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How Fast Can We Sort?

 The algorithms we have seen so far:

 Based on comparison of elements

 We only care about the relative ordering between the elements 

(not the actual values)

 The smallest worst-case runtime we have seen so far: O(nlgn)

 Is O(nlgn) the best we can do?

 Comparison sorts: Only use comparisons to determine the 

relative order of elements.
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Decision Trees for Comparison Sorts

 Represent a sorting algorithm abstractly in terms of a 

decision tree

 A binary tree that represents the comparisons between 

elements in the sorting algorithm

 Control, data movement, and other aspects are ignored

 One decision tree corresponds to one sorting 

algorithm and one value of n (input size)
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Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1] A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

Iterate over array elts j

Loop invariant: 

The subarray A[1..j-1] 

is always sorted

j
already sorted

key
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Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1] A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

Shift right the entries 

in A[1..j-1] that are > key

j
already sorted

> key< key

j
> key< key
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Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for j  2 to n do

2. key A[j];

3. i  j - 1;

4. while i > 0 and A[i] > key 

do

5. A[i+1] A[i];

6. i  i - 1;

endwhile

7. A[i+1]  key;

endfor

> key< key

Insert key to the correct location

End of iter j: A[1..j] is sorted 

key

j

now sorted
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Different Outcomes for Insertion Sort and n=3

Input: <a1, a2, a3>

if a1 ≤ a2

<a1 a2 a3>

if a2 ≤ a3

<a1 a2 a3>

if a2 > a3

<a1 a3 a2>

if a1 ≤ a3

<a1 a3 a2>

if a1 > a3

<a3 a1 a2>

<a1 a2 a3>

if a1 > a2

<a2 a1 a3>

if a1 ≤ a3

<a2 a1 a3>

if a1 > a3

<a2 a3 a1>

if a2 ≤ a3

<a2 a3 a1>

if a2 > a3

<a3 a2 a1>
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Decision Tree for Insertion Sort and n=3

1:2

2:3

1:3

<1, 3, 2> <3, 1, 2>

<1, 2, 3>

≤

>≤

≤ >

1:3

2:3

<2, 3, 1> <3, 2, 1>

<2, 1, 3>

>≤

≤ >

>
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Decision Tree Model for Comparison Sorts

 Internal node (i:j): Comparison between elements ai and aj

 Leaf node: An output of the sorting algorithm

 Path from root to a leaf: The execution of the sorting 
algorithm for a given input

 All possible executions are captured by the decision tree

 All possible outcomes (permutations) are in the leaf nodes
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Decision Tree for Insertion Sort and n=3

Input: <9, 4, 6>

2:3

1:3

<1, 3, 2> <3, 1, 2>

<1, 2, 3>

≤

>≤

≤ >

<3, 2, 1>

<2, 1, 3>

>≤

≤ >

>
1:2

9 > 4

1:3

9 > 6

2:3

4 ≤ 6

<2, 3, 1>

output: <4, 6, 9>
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Decision Tree Model

 A decision tree can model the execution of any 

comparison sort:

 One tree for each input size n

 View the algorithm as splitting whenever it compares two 

elements

 The tree contains the comparisons along all possible 

instruction traces

The running time of the algorithm = the length of the path taken

Worst case running time = height of the tree
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Lower Bound for Comparison Sorts

 Let n be the number of elements in the input array.

 What is the min number of leaves in the decision tree?

n! (because there are n! permutations of the input array, 

and all possible outputs must be captured in the leaves)

 What is the max number of leaves in a binary tree of 

height h?

2h

 So, we must have:

2h ≥ n!
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Lower Bound for Decision Tree Sorting

Proof: We’ll prove that any decision tree corresponding to a 
comparison sort algorithm must have height Ω(nlgn)

2h ≥ n! (from previous slide)

h ≥ lg(n!) 

≥ lg((n/e)n)   (Stirling’s approximation)

= nlgn – n lge

= Ω(nlgn)

Theorem: Any comparison sort algorithm requires 

Ω(nlgn) comparisons in the worst case.
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Lower Bound for Decision Tree Sorting

Corollary: Heapsort and merge sort are asymptotically 

optimal comparison sorts.

Proof: The O(nlgn) upper bounds on the runtimes for 

heapsort and merge sort match the Ω(nlgn) worst-case 

lower bound from the previous theorem.
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Sorting in Linear Time

Counting sort: No comparisons between elements

Input: A[1 .. n], where A[j]  {1, 2, …, k}

Output: B[1 .. n], sorted

Auxiliary storage: C[1 .. k]
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Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

4A: 1 3 4 3

B:

C:

1 2 3 4
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Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

4A: 1 3 4 3

B:

0C: 0 0 0

1 2 3 4

Step 1: Initialize all counts to 0
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Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B:

0C: 0 0 0

1 2 3 4

j

1 1 122

Step 2: Count the number of occurrences

of each value in the input array
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Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B:

1C: 0 2 2

1 2 3 4

i

Step 3: Compute the number of elements

less than or equal to each value

1 3 5
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Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B:

1C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 3 5

There are C[3] = 3 elts that are ≤ 3

3

1 2 3 4 5

2
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Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B: 3

1C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 2 5

There are C[4] = 5 elts that are ≤ 4

4

1 2 3 4 5

4
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Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B: 3 4

1C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 2 4

There are C[3] = 2 elts that are ≤ 3

3

1 2 3 4 5

1
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Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

B: 3 3 4

1C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 1 4

There are C[1] = 1 elts that are ≤ 1

1

1 2 3 4 5

0
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Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

1B: 3 3 4

0C: 0 2 2

1 2 3 4

j

Step 4: Populate the output array

1 1 4

There are C[4] =4 elts that are ≤ 4

4

1 2 3 4 5

3



25CS 473 – Lecture 9

4

Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Counting Sort

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

A: 1 3 4 3

1B: 3 3 44

0C: 0 2 2

1 2 3 4

After Count Sort:

1 1 2

4

1 2 3 4 5
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Counting Sort: Runtime Analysis

for i  1 to k do

C[i]  0

for j  1 to n do

C[A[j]]  C[A[j]] + 1

// C[i] = |{key = i}|

for i  2 to k do

C[i]  C[i] + C[i-1]

// C[i] = |{key ≤ i}|

for j  n downto 1 do

B[C[A[j]]] A[j]

C[A[j]]  C[A[j]] – 1

Θ(k)

Θ(n)

Θ(k)

Θ(n)

Total runtime: Θ(n+k)

n: size of the input array

k: the range of input values
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Counting Sort: Runtime

 Runtime is Θ(n+k)

 If k = O(n), then counting sort takes Θ(n)

 Question: We proved a lower bound of Θ(nlgn) 

before! Where is the fallacy?

 Answer: 

 Θ(nlgn) lower bound is for comparison-based sorting

 Counting sort is not a comparison sort

 In fact, not a single comparison between elements occurs!
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Stable Sorting

 Counting sort is a stable sort: It preserves the input 

order among equal elements.

 i.e. The numbers with the same value appear in the output 

array in the same order as they do in the input array.

4A: 1 3 4 3

1B: 3 3 44

4

Exercise: Which other sorting algorithms have this property?
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Radix Sort

 Origin: Herman Hollerith’s card-sorting machine for 

the 1890 US Census.

 Basic idea: Digit-by-digit sorting

 Two variations:

 Sort from MSD to LSD (bad idea)

 Sort from LSD to MSD (good idea)

 LSD/MSD: Least/most significant digit
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Herman Hollerith (1860-1929)

 The 1880 U.S. Census took almost 10 
years to process. 

 While a lecturer at MIT, Hollerith 
prototyped punched-card technology.

 His machines, including a “card sorter,” 
allowed the 1890 census total to be 
reported in 6 weeks. 

 He founded the Tabulating Machine 
Company in 1911, which merged with 
other companies in 1924 to form 
International Business Machines (IBM). 
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Hollerith Punched Card

Punched card: A piece of stiff paper that contains digital 

information represented by the presence or absence of holes.

 12 rows and 24 columns

 coded for age, state of 

residency, gender, etc.
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“Modern” IBM card

 One character per column

So, that’s why text windows have 80 columns!
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Hollerith Tabulating Machine and Sorter

 Mechanically sorts the cards based on the hole locations.

 Sorting performed for one column at a time

 Human operator needed to load/retrieve/move cards at each stage
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Hollerith’s MSD-First Radix Sort

 Sort starting from the most significant digit (MSD)

 Then, sort each of the resulting bins recursively

 At the end, combine the decks in order

sort based

on MSD

sort

recursive

sort

recursive

3 2 9

3 5 5

4 5 7

4 3 6

6 5 7

7 2 0

8 3 9

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

3 2 9

3 5 5

4 3 6

4 5 7

combine all decks
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Hollerith’s MSD-First Radix Sort

 To sort a subset of cards recursively:

 All the other cards need to be removed from the machine, because the 

machine can handle only one sorting problem at a time.

 The human operator needs to keep track of the intermediate card piles

to sort these two cards 

recursively, remove all

the other cards from 

the machine

3 2 9

3 5 5

4 5 7

4 3 6

6 5 7

7 2 0

8 3 9

3 2 9

3 5 5

457, 436, 657, 720, 839 

intermediate piles
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Hollerith’s MSD-First Radix Sort

 MSD-first sorting may require:

-- very large number of sorting passes

-- very large number of intermediate card piles to maintain

 S(d): # of passes needed to sort d-digit numbers (worst-case)

 Recurrence:

S(d) = 10 S(d-1) + 1   with S(1) = 1

Reminder: Recursive call made to each subset with the

same most significant digit (MSD)
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Hollerith’s MSD-First Radix Sort

Recurrence: S(d) = 10S(d-1) + 1

S(d) = 10 S(d-1) + 1

= 10 (10 S(d-2) + 1) + 1

= 10 (10 (10 S(d-3) + 1) + 1) + 1

= 10i S(d-i) + 10i-1 + 10i-2 + … +  101 + 100

Iteration terminates when i = d-1 with S(d-(d-1)) = S(1) = 1

S(d) = 10i

i=0

d-1

å =
10d -1

10 -1
=

1

9
(10d -1) S(d) =

1

9
(10d -1)
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Hollerith’s MSD-First Radix Sort

P(d): # of intermediate card piles maintained (worst-case)

Reminder: Each routing pass generates 9 intermediate piles 

except the sorting passes on least significant digits (LSDs)

There are 10d-1 sorting calls to LSDs

P(d) = 9 (S(d) – 10d-1) = 9 ((10d – 1)/9 – 10d-1) 

= (10d – 1 – 9 . 10d-1) = 10d-1 - 1

P(d) = 10d-1 - 1

Alternative solution: Solve the recurrence: P(d) = 10P(d-1) + 9

P(1) = 0
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Hollerith’s MSD-First Radix Sort

 Example: To sort 3 digit numbers, in the worst case:

S(d) = (1/9) (103-1) = 111 sorting passes needed

P(d) = 10d-1-1 = 99 intermediate card piles generated

 MSD-first approach has more recursive calls and 

intermediate storage requirement

 Expensive for a “tabulating machine” to sort punched cards

 Overhead of recursive calls in a modern computer
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LSD-First Radix Sort

 Least significant digit (LSD)-first radix sort seems to be a 

folk invention originated by machine operators.

 It is the counter-intuitive, but the better algorithm.

 Basic algorithm:

Sort numbers on their LSD first

Combine the cards into a single deck in order 

Continue this sorting process for the other digits

from the LSD to MSD

 Requires only d sorting passes

 No intermediate card pile generated

Stable sorting needed!!!
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LSD-first Radix Sort: Example

3 2 9

4 5 7

6 5 7

8 3 9

4 3 6

7 2 0

3 5 5

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

Step 1: Sort 1st digit

7 2 0

3 5 5

4 3 6

4 5 7

6 5 7

3 2 9

8 3 9

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

Step 2: Sort 2nd digit

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9

Step 3: Sort 3rd digit



42CS 473 – Lecture 9 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Correctness of Radix Sort (LSD-first)

Proof by induction: Base case: d=1 is correct (trivial)

Inductive hyp: Assume the first d-1 digits are sorted correctly

Prove that all d digits are sorted correctly after sorting digit d

7 2 0

3 2 9

4 3 6

8 3 9

3 5 5

4 5 7

6 5 7

3 2 9

3 5 5

4 3 6

4 5 7

6 5 7

7 2 0

8 3 9last 2 digits sorted 

due to ind. hyp.

sort based on digit d

Two numbers that differ

in digit d are correctly

sorted (e.g. 355 and 657) 

Two numbers equal in

digit d are put in the same

order as the input 

 correct order
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Radix Sort: Runtime

 Use counting-sort to sort each digit

Reminder: Counting sort complexity: Θ(n+k)

n: size of input array

k: the range of the values

 Radix sort runtime: Θ(d(n+k))

d: # of digits

 How to choose the d and k?
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Radix Sort: Runtime – Example 1

 We have flexibility in choosing d and k

 Assume we are trying to sort 32-bit words

 We can define each digit to be 4 bits

 Then, the range for each digit k = 24 = 16 

So, counting sort will take Θ(n+16)

 The number of digits d = 32/4 = 8

 Radix sort runtime: Θ(8(n+16)) = Θ(n)

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits

32-bit
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Radix Sort: Runtime – Example 2

 We have flexibility in choosing d and k

 Assume we are trying to sort 32-bit words

 Or, we can define each digit to be 8 bits

 Then, the range for each digit k = 28 = 256 

So, counting sort will take Θ(n+256)

 The number of digits d = 32/8 = 4

 Radix sort runtime: Θ(4(n+256)) = Θ(n)

8 bits 8 bits 8 bits 8 bits

32-bit
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Radix Sort: Runtime

 Assume we are trying to sort b-bit words

 Define each digit to be r bits

 Then, the range for each digit k = 2r

So, counting sort will take Θ(n+2r)

 The number of digits d = b/r

Radix sort runtime:

r bits r bits r bits r bits

b-bit

b/r digits

T (n,b) = Q
b

r
n+ 2r( )

æ

è
ç

ö

ø
÷
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Radix Sort: Runtime Analysis

Minimize T(n, b) by differentiating and setting to 0

Or, intuitively: 

We want to balance the terms (b/r) and (n + 2r)

Choose r ≈ lgn

If we choose r << lgn (n + 2r) term doesn’t improve

If we choose r >> lgn (n + 2r) increases exponentially

T (n,b) = Q
b

r
n+ 2r( )

æ

è
ç

ö

ø
÷
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Radix Sort: Runtime Analysis

T (n,b) = Q
b

r
n+ 2r( )

æ

è
ç

ö

ø
÷

Choose r = lgn T(n, b) = Θ(bn/lgn)

For numbers in the range from 0 to nd – 1, we have:

The number of bits b = lg(nd ) = d lgn

 Radix sort runs in Θ(dn)
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Radix Sort: Conclusions

 Example: Compare radix sort with merge sort/heapsort

1 million (220) 32-bit numbers (n = 220, b = 32)

Radix sort: 32/20 = 2 passes

Merge sort/heap sort: lgn = 20 passes

 Downsides:

Radix sort has little locality of reference (more cache misses)

The version that uses counting sort is not in-place

 On modern processors, a well-tuned quicksort implementation  
typically runs faster.

Choose r = lgn T(n, b) = Θ(bn/lgn)


