CS473-Algorithms I

Lecture 1 Introduction to Analysis of Algorithms

Motivation

- Procedure vs. Algorithm
- What kind of problems are solved by Algorithms?
 - determine/compare DNA sequences
 - efficiently search (e.g. Google) web pages w/ keywords
 - route data (e.g. email) on the Internet
 - decode data (e.g. banking) for security
- Data Structures & Algorithms
- Repertoire vs. New Algorithms (Techniques)

Motivation cntd

- Efficient (scope of course) vs. Inefficient
- Design algorithms that are
 - fast,
 - uses as little memory as possible, and
 - correct!

Problem	: Sorting (from Section 1.1)
Input	: Sequence of numbers
	$\langle a_1, a_2, \dots, a_n \rangle$
Output	: A permutation
	$\Pi = \langle \Pi (1), \Pi (2), \dots, \Pi (n) \rangle$
such that	
	$a_{\Pi(1)} \leq a_{\Pi(2)} \leq \ldots \leq a_{\Pi(n)}$

Algorithm: Insertion sort (from Section 1.1) Insertion-Sort (A)

1	for j ← 2 to n do	
2	$key \leftarrow A[j];$	$\supset O(1)$
3	i ← j - 1;	$\sum \Theta(1)$
4	while i > 0 and A[i] > key do
5	$A[i+1] \leftarrow A[i];$	
6	i ← i - 1;	$\succ \Theta(1)$
	endwhile	
7	$A[i+1] \leftarrow key;$	$\left. \right\} \qquad \Theta(1)$
	endfor	$\square \Theta(1)$

Pseudocode Notation

- Liberal use of English
- Use of indentation for block structure
- Omission of error handling and other details
 - Needed in real programs

- Items sorted in-place
 - Items rearranged within array
 - At most constant number of items stored outside the array at any time
 - Input array A contains sorted output sequence when <u>Insertion-Sort</u> is finished
- Incremental approach

Algorithm: Insertion sort Example: Sample sequence $A=\langle 31, 42, 59, 26, 40, 35 \rangle$

Assume first 5 items are already sorted in A[1..5]

A=(26, 31, 40, 42, 59, 35)

Running Time

- Depends on
 - Input size (e.g., 6 elements vs 60000 elements)
 - Input itself (e.g., partially sorted)
- Usually want *upper bound*

Kinds of running time analysis:

- Worst Case (Usually):

 $T(n) = \max$ time on any input of size n

- Average Case (Sometimes):

T(n) = average time over all inputs of size nAssumes statistical distribution of inputs

- Best Case (Rarely):

BAD^{*}: <u>Cheat with slow</u> algorithm that works fast on some inputs GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low <u>best-case</u> running time

Check whether input constitutes an output at the very beginning of the algorithm

Running Time

- For <u>Insertion-Sort</u>, what is its <u>worst-case</u> time
 - Depends on speed of primitive operations
 - Relative speed (on same machine)
 - Absolute speed (on different machines)
- Asymptotic analysis
 - Ignore machine-dependent constants
 - Look at growth of T(n) as $n \rightarrow \infty$

ONotation

- Drop low order terms
- Ignore leading constants E.g. $3n^3 + 90n^2 - 2n + 5 = \Theta(n^3)$

As *n* gets large a Θ(n²) algorithm runs faster than a Θ(n³) algorithm

Running Time Analysis of Insertion-Sort

• Sum up costs:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

• The best case (sorted order):

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

• The worst case (reverse sorted order):

$$T(n) = \frac{1}{2}(c_4 + c_5 + c_6)n^2 + (c_1 + c_2 + c_3 + \frac{1}{2}(c_4 + c_5 + c_6) + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

Running Time Analysis of Insertion-Sort

- Worst-case (input reverse sorted)
 - Inner loop is $\Theta(j)$

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^{2})$$

- Average case (all permutations equally likely)
 - Inner loop is $\Theta(j/2)$

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^{2})$$

- Often, average case not much better than worst case
- Is this a fast sorting algorithm?
 - Yes, for small *n*. No, for large *n*.

Algorithm: Merge-Sort

- Basic Step: Merge 2 sorted lists of total length *n* in Ø(n) time
- Example:

Recursive Algorithm:		
Merge-Sort (A,p,r)	(T(n))	
if p = r then return;	$(\Theta(1))$	
else		
$q \leftarrow \lfloor (p+r)/2 \rfloor;$: Divide	$(\Theta(1))$
Merge-Sort(A,p,q);	: Conquer	(T(n/2))
Merge-Sort(A,q+1,r);	: Conquer	(T(n/2))
<u>Merge</u> (A,p,q,r);	: Combine	$(\Theta(n))$
endif		

- Call <u>Merge-Sort</u>(A,1,n) to sort A[1..n]
- Recursion bottoms up when subsequences have length 1

Recurrence (for <u>Merge-Sort</u>) -From Section 1.3

- Describes a function recursively in terms of itself
- Describes performance of recursive algorithms
- For <u>Merge-Sort</u>

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$$

- How do we find a good upper bound on *T*(*n*) in closed form?
- Generally, will assume T(n)=Constant ($\Theta(1)$) for sufficiently small n
- For <u>Merge-Sort</u> write the above recurrence as

$$T(n)=2 T(n/2) + \Theta(n)$$

• Solution to the recurrence

$$T(n) = \Theta(nlgn)$$

Conclusions (from Section 1.3)

• $\Theta(nlgn)$ grows more slowly than $\Theta(n^2)$

Therefore <u>Merge-Sort</u> beats <u>Insertion-Sort</u> in the worst case

•In practice, <u>Merge-Sort</u> beats <u>Insertion-Sort</u> for *n*>30 or so.