
1

CS473 - Algorithms I

CS 473 – Lecture 9

Lecture 9

Sorting in Linear Time

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

View in slide-show mode

2CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

How Fast Can We Sort?

 The algorithms we have seen so far:

 Based on comparison of elements

 We only care about the relative ordering between the elements

(not the actual values)

 The smallest worst-case runtime we have seen so far: O(nlgn)

 Is O(nlgn) the best we can do?

 Comparison sorts: Only use comparisons to determine the

relative order of elements.

3CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Decision Trees for Comparison Sorts

 Represent a sorting algorithm abstractly in terms of a

decision tree

 A binary tree that represents the comparisons between

elements in the sorting algorithm

 Control, data movement, and other aspects are ignored

 One decision tree corresponds to one sorting

algorithm and one value of n (input size)

4CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

Iterate over array elts j

Loop invariant:

The subarray A[1..j-1]

is always sorted

j
already sorted

key

5CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

Shift right the entries

in A[1..j-1] that are > key

j
already sorted

> key< key

j
> key< key

6CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key

do

5. A[i+1] A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

> key< key

Insert key to the correct location

End of iter j: A[1..j] is sorted

key

j

now sorted

7CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Different Outcomes for Insertion Sort and n=3

Input: <a1, a2, a3>

if a1 ≤ a2

<a1 a2 a3>

if a2 ≤ a3

<a1 a2 a3>

if a2 > a3

<a1 a3 a2>

if a1 ≤ a3

<a1 a3 a2>

if a1 > a3

<a3 a1 a2>

<a1 a2 a3>

if a1 > a2

<a2 a1 a3>

if a1 ≤ a3

<a2 a1 a3>

if a1 > a3

<a2 a3 a1>

if a2 ≤ a3

<a2 a3 a1>

if a2 > a3

<a3 a2 a1>

8CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Decision Tree for Insertion Sort and n=3

1:2

2:3

1:3

<1, 3, 2> <3, 1, 2>

<1, 2, 3>

≤

>≤

≤ >

1:3

2:3

<2, 3, 1> <3, 2, 1>

<2, 1, 3>

>≤

≤ >

>

9CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Decision Tree Model for Comparison Sorts

 Internal node (i:j): Comparison between elements ai and aj

 Leaf node: An output of the sorting algorithm

 Path from root to a leaf: The execution of the sorting
algorithm for a given input

 All possible executions are captured by the decision tree

 All possible outcomes (permutations) are in the leaf nodes

10CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Decision Tree for Insertion Sort and n=3

Input: <9, 4, 6>

2:3

1:3

<1, 3, 2> <3, 1, 2>

<1, 2, 3>

≤

>≤

≤ >

<3, 2, 1>

<2, 1, 3>

>≤

≤ >

>
1:2

9 > 4

1:3

9 > 6

2:3

4 ≤ 6

<2, 3, 1>

output: <4, 6, 9>

11CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Decision Tree Model

 A decision tree can model the execution of any

comparison sort:

 One tree for each input size n

 View the algorithm as splitting whenever it compares two

elements

 The tree contains the comparisons along all possible

instruction traces

The running time of the algorithm = the length of the path taken

Worst case running time = height of the tree

12CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Lower Bound for Comparison Sorts

 Let n be the number of elements in the input array.

 What is the min number of leaves in the decision tree?

n! (because there are n! permutations of the input array,

and all possible outputs must be captured in the leaves)

 What is the max number of leaves in a binary tree of

height h?

2h

 So, we must have:

2h ≥ n!

13CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Lower Bound for Decision Tree Sorting

Proof: We’ll prove that any decision tree corresponding to a
comparison sort algorithm must have height Ω(nlgn)

2h ≥ n! (from previous slide)

h ≥ lg(n!)

≥ lg((n/e)n) (Stirling’s approximation)

= nlgn – n lge

= Ω(nlgn)

Theorem: Any comparison sort algorithm requires

Ω(nlgn) comparisons in the worst case.

14CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Lower Bound for Decision Tree Sorting

Corollary: Heapsort and merge sort are asymptotically

optimal comparison sorts.

Proof: The O(nlgn) upper bounds on the runtimes for

heapsort and merge sort match the Ω(nlgn) worst-case

lower bound from the previous theorem.

15CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Sorting in Linear Time

Counting sort: No comparisons between elements

Input: A[1 .. n], where A[j]  {1, 2, …, k}

Output: B[1 .. n], sorted

Auxiliary storage: C[1 .. k]

16CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

4A: 1 3 4 3

B:

C:

1 2 3 4

17CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

4A: 1 3 4 3

B:

0C: 0 0 0

1 2 3 4

Step 1: Initialize all counts to 0

18CS 473 – Lecture 9

4

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B:

0C: 0 0 0

1 2 3 4

j

1 1 122

Step 2: Count the number of occurrences

of each value in the input array

19CS 473 – Lecture 9

4

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B:

1C: 0 2 2

1 2 3 4

i

Step 3: Compute the number of elements

less than or equal to each value

1 3 5

20CS 473 – Lecture 9

4

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B:

1C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 3 5

There are C[3] = 3 elts that are ≤ 3

3

1 2 3 4 5

2

21CS 473 – Lecture 9

4

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B: 3

1C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 2 5

There are C[4] = 5 elts that are ≤ 4

4

1 2 3 4 5

4

22CS 473 – Lecture 9

4

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B: 3 4

1C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 2 4

There are C[3] = 2 elts that are ≤ 3

3

1 2 3 4 5

1

23CS 473 – Lecture 9

4

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B: 3 3 4

1C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 1 4

There are C[1] = 1 elts that are ≤ 1

1

1 2 3 4 5

0

24CS 473 – Lecture 9

4

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

1B: 3 3 4

0C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 1 4

There are C[4] =4 elts that are ≤ 4

4

1 2 3 4 5

3

25CS 473 – Lecture 9

4

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

1B: 3 3 44

0C: 0 2 2

1 2 3 4

After Count Sort:

1 1 2

4

1 2 3 4 5

26CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort: Runtime Analysis

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

Θ(k)

Θ(n)

Θ(k)

Θ(n)

Total runtime: Θ(n+k)

n: size of the input array

k: the range of input values

27CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Counting Sort: Runtime

 Runtime is Θ(n+k)

 If k = O(n), then counting sort takes Θ(n)

 Question: We proved a lower bound of Θ(nlgn)

before! Where is the fallacy?

 Answer:

 Θ(nlgn) lower bound is for comparison-based sorting

 Counting sort is not a comparison sort

 In fact, not a single comparison between elements occurs!

28CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Stable Sorting

 Counting sort is a stable sort: It preserves the input

order among equal elements.

 i.e. The numbers with the same value appear in the output

array in the same order as they do in the input array.

4A: 1 3 4 3

1B: 3 3 44

4

Exercise: Which other sorting algorithms have this property?

29CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Radix Sort

 Origin: Herman Hollerith’s card-sorting machine for

the 1890 US Census.

 Basic idea: Digit-by-digit sorting

 Two variations:

 Sort from MSD to LSD (bad idea)

 Sort from LSD to MSD (good idea)

 LSD/MSD: Least/most significant digit

30CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Herman Hollerith (1860-1929)

 The 1880 U.S. Census took almost 10
years to process.

 While a lecturer at MIT, Hollerith
prototyped punched-card technology.

 His machines, including a “card sorter,”
allowed the 1890 census total to be
reported in 6 weeks.

 He founded the Tabulating Machine
Company in 1911, which merged with
other companies in 1924 to form
International Business Machines (IBM).

31CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Hollerith Punched Card

Punched card: A piece of stiff paper that contains digital

information represented by the presence or absence of holes.

 12 rows and 24 columns

 coded for age, state of

residency, gender, etc.

32CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

“Modern” IBM card

 One character per column

So, that’s why text windows have 80 columns!

33CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Hollerith Tabulating Machine and Sorter

 Mechanically sorts the cards based on the hole locations.

 Sorting performed for one column at a time

 Human operator needed to load/retrieve/move cards at each stage

34CS 473 – Lecture 9

3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Hollerith’s MSD-First Radix Sort

 Sort starting from the most significant digit (MSD)

 Then, sort each of the resulting bins recursively

 At the end, combine the decks in order

sort based

on MSD

sort

recursive

sort

recursive

3 2 9

3 5 5

4 5 7

4 3 6

6 5 7

7 2 0

8 3 9

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

3 2 9

3 5 5

4 3 6

4 5 7

combine all decks

35CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Hollerith’s MSD-First Radix Sort

 To sort a subset of cards recursively:

 All the other cards need to be removed from the machine, because the

machine can handle only one sorting problem at a time.

 The human operator needs to keep track of the intermediate card piles

to sort these two cards

recursively, remove all

the other cards from

the machine

3 2 9

3 5 5

4 5 7

4 3 6

6 5 7

7 2 0

8 3 9

3 2 9

3 5 5

457, 436, 657, 720, 839

intermediate piles

36CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Hollerith’s MSD-First Radix Sort

 MSD-first sorting may require:

-- very large number of sorting passes

-- very large number of intermediate card piles to maintain

 S(d): # of passes needed to sort d-digit numbers (worst-case)

 Recurrence:

S(d) = 10 S(d-1) + 1 with S(1) = 1

Reminder: Recursive call made to each subset with the

same most significant digit (MSD)

37CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Hollerith’s MSD-First Radix Sort

Recurrence: S(d) = 10S(d-1) + 1

S(d) = 10 S(d-1) + 1

= 10 (10 S(d-2) + 1) + 1

= 10 (10 (10 S(d-3) + 1) + 1) + 1

= 10i S(d-i) + 10i-1 + 10i-2 + … + 101 + 100

Iteration terminates when i = d-1 with S(d-(d-1)) = S(1) = 1

S(d) = 10i

i=0

d-1

å =
10d -1

10 -1
=

1

9
(10d -1) S(d) =

1

9
(10d -1)

38CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Hollerith’s MSD-First Radix Sort

P(d): # of intermediate card piles maintained (worst-case)

Reminder: Each routing pass generates 9 intermediate piles

except the sorting passes on least significant digits (LSDs)

There are 10d-1 sorting calls to LSDs

P(d) = 9 (S(d) – 10d-1) = 9 ((10d – 1)/9 – 10d-1)

= (10d – 1 – 9 . 10d-1) = 10d-1 - 1

P(d) = 10d-1 - 1

Alternative solution: Solve the recurrence: P(d) = 10P(d-1) + 9

P(1) = 0

39CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Hollerith’s MSD-First Radix Sort

 Example: To sort 3 digit numbers, in the worst case:

S(d) = (1/9) (103-1) = 111 sorting passes needed

P(d) = 10d-1-1 = 99 intermediate card piles generated

 MSD-first approach has more recursive calls and

intermediate storage requirement

 Expensive for a “tabulating machine” to sort punched cards

 Overhead of recursive calls in a modern computer

40CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

LSD-First Radix Sort

 Least significant digit (LSD)-first radix sort seems to be a

folk invention originated by machine operators.

 It is the counter-intuitive, but the better algorithm.

 Basic algorithm:

Sort numbers on their LSD first

Combine the cards into a single deck in order

Continue this sorting process for the other digits

from the LSD to MSD

 Requires only d sorting passes

 No intermediate card pile generated

Stable sorting needed!!!

41CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

LSD-first Radix Sort: Example

3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

Step 1: Sort 1st digit

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

Step 2: Sort 2nd digit

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Step 3: Sort 3rd digit

42CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Correctness of Radix Sort (LSD-first)

Proof by induction: Base case: d=1 is correct (trivial)

Inductive hyp: Assume the first d-1 digits are sorted correctly

Prove that all d digits are sorted correctly after sorting digit d

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9last 2 digits sorted

due to ind. hyp.

sort based on digit d

Two numbers that differ

in digit d are correctly

sorted (e.g. 355 and 657)

Two numbers equal in

digit d are put in the same

order as the input

 correct order

43CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Radix Sort: Runtime

 Use counting-sort to sort each digit

Reminder: Counting sort complexity: Θ(n+k)

n: size of input array

k: the range of the values

 Radix sort runtime: Θ(d(n+k))

d: # of digits

 How to choose the d and k?

44CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Radix Sort: Runtime – Example 1

 We have flexibility in choosing d and k

 Assume we are trying to sort 32-bit words

 We can define each digit to be 4 bits

 Then, the range for each digit k = 24 = 16

So, counting sort will take Θ(n+16)

 The number of digits d = 32/4 = 8

 Radix sort runtime: Θ(8(n+16)) = Θ(n)

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits

32-bit

45CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Radix Sort: Runtime – Example 2

 We have flexibility in choosing d and k

 Assume we are trying to sort 32-bit words

 Or, we can define each digit to be 8 bits

 Then, the range for each digit k = 28 = 256

So, counting sort will take Θ(n+256)

 The number of digits d = 32/8 = 4

 Radix sort runtime: Θ(4(n+256)) = Θ(n)

8 bits 8 bits 8 bits 8 bits

32-bit

46CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Radix Sort: Runtime

 Assume we are trying to sort b-bit words

 Define each digit to be r bits

 Then, the range for each digit k = 2r

So, counting sort will take Θ(n+2r)

 The number of digits d = b/r

Radix sort runtime:

r bits r bits r bits r bits

b-bit

b/r digits

T (n,b) = Q
b

r
n+ 2r()

æ

è
ç

ö

ø
÷

47CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Radix Sort: Runtime Analysis

Minimize T(n, b) by differentiating and setting to 0

Or, intuitively:

We want to balance the terms (b/r) and (n + 2r)

Choose r ≈ lgn

If we choose r << lgn (n + 2r) term doesn’t improve

If we choose r >> lgn (n + 2r) increases exponentially

T (n,b) = Q
b

r
n+ 2r()

æ

è
ç

ö

ø
÷

48CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Radix Sort: Runtime Analysis

T (n,b) = Q
b

r
n+ 2r()

æ

è
ç

ö

ø
÷

Choose r = lgn T(n, b) = Θ(bn/lgn)

For numbers in the range from 0 to nd – 1, we have:

The number of bits b = lg(nd) = d lgn

 Radix sort runs in Θ(dn)

49CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Radix Sort: Conclusions

 Example: Compare radix sort with merge sort/heapsort

1 million (220) 32-bit numbers (n = 220, b = 32)

Radix sort: 32/20 = 2 passes

Merge sort/heap sort: lgn = 20 passes

 Downsides:

Radix sort has little locality of reference (more cache misses)

The version that uses counting sort is not in-place

 On modern processors, a well-tuned quicksort implementation
typically runs faster.

Choose r = lgn T(n, b) = Θ(bn/lgn)

