for \(n > 30 \) or so.