Lecture 9

Sorting in Linear Time

View in slide-show mode
How Fast Can We Sort?

- The algorithms we have seen so far:
 - Based on comparison of elements
 - We only care about the relative ordering between the elements (not the actual values)
 - The smallest worst-case runtime we have seen so far: $O(n \log n)$
 - Is $O(n \log n)$ the best we can do?

- Comparison sorts: Only use comparisons to determine the relative order of elements.
Decision Trees for Comparison Sorts

- Represent a sorting algorithm abstractly in terms of a decision tree
 - A binary tree that represents the comparisons between elements in the sorting algorithm
 - Control, data movement, and other aspects are ignored

- One decision tree corresponds to one sorting algorithm and one value of n (input size)
Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. \textbf{for} $j \leftarrow 2 \text{ to } n$ \textbf{do}
2. \hspace{1em} key $\leftarrow A[j]$;
3. \hspace{1em} $i \leftarrow j - 1$;
4. \hspace{1em} \textbf{while} $i > 0$ \textbf{and} $A[i] >$ key \textbf{do}
5. \hspace{2em} $A[i+1] \leftarrow A[i]$;
6. \hspace{2em} $i \leftarrow i - 1$;
7. \hspace{2em} endwhile
\textbf{endfor}

\hspace{3em} \textit{Loop invariant:}
\hspace{4.5em} The subarray $A[1..j-1]$ is always sorted

\hspace{3em} Iterate over array elts j

\hspace{3em} already sorted

\hspace{3.5em} j

\hspace{3.5em} key
Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
7. endwhile
8. A[i+1] ← key;
endfor

Shift right the entries in A[1..j-1] that are > key

- j
- < key
- > key
- < key
- > key

already sorted
Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. \hspace{1em} key $\leftarrow A[j]$;
3. \hspace{1em} $i \leftarrow j - 1$;
4. \hspace{1em} while $i > 0$ and $A[i] > key$ do
5. \hspace{2.5em} $A[i+1] \leftarrow A[i]$;
6. \hspace{1em} $i \leftarrow i - 1$;
7. end while
8. $A[i+1] \leftarrow key$;
end for

Insert key to the correct location

End of iter j: $A[1..j]$ is sorted
Different Outcomes for Insertion Sort and n=3

Input: \(<a_1, a_2, a_3>\)

\[
\begin{align*}
\text{if } a_1 \leq a_2 & \quad \text{then } <a_1 a_2 a_3> \\
\text{if } a_1 > a_2 & \quad \text{then } <a_2 a_1 a_3>
\end{align*}
\]

\[
\begin{align*}
\text{if } a_2 \leq a_3 & \quad \text{then } <a_1 a_2 a_3> \\
\text{if } a_2 > a_3 & \quad \text{then } <a_1 a_3 a_2>
\end{align*}
\]

\[
\begin{align*}
\text{if } a_1 \leq a_3 & \quad \text{then } <a_1 a_3 a_2> \\
\text{if } a_1 > a_3 & \quad \text{then } <a_3 a_1 a_2>
\end{align*}
\]

\[
\begin{align*}
\text{if } a_2 \leq a_3 & \quad \text{then } <a_2 a_3 a_1> \\
\text{if } a_2 > a_3 & \quad \text{then } <a_3 a_2 a_1>
\end{align*}
\]
Decision Tree for Insertion Sort and n=3

```
1:2
   /\  \
  2:3 1:3
 /   /\   /
<1, 2, 3> <1, 3, 2> <2, 1, 3> <3, 2, 1>
```

Decision Tree for Insertion Sort and n=3
Decision Tree Model for Comparison Sorts

- **Internal node** \((i:j)\): Comparison between elements \(a_i\) and \(a_j\)

- **Leaf node**: An output of the sorting algorithm

- **Path from root to a leaf**: The execution of the sorting algorithm for a given input

- **All possible executions** are captured by the decision tree

- **All possible outcomes** (permutations) are in the leaf nodes
Decision Tree for Insertion Sort and n=3

Input: <9, 4, 6>

output: <4, 6, 9>
A decision tree can model the execution of any comparison sort:

- One tree for each input size n
- View the algorithm as splitting whenever it compares two elements
- The tree contains the comparisons along all possible instruction traces

The running time of the algorithm = the length of the path taken
Worst case running time = height of the tree
Lower Bound for Comparison Sorts

- Let n be the number of elements in the input array.
- What is the min number of leaves in the decision tree?
 $n!$ (because there are $n!$ permutations of the input array, and all possible outputs must be captured in the leaves)
- What is the max number of leaves in a binary tree of height h?
 2^h

- So, we must have:

$$2^h \geq n!$$
Lower Bound for Decision Tree Sorting

Theorem: Any comparison sort algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Proof: We’ll prove that any decision tree corresponding to a comparison sort algorithm must have height $\Omega(n \log n)$.

- $2^h \geq n!$ (from previous slide)
- $h \geq \log(n!)$
- $\geq \log((n/e)^n)$ (Stirling’s approximation)
- $= n \log n - n \log e$
- $= \Omega(n \log n)$
Lower Bound for Decision Tree Sorting

Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof: The $O(n \log n)$ upper bounds on the runtimes for heapsort and merge sort match the $\Omega(n \log n)$ worst-case lower bound from the previous theorem.
Sorting in Linear Time

Counting sort: No comparisons between elements

Input: $A[1 \ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$

Output: $B[1 \ldots n]$, sorted

Auxiliary storage: $C[1 \ldots k]$
Counting Sort

\[
\text{for } i \leftarrow 1 \text{ to } k \text{ do} \\
\quad C[i] \leftarrow 0 \\
\text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
\quad C[A[j]] \leftarrow C[A[j]] + 1 \\
\quad // C[i] = |\{\text{key} = i\}| \\
\text{for } i \leftarrow 2 \text{ to } k \text{ do} \\
\quad C[i] \leftarrow C[i] + C[i-1] \\
\quad // C[i] = |\{\text{key} \leq i\}| \\
\text{for } j \leftarrow n \text{ down to } 1 \text{ do} \\
\quad B[C[A[j]]] \leftarrow A[j] \\
\quad C[A[j]] \leftarrow C[A[j]] - 1
\]
Counting Sort

for $i \leftarrow 1 \text{ to } k$ do
 $C[i] \leftarrow 0$

for $j \leftarrow 1 \text{ to } n$ do
 $C[A[j]] \leftarrow C[A[j]] + 1$
 // $C[i] = \{\text{key} = i\}$

for $i \leftarrow 2 \text{ to } k$ do
 $C[i] \leftarrow C[i] + C[i-1]$
 // $C[i] = \{\text{key} \leq i\}$

for $j \leftarrow n \text{ downto } 1$ do
 $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Step 1: Initialize all counts to 0

A: \begin{array}{cccc}
4 & 1 & 3 & 4 \\
\end{array}

B: \begin{array}{cccc}
_ & _ & _ & _ \\
\end{array}

C: \begin{array}{cccc}
0 & 0 & 0 & 0 \\
\end{array}
Counting Sort

for i ← 1 to k do
 C[i] ← 0
for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1
// C[i] = |\{key = i\}|

for i ← 2 to k do
 C[i] ← C[i] + C[i-1]
// C[i] = |\{key ≤ i\}|

for j ← n downto 1 do
 B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

Step 2: Count the number of occurrences of each value in the input array

A: 4 1 3 4 3
B:
C: 1 0 2 2
Counting Sort

```plaintext
for i ← 1 to k do
    C[i] ← 0
for j ← 1 to n do
    C[A[j]] ← C[A[j]] + 1
    // C[i] = |{key = i}|
for i ← 2 to k do
    C[i] ← C[i] + C[i-1]
    // C[i] = |{key ≤ i}|
for j ← n downto 1 do
    B[C[A[j]]] ← A[j]
    C[A[j]] ← C[A[j]] – 1
```

Step 3: Compute the number of elements less than or equal to each value

<table>
<thead>
<tr>
<th>A:</th>
<th>4</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B:</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C:</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Counting Sort

for i ← 1 to k do
 C[i] ← 0
for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1
 // C[i] = |\{key = i\}|
for i ← 2 to k do
 C[i] ← C[i] + C[i-1]
 // C[i] = |\{key ≤ i\}|
for j ← n downto 1 do
 B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

\textbf{Step 4:} Populate the output array

There are C[3] = 3 elts that are \leq 3

<table>
<thead>
<tr>
<th>A:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 1 3 4 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 2 5</td>
</tr>
</tbody>
</table>
Counting Sort

\[
\begin{align*}
&\text{for } i \leftarrow 1 \text{ to } k \text{ do} \\
&\quad \text{C}[i] \leftarrow 0 \\
&\text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
&\quad \text{C}[\text{A}[j]] \leftarrow \text{C}[\text{A}[j]] + 1 \\
&\quad \text{C}[i] = |\{\text{key} = i\}| \\
&\text{for } i \leftarrow 2 \text{ to } k \text{ do} \\
&\quad \text{C}[i] \leftarrow \text{C}[i] + \text{C}[i-1] \\
&\quad \text{C}[i] = |\{\text{key} \leq i\}| \\
&\text{for } j \leftarrow n \text{ downto } 1 \text{ do} \\
&\quad \text{B}[\text{C}[\text{A}[j]]] \leftarrow \text{A}[j] \\
&\quad \text{C}[\text{A}[j]] \leftarrow \text{C}[\text{A}[j]] - 1
\end{align*}
\]

Step 4: Populate the output array

There are $C[4] = 5$ elts that are ≤ 4

\[
\text{A: } 4 \ 1 \ 3 \ 4 \ 3 \\
\text{B: } 1 \ 2 \ 3 \ 4 \ 5 \\
\text{C: } 1 \ 1 \ 2 \ 4
\]
Counting Sort

```plaintext
for i ← 1 to k do
    C[i] ← 0
for j ← 1 to n do
    C[A[j]] ← C[A[j]] + 1
    // C[i] = |{key = i}|
for i ← 2 to k do
    C[i] ← C[i] + C[i-1]
    // C[i] = |{key ≤ i}|
for j ← n downto 1 do
    B[C[A[j]]] ← A[j]
    C[A[j]] ← C[A[j]] − 1
```

Step 4: Populate the output array

There are $C[3] = 2$ elts that are ≤ 3

<table>
<thead>
<tr>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

A:

| 4 | 1 | 3 | 4 | 3 |

B:

| 1 | 2 | 3 | 4 |

C:

| 1 | 1 | 1 | 4 |
Counting Sort

\[
\text{for } i \leftarrow 1 \text{ to } k \text{ do} \\
\quad C[i] \leftarrow 0 \\
\text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
\quad C[A[j]] \leftarrow C[A[j]] + 1 \\
\quad \text{// } C[i] = |\{\text{key} = i\}| \\
\text{for } i \leftarrow 2 \text{ to } k \text{ do} \\
\quad C[i] \leftarrow C[i] + C[i-1] \\
\quad \text{// } C[i] = |\{\text{key} \leq i\}| \\
\text{for } j \leftarrow n \text{ downto } 1 \text{ do} \\
\quad B[C[A[j]]] \leftarrow A[j] \\
\quad C[A[j]] \leftarrow C[A[j]] - 1
\]

Step 4: Populate the output array

There are \(C[1] = 1\) elts that are \(\leq 1\)

\[j\]

A:
\[
\begin{array}{cccc}
4 & 1 & 3 & 4 \\
\end{array}
\]

B:
\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
\end{array}
\]

C:
\[
\begin{array}{cccc}
0 & 1 & 1 & 4 \\
\end{array}
\]
Counting Sort

for i ← 1 to k do
 C[i] ← 0

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1
 // C[i] = |{key = i}|

for i ← 2 to k do
 C[i] ← C[i] + C[i-1]
 // C[i] = |{key ≤ i}|

for j ← n downto 1 do
 B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

Step 4: Populate the output array

There are C[4] = 4 elts that are ≤ 4

A: 4 1 3 4 3
B: 1 3 3 4 4
C: 0 1 1 3
Counting Sort

\[
\begin{align*}
\text{for } i & \leftarrow 1 \textbf{ to } k \textbf{ do} \\
& \quad C[i] \leftarrow 0 \\
\text{for } j & \leftarrow 1 \textbf{ to } n \textbf{ do} \\
& \quad C[A[j]] \leftarrow C[A[j]] + 1 \\
& \quad \text{// } C[i] = |\{\text{key }= i\}| \\
\text{for } i & \leftarrow 2 \textbf{ to } k \textbf{ do} \\
& \quad C[i] \leftarrow C[i] + C[i-1] \\
& \quad \text{// } C[i] = |\{\text{key }\leq i\}| \\
\text{for } j & \leftarrow n \textbf{ downto } 1 \textbf{ do} \\
& \quad B[C[A[j]]] \leftarrow A[j] \\
& \quad C[A[j]] \leftarrow C[A[j]] - 1
\end{align*}
\]

After Count Sort:

A: 4 1 3 4 3
B: 1 3 3 4 4
C: 1 2 3 4

A: 1 2 3 4 5
B: 0 1 1 2
C: 1 2 3 4
Counting Sort: Runtime Analysis

\[
\text{for } i \leftarrow 1 \text{ to } k \text{ do} \\
\quad C[i] \leftarrow 0 \\
\text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
\quad C[A[j]] \leftarrow C[A[j]] + 1 \\
\quad \text{// } C[i] = |\{\text{key} = i\}| \\
\quad \Theta(k) \\
\text{for } i \leftarrow 2 \text{ to } k \text{ do} \\
\quad C[i] \leftarrow C[i] + C[i-1] \\
\quad \text{// } C[i] = |\{\text{key} \leq i\}| \\
\quad \Theta(k) \\
\text{for } j \leftarrow n \text{ downto } 1 \text{ do} \\
\quad B[C[A[j]]] \leftarrow A[j] \\
\quad C[A[j]] \leftarrow C[A[j]] - 1 \\
\quad \Theta(n) \\
\text{Total runtime: } \Theta(n+k)
\]

- \(n\): size of the input array
- \(k\): the range of input values
Counting Sort: Runtime

- Runtime is $\Omega(n+k)$
- If $k = O(n)$, then counting sort takes $\Theta(n)$

Question: We proved a lower bound of $\Theta(n\log n)$ before! Where is the fallacy?

Answer:
- $\Theta(n\log n)$ lower bound is for comparison-based sorting
- Counting sort is not a comparison sort
- In fact, not a single comparison between elements occurs!
Stable Sorting

- Counting sort is a **stable sort**: It preserves the input order among equal elements.
 - i.e. The numbers with the same value appear in the output array in the same order as they do in the input array.

A: 4 1 3 4 3
B: 1 3 3 4 4

Exercise: Which other sorting algorithms have this property?
Radix Sort

- **Origin**: Herman Hollerith’s card-sorting machine for the 1890 US Census.
- **Basic idea**: Digit-by-digit sorting

- Two variations:
 - Sort from **MSD** to **LSD** (bad idea)
 - Sort from **LSD** to **MSD** (good idea)
 - **LSD/MSD**: Least/most significant digit
Herman Hollerith (1860-1929)

- The 1880 U.S. Census took almost 10 years to process.
- While a lecturer at MIT, Hollerith prototyped punched-card technology.
- His machines, including a “card sorter,” allowed the 1890 census total to be reported in 6 weeks.
- He founded the Tabulating Machine Company in 1911, which merged with other companies in 1924 to form International Business Machines (IBM).
Hollerith Punched Card

Punched card: A piece of stiff paper that contains digital information represented by the presence or absence of holes.

- 12 rows and 24 columns
- coded for age, state of residency, gender, etc.
“Modern” IBM card

- One character per column

So, that’s why text windows have 80 columns!
Hollerith Tabulating Machine and Sorter

- Mechanically sorts the cards based on the hole locations.
- Sorting performed for one column at a time
- Human operator needed to load/retrieve/move cards at each stage
Hollerith’s MSD-First Radix Sort

- Sort starting from the most significant digit (MSD)
- Then, sort each of the resulting bins recursively
- At the end, combine the decks in order
Hollerith’s MSD-First Radix Sort

- To sort a subset of cards recursively:
 - All the other cards need to be removed from the machine, because the machine can handle only one sorting problem at a time.
 - The human operator needs to keep track of the intermediate card piles to sort these two cards recursively, remove all the other cards from the machine.

<table>
<thead>
<tr>
<th>Card Pile</th>
<th>Intermediate Pile</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 2 9</td>
<td>3 5 5</td>
</tr>
<tr>
<td>3 5 5</td>
<td></td>
</tr>
<tr>
<td>4 5 7</td>
<td></td>
</tr>
<tr>
<td>4 3 6</td>
<td></td>
</tr>
<tr>
<td>6 5 7</td>
<td></td>
</tr>
<tr>
<td>7 2 0</td>
<td></td>
</tr>
<tr>
<td>8 3 9</td>
<td>457, 436, 657, 720, 839</td>
</tr>
</tbody>
</table>

3 2 9
3 5 5
Hollerith’s MSD-First Radix Sort

- MSD-first sorting may require:
 -- very large number of sorting passes
 -- very large number of intermediate card piles to maintain

- \(S(d) \): # of passes needed to sort \(d \)-digit numbers (worst-case)

- Recurrence:

\[
S(d) = 10 \cdot S(d-1) + 1 \quad \text{with } S(1) = 1
\]

Reminder: Recursive call made to each subset with the same most significant digit (MSD)
Hollerith’s MSD-First Radix Sort

Recurrence: $S(d) = 10S(d-1) + 1$

$S(d) = 10 \cdot S(d-1) + 1$
$= 10 \cdot (10 \cdot S(d-2) + 1) + 1$
$= 10 \cdot (10 \cdot (10 \cdot S(d-3) + 1) + 1) + 1$
$= 10^i \cdot S(d-i) + 10^{i-1} + 10^{i-2} + \ldots + 10^1 + 10^0$

Iteration terminates when $i = d-1$ with $S(d-(d-1)) = S(1) = 1$

$S(d) = \sum_{i=0}^{d-1} 10^i = \frac{10^d - 1}{10 - 1} = \frac{1}{9} (10^d - 1)$

$S(d) = \frac{1}{9} (10^d - 1)$
Hollerith’s MSD-First Radix Sort

P(d): # of intermediate card piles maintained (worst-case)

Reminder: Each routing pass generates 9 intermediate piles except the sorting passes on least significant digits (LSDs).

There are 10^{d-1} sorting calls to LSDs

$$P(d) = 9 \left(S(d) - 10^{d-1} \right) = 9 \left(\frac{10^d - 1}{9} - 10^{d-1} \right)$$

$$= (10^d - 1 - 9 \cdot 10^{d-1}) = 10^{d-1} - 1$$

Alternative solution: Solve the recurrence:

$$P(d) = 10P(d-1) + 9$$

$$P(1) = 0$$
Hollerith’s MSD-First Radix Sort

- Example: To sort 3 digit numbers, in the worst case:
 \[S(d) = \frac{1}{9} (10^3 - 1) = 111 \] sorting passes needed
 \[P(d) = 10^{d-1} - 1 = 99 \] intermediate card piles generated

- MSD-first approach has more recursive calls and intermediate storage requirement
 - Expensive for a “tabulating machine” to sort punched cards
 - Overhead of recursive calls in a modern computer
LSD-First Radix Sort

- Least significant digit (LSD)-first radix sort seems to be a folk invention originated by machine operators.
- It is the counter-intuitive, but the better algorithm.
- Basic algorithm:
 - Sort numbers on their LSD first
 - Combine the cards into a single deck in order
 - Continue this sorting process for the other digits from the LSD to MSD

- Requires only d sorting passes
- No intermediate card pile generated

Stable sorting needed!!!
LSD-first Radix Sort: Example

Step 1: Sort 1st digit

<table>
<thead>
<tr>
<th>3 2 9</th>
<th>7 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 5 7</td>
<td>3 5 5</td>
</tr>
<tr>
<td>6 5 7</td>
<td>4 3 6</td>
</tr>
<tr>
<td>8 3 9</td>
<td>4 5 7</td>
</tr>
<tr>
<td>4 3 6</td>
<td>6 5 7</td>
</tr>
<tr>
<td>7 2 0</td>
<td>3 2 9</td>
</tr>
<tr>
<td>3 5 5</td>
<td>8 3 9</td>
</tr>
</tbody>
</table>

Step 2: Sort 2nd digit

<table>
<thead>
<tr>
<th>7 2 0</th>
<th>7 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 5</td>
<td>3 2 9</td>
</tr>
<tr>
<td>4 3 6</td>
<td>4 3 6</td>
</tr>
<tr>
<td>4 5 7</td>
<td>8 3 9</td>
</tr>
<tr>
<td>6 5 7</td>
<td>3 5 5</td>
</tr>
<tr>
<td>3 2 9</td>
<td>4 5 7</td>
</tr>
<tr>
<td>8 3 9</td>
<td>6 5 7</td>
</tr>
</tbody>
</table>

Step 3: Sort 3rd digit

<table>
<thead>
<tr>
<th>7 2 0</th>
<th>7 2 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 5 5</td>
<td>3 5 5</td>
</tr>
<tr>
<td>4 3 6</td>
<td>4 3 6</td>
</tr>
<tr>
<td>8 3 9</td>
<td>8 3 9</td>
</tr>
<tr>
<td>3 5 5</td>
<td>6 5 7</td>
</tr>
<tr>
<td>4 5 7</td>
<td>7 2 0</td>
</tr>
<tr>
<td>6 5 7</td>
<td>8 3 9</td>
</tr>
</tbody>
</table>
Correctness of Radix Sort (LSD-first)

Proof by induction:

Base case: $d=1$ is correct (trivial)

Inductive hyp: Assume the first $d-1$ digits are sorted correctly

Prove that all d digits are sorted correctly after sorting digit d.

Two numbers that differ in digit d are correctly sorted (e.g. 355 and 657)

Two numbers equal in digit d are put in the same order as the input \Rightarrow correct order
Radix Sort: Runtime

- Use counting-sort to sort each digit

 \textit{Reminder}: Counting sort complexity: $\Theta(n+k)$

 n: size of input array

 k: the range of the values

- Radix sort runtime: $\Theta(d(n+k))$

 d: # of digits

- How to choose the d and k?
Radix Sort: Runtime – Example 1

- We have flexibility in choosing \(d\) and \(k\)
- Assume we are trying to sort 32-bit words
 - We can define each digit to be 4 bits
 - Then, the range for each digit \(k = 2^4 = 16\)
 - So, counting sort will take \(\Theta(n+16)\)
 - The number of digits \(d = 32/4 = 8\)
 - Radix sort runtime: \(\Theta(8(n+16)) = \Theta(n)\)
Radix Sort: Runtime – Example 2

- We have flexibility in choosing d and k
- Assume we are trying to sort 32-bit words
 - Or, we can define each digit to be 8 bits
 - Then, the range for each digit $k = 2^8 = 256$
 - So, counting sort will take $\Theta(n+256)$
 - The number of digits $d = 32/8 = 4$
 - Radix sort runtime: $\Theta(4(n+256)) = \Theta(n)$
Radix Sort: Runtime

- Assume we are trying to sort \textit{b-bit} words
 - Define each digit to be \(r \) bits
 - Then, the range for each digit \(k = 2^r \)
 - So, counting sort will take \(\Theta(n+2^r) \)
 - The number of digits \(d = \frac{b}{r} \)

Radix sort runtime:

\[
T(n, b) = \Theta\left(\frac{b}{r} \left(n + 2^r\right)\right)
\]
Radix Sort: Runtime Analysis

\[T(n, b) = \Theta \left(\frac{b}{r} (n + 2^r) \right) \]

Minimize \(T(n, b) \) by differentiating and setting to 0

Or, intuitively:

We want to balance the terms \(\frac{b}{r} \) and \(n + 2^r \)

Choose \(r \approx \log n \)

If we choose \(r \ll \log n \) \(\Rightarrow \) \(n + 2^r \) term doesn’t improve

If we choose \(r \gg \log n \) \(\Rightarrow \) \(n + 2^r \) increases exponentially
Radix Sort: Runtime Analysis

Choose $r = \lg n$

$$T(n, b) = \Theta\left(\frac{b}{r} \left(n + 2^r \right) \right)$$

For numbers in the range from 0 to $n^d - 1$, we have:

The number of bits $b = \lg(n^d) = d \lg n$

\implies Radix sort runs in $\Theta(dn)$
Radix Sort: Conclusions

- **Example**: Compare radix sort with merge sort/heapsort

 1 million (2^{20}) 32-bit numbers ($n = 2^{20}$, $b = 32$)

 Radix sort: $\left\lceil \frac{32}{20} \right\rceil = 2$ passes

 Merge sort/heap sort: $\log n = 20$ passes

- **Downsides**: Radix sort has little locality of reference (more cache misses)

 The version that uses counting sort is not in-place

- On modern processors, a well-tuned quicksort implementation typically runs faster.

Choose $r = \log n$ \quad \Rightarrow \quad T(n, b) = \Theta(bn/\log n)$