Lecture 6-a
Analysis of Quicksort

View in slide-show mode
Analysis of Quicksort

Assume all elements are distinct in the following analysis
Question

QUICKSORT \((A, p, r)\)

if \(p < r\) then

\(q \leftarrow H\text{-PARTITION}(A, p, r)\)

QUICKSORT(\(A, p, q\))

QUICKSORT(\(A, q +1, r\))

Q: Remember that **H-PARTITION** always chooses \(A[p]\) (the first element) as the **pivot**. What is the runtime of **QUICKSORT** on an already-sorted array?

- a) \(\Theta(n)\)
- b) \(\Theta(n\log n)\)
- c) \(\Theta(n^2)\)
- d) cannot provide a tight bound
Example: An Already Sorted Array

Partitioning always leads to 2 parts of size 1 and n-1
Worst Case Analysis of Quicksort

- **Worst case** is when the PARTITION algorithm always returns imbalanced partitions (of size 1 and n-1) in every recursive call
 - This happens when the pivot is selected to be either the min or max element.
 - This happens for H-PARTITION when the input array is already sorted or reverse sorted.

\[
T(n) = T(1) + T(n-1) + \Theta(n) \\
= T(n-1) + \Theta(n) \\
= \Theta(n^2) \quad (\text{arithmetic series})
\]
Worst Case Recursion Tree

\[T(n) = T(1) + T(n-1) + cn \]
Worst Case Recursion Tree

\[T(n) = T(1) + T(n-1) + cn \]

\[c(n-1) = \Theta(1) \]
\[c(n-2) = \Theta(1) \]
\[\cdots \]
\[c(n-k) = \Theta(1) \]

\[k \geq 1 \]

\[ck = \Theta(n^2) \]

\[T(n) = \Theta(n^2) + \Theta(n) \]

\[T(n) = \Theta(n^2) \]
Best Case Analysis (for intuition only)

- If we’re extremely lucky, H-PARTITION splits the array evenly at every recursive call

\[T(n) = 2 \cdot T(n/2) + \Theta(n) \]
\[= \Theta(n \log n) \rightarrow \text{same as merge sort} \]

- Instead of splitting 0.5:0.5, what if every split is 0.1:0.9?

\[T(n) = T(n/10) + T(9n/10) + \Theta(n) \]
\[\rightarrow \text{solve this recurrence} \]
“Almost-Best” Case Analysis

\[n \]

\[\frac{n}{10} \]

\[\frac{9n}{100} \]

\[\frac{9n}{100} \]

\[\frac{81n}{100} \]

\[\Theta(1) \]

\[\Theta(1) \]

\[\Theta(1) \]
“Almost-Best” Case Analysis

$$\Theta(1) \rightarrow \frac{n}{100} \rightarrow \frac{n}{10} \rightarrow \frac{9n}{100} \rightarrow \frac{9n}{10} \rightarrow \frac{81n}{100} \rightarrow \Theta(1) \leq cn$$

\[
\begin{align*}
\Theta(1) & \rightarrow \frac{n}{100} \\
& \rightarrow \frac{n}{10} \\
& \rightarrow \frac{9n}{100} \\
& \rightarrow \frac{9n}{10} \\
& \rightarrow \frac{81n}{100} \\
& \rightarrow \Theta(1) \leq cn
\end{align*}
\]
"Almost-Best" Case Analysis

\[
T(n) = \Theta(n \log n)
\]
Balanced Partitioning

- We have seen that if H-PARTITION always splits the array with 0.1-to-0.9 ratio, the runtime will be $\Theta(n \log n)$.
- Same is true with a split ratio of 0.01-to-0.99, etc.

- Possible to show that if the split has always constant ($\Theta(1)$) proportionality, then the runtime will be $\Theta(n \log n)$.

- In other words, for a constant α ($0 < \alpha \leq 0.5$):
 α–to–$(1-\alpha)$ proportional split yields $\Theta(n \log n)$ total runtime.
Balanced Partitioning

- In the rest of the analysis, assume that *all input permutations* are equally likely.
 - This is only to gain some intuition
 - We cannot make this assumption for average case analysis
 - We will revisit this assumption later

- Also, assume that *all input elements are distinct*.

- What is the probability that **H-PARTITION** returns a split that is more balanced than 0.1-to-0.9?
Balanced Partitioning

Reminder: \(H\text{-PARTITION} \) will place the pivot in the right partition unless the pivot is the smallest element in the arrays.

Question: If the pivot selected is the \(m^{th} \) smallest value (\(1 < m \leq n \)) in the input array, what is the size of the left region after partitioning?

- There are \(m-1 \) elements less than the pivot.
- \(q = m-1 \)
- Pivot is placed in the right region.

\[q = m-1 \]
Balanced Partitioning

Question: What is the probability that the pivot selected is the \(m^{th} \) smallest value in the array of size \(n \)?

\[
\frac{1}{n} \quad \text{(since all input permutations are equally likely)}
\]

Question: What is the probability that the left partition returned by H-PARTITION has size \(m \), where \(1 < m < n \)?

\[
\frac{1}{n} \quad \text{(due to the answers to the previous 2 questions)}
\]
Balanced Partitioning

Question: What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?

\[
\text{Probability} = \frac{1}{n} = \frac{1}{n} (0.9n \ 1 \ 0.1n \ 1+1) = 0.8 \ \frac{1}{n}
\]

\[
\approx 0.8 \text{ for large } n
\]
Balanced Partitioning

- The probability that H-PARTITION yields a split that is more balanced than 0.1-to-0.9 is 80% on a random array.

- Let P_α be the probability that H-PARTITION yields a split more balanced than α-to-$(1-\alpha)$, where $0 < \alpha \leq 0.5$.

- Repeat the analysis to generalize the previous result.
Question: What is the probability that H-PARTITION returns a split that is more balanced than α-to-α?

The partition boundary will be in this region for a more balanced split than αn-to-αn.

Probability:

$$ \frac{1}{q} = \frac{1}{(\frac{1}{n})} \cdot \frac{1}{n} = \frac{1}{\binom{n}{1}} \cdot \frac{1}{n} = \frac{1}{\binom{n}{1+1}} = \frac{1}{\binom{n}{1+1}} = \frac{1}{\binom{n}{2}} \cdot \frac{1}{n} $$

$$ \approx (1-2\alpha) \text{ for large } n $$
We found $P_{\alpha} = 1 - 2\alpha$.

Examples: $P_{0.1} = 0.8$ $P_{0.01} = 0.98$

Hence, H-PARTITION produces a split

- *more balanced* than a
 - 0.1-to-0.9 split 80% of the time
 - 0.01-to-0.99 split 98% of the time

- *less balanced* than a
 - 0.1-to-0.9 split 20% of the time
 - 0.01-to-0.99 split 2% of the time
Intuition for the Average Case

- **Assumption**: All permutations are equally likely
 - Only for intuition; we’ll revisit this assumption later
- **Unlikely**: Splits always the same way at every level

- **Expectation**:
 - Some splits will be reasonably balanced
 - Some splits will be fairly unbalanced
- **Average case**: A mix of good and bad splits
 - *Good* and *bad* splits distributed randomly thru the tree
Intuition for the Average Case

- **Assume for intuition**: Good and bad splits occur in the alternate levels of the tree
 - *Good split*: Best case split
 - *Bad split*: Worst case split
Intuition for the Average Case

Compare 2-successive levels of avg case vs. 1 level of best case
Intuition for the Average Case

- In terms of the remaining subproblems, two levels of avg case is slightly better than the single level of the best case
- The avg case has extra divide cost of $\Theta(n)$ at alternate levels
Intuition for the Average Case

- The extra divide cost $\Theta(n)$ of bad splits absorbed into the $\Theta(n)$ of good splits.
- Running time is still $\Theta(n \log n)$
Intuition for the Average Case

Running time is still $\Theta(n\log n)$

- But, slightly larger hidden constants, because the height of the recursion tree is about twice of that of best case.
Intuition for the Average Case

- Another way of looking at it:
 Suppose we alternate lucky, unlucky, lucky, unlucky, …
 We can write the recurrence as:
 \[
 \begin{align*}
 L(n) &= 2 \, U(n/2) + \Theta(n) \quad \text{lucky split (best)} \\
 U(n) &= L(n-1) + \Theta(n) \quad \text{unlucky split (worst)}
 \end{align*}
 \]
 Solving:
 \[
 \begin{align*}
 L(n) &= 2 \, (L(n/2-1) + \Theta(n/2)) + \Theta(n) \\
 &= 2L(n/2-1) + \Theta(n) \\
 &= \Theta(n\log n)
 \end{align*}
 \]
 How can we make sure we are usually lucky for all inputs?
Summary: Quicksort Runtime Analysis

Worst case: Unbalanced split at every recursive call

\[T(n) = T(1) + T(n-1) + \Theta(n) \]

\[\Rightarrow T(n) = \Theta(n^2) \]

Best case: Balanced split at every recursive call (extremely lucky)

\[T(n) = 2T(n/2) + \Theta(n) \]

\[\Rightarrow T(n) = \Theta(n \log n) \]
Summary: Quicksort Runtime Analysis

Almost-best case: Almost-balanced split at every recursive call

\[
T(n) = T(n/10) + T(9n/10) + \Theta(n)
\]

or

\[
T(n) = T(n/100) + T(99n/100) + \Theta(n)
\]

or

\[
T(n) = T(\alpha n) + T((1-\alpha)n) + \Theta(n)
\]

for any constant \(\alpha\), \(0 < \alpha \leq 0.5\)

\[\Rightarrow T(n) = \Theta(n \log n)\]
Summary: Quicksort Runtime Analysis

For a random input array, the probability of having a split
 more balanced than 0.1 – to – 0.9 : 80%
 more balanced than 0.01 – to – 0.99 : 98%
 more balanced than α – to – (1-α) : $1 - 2\alpha$

for any constant α, $0 < \alpha \leq 0.5$
Summary: Quicksort Runtime Analysis

Avg case intuition: Different splits expected at different levels
 - some balanced (good), some unbalanced (bad)

Avg case intuition: Assume the good and bad splits alternate
 - i.e. good split → bad split → good split → …
 - \(T(n) = \Theta(n \log n) \)

(informal analysis for intuition)