CS473-Algorithms I

Lecture 1
Introduction to Analysis of Algorithms

Motivation

- Procedure vs. Algorithm
- What kind of problems are solved by Algorithms?
- determine/compare DNA sequences
- efficiently search (e.g. Google) web pages w/ keywords
- route data (e.g. email) on the Internet
- decode data (e.g. banking) for security
- Data Structures \& Algorithms
- Repertoire vs. New Algorithms (Techniques)

Motivation cntd

- Efficient (scope of course) vs. Inefficient
- Design algorithms that are
- fast,
- uses as little memory as possible, and
- correct!

Problem : Sorting (from Section 1.1)

Input : Sequence of numbers
$\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
Output : A permutation

$$
\Pi=\langle\Pi(1), \Pi(2), \ldots, \Pi(\mathrm{n})\rangle
$$

such that

$$
\mathrm{a}_{\Pi(1)} \leq \mathrm{a}_{\Pi(2)} \leq \ldots \leq \mathrm{a}_{\Pi(\mathrm{n})}
$$

Algorithm: Insertion sort (from Section 1.1)

Insertion-Sort (A)

1 for $\mathrm{j} \leftarrow 2$ to n do
$2 \quad$ key $\leftarrow \mathrm{A}[\mathrm{j}]$;
$3 \quad \mathrm{i} \leftarrow \mathrm{j}-1$;

$4 \quad$ while $\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key do
$5 \quad \mathrm{~A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$;
$6 \quad \mathrm{i} \leftarrow \mathrm{i}-1$;
 endwhile
$7 \quad \mathrm{~A}[\mathrm{i}+1] \leftarrow$ key; endfor

Pseudocode Notation

- Liberal use of English
- Use of indentation for block structure
- Omission of error handling and other details
- Needed in real programs

Algorithm: Insertion sort

Idea:

- Items sorted in-place
- Items rearranged within array
- At most constant number of items stored outside the array at any time
- Input array A contains sorted output sequence when Insertion-Sort is finished
- Incremental approach

Algorithm: Insertion sort

Example: Sample sequence

$$
\mathrm{A}=\langle 31,42,59,26,40,35\rangle
$$

Assume first 5 items are already sorted in $\mathrm{A}[1.5]$

$$
\mathrm{A}=\langle\underbrace{26,31,40,42,59}_{\text {already sorted }}, \underbrace{35\rangle}_{\text {key }}
$$

26	31	40	42	59	35	$35=$ key
26	31	40	42	59	59	$35=$ key
26	31	40	42	42	59	$35=$ key
26	31	40	40	42	59	$35=$ key
26	31	35	40	42	59	

Running Time

- Depends on
- Input size (e.g., 6 elements vs 60000 elements)
- Input itself (e.g., partially sorted)
- Usually want upper bound

Kinds of running time analysis:

- Worst Case (Usually):
$T(n)=$ max time on any input of size n
- Average Case (Sometimes):
$T(n)=$ average time over all inputs of size n
Assumes statistical distribution of inputs
- Best Case (Rarely):

BAD*: Cheat with slow algorithm that works fast on some inputs GOOD: Only for showing bad lower bound
*Can modify any algorithm (almost) to have a low best-case running time

- Check whether input constitutes an output at the very beginning of the algorithm

Running Time

- For Insertion-Sort, what is its worst-case time
- Depends on speed of primitive operations
- Relative speed (on same machine)
- Absolute speed (on different machines)
- Asymptotic analysis
- Ignore machine-dependent constants
- Look at growth of $T(n)$ as $n \rightarrow \infty$

Θ Notation

- Drop low order terms
- Ignore leading constants

$$
\text { E.g. } 3 n^{3}+90 n^{2}-2 n+5=\Theta\left(n^{3}\right)
$$

- As n gets large a $\Theta\left(n^{2}\right)$ algorithm runs faster than a $\Theta\left(n^{3}\right)$ algorithm

Running Time Analysis of Insertion-Sort

- Sum up costs:

$$
\begin{array}{r}
T(n)=c_{1} n+c_{2}(n-1)+c_{3}(n-1)+c_{4} \sum_{j=2}^{n} t_{j}+ \\
c_{5} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{7}(n-1)
\end{array}
$$

- The best case (sorted order):

$$
T(n)=\left(c_{1}+c_{2}+c_{3}+c_{4}+c_{7}\right) n-\left(c_{2}+c_{3}+c_{4}+c_{7}\right)
$$

- The worst case (reverse sorted order):

$$
\begin{aligned}
& T(n)=\frac{1}{2}\left(c_{4}+c_{5}+c_{6}\right) n^{2}+ \\
& \quad\left(c_{1}+c_{2}+c_{3}+\frac{1}{2}\left(c_{4}+c_{5}+c_{6}\right)+c_{7}\right) n-\left(c_{2}+c_{3}+c_{4}+c_{7}\right)
\end{aligned}
$$

Running Time Analysis of Insertion-Sort

- Worst-case (input reverse sorted)
- Inner loop is $\Theta(j)$

$$
T(n)=\sum_{j=2}^{n} \Theta(j)=\Theta\left(\sum_{j=2}^{n} j\right)=\Theta\left(n^{2}\right)
$$

- Average case (all permutations equally likely)
- Inner loop is $\Theta(j / 2)$

$$
T(n)=\sum_{j=2}^{n} \Theta(j / 2)=\sum_{j=2}^{n} \Theta(j)=\Theta\left(n^{2}\right)
$$

- Often, average case not much better than worst case
- Is this a fast sorting algorithm?
- Yes, for small n. No, for large n.

Algorithm: Merge-Sort

- Basic Step: Merge 2 sorted lists of total length n in $\Theta(n)$ time
- Example:

Recursive Algorithm:

Merge-Sort (A,p,r)

if $p=r$ then return;
(T(n))
else

$$
\begin{array}{lll}
\mathrm{q} \leftarrow\lfloor(\mathrm{p}+\mathrm{r}) / 2\rfloor ; & : \text { Divide } & (\Theta(1)) \\
\text { Merge-Sort(A,p,q); } & : \text { Conquer } & (T(n / 2)) \\
\text { Merge-Sort(A,q+1,r); } & : \text { Conquer } & (T(n / 2)) \\
\text { Merge(A,p,q,r); } & : \text { Combine } & (\Theta(n))
\end{array}
$$

endif

- Call Merge-Sort(A,1,n) to sort A[1..n]
- Recursion bottoms up when subsequences have length 1

Recurrence (for Merge-Sort) -From Section 1.3

- Describes a function recursively in terms of itself
- Describes performance of recursive algorithms
- For Merge-Sort

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { otherwise }\end{cases}
$$

- How do we find a good upper bound on $T(n)$ in closed form?
- Generally, will assume $T(n)=$ Constant $(\Theta(1))$ for sufficiently small n
- For Merge-Sort write the above recurrence as

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

- Solution to the recurrence

$$
T(n)=\Theta(n \lg n)
$$

Conclusions (from Section 1.3)

- $\Theta(n l g n)$ grows more slowly than $\Theta\left(n^{2}\right)$

Therefore Merge-Sort beats Insertion-Sort in the worst case
-In practice, Merge-Sort beats Insertion-Sort for $n>30$ or so.

