CS473-Algorithms I

Lecture 2

Asymptotic Notation

O-notation (upper bounds)

- $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if \exists positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}
$$

$$
\text { e.g., } 2 n^{2}=O\left(n^{3}\right)
$$

$$
2 \mathrm{n}^{2} \leq \mathrm{cn}^{3} \Rightarrow \mathrm{cn} \geq 2 \Rightarrow \mathrm{c}=1 \& \mathrm{n}_{0}=2
$$

or

$$
\mathrm{c}=2 \& \mathrm{n}_{0}=1
$$

Asymptotic running times of algorithms are usually defined by functions whose domain are $\mathrm{N}=\{0,1,2, \ldots\}$ (natural numbers)

O-notation (upper bounds)

- "=" is funny; "one-way" equality
- O-notation is sloppy, but convenient
- though sloppy, must understand what really means
- think of $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ as a set of functions:
$\mathrm{O}(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}): \exists\right.$ positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
\left.0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}
$$

hence, $2 \mathrm{n}^{2}=\mathrm{O}\left(\mathrm{n}^{3}\right)$ means that $2 \mathrm{n}^{2} \in \mathrm{O}\left(\mathrm{n}^{3}\right)$

O-notation

- O-notation is an upper-bound notation
- e.g., makes no sense to say "running time of an algorithm is at least $\mathrm{O}\left(\mathrm{n}^{2}\right)$ ". Why?
- let running time be $T(n)$
- $\mathrm{T}(\mathrm{n}) \geq \mathrm{O}\left(\mathrm{n}^{2}\right)$ means

$$
T(n) \geq h(n) \text { for some } h(n) \in O\left(n^{2}\right)
$$

- however, this is true for any $T(n)$ since $h(n)=0 \in O\left(n^{2}\right), \quad \&$ running time >0, so stmt tells nothing about running time

O-notation (upper bounds)

Ω-notation (lower bounds)

- $\quad \mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ if \exists positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
\begin{aligned}
& \quad 0 \leq \operatorname{cg}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0} \\
& \text { e.g., } \sqrt{n}=\Omega(\lg \mathrm{n}) \quad\left(\mathrm{c}=1, \mathrm{n}_{0}=16\right) \\
& \text { i.e., } 1 \times \lg \mathrm{n} \leq \sqrt{n} \quad \forall \mathrm{n} \geq 16
\end{aligned}
$$

- $\Omega(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}): \exists\right.$ positive constants $\mathrm{c}, \mathrm{n}_{0}$ such that

$$
\left.0 \leq \mathrm{cg}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}
$$

Ω-notation (lower bounds)

Θ-notation (tight bounds)

- $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n}))$ if \exists positive constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}$ such that

$$
0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}
$$

- example:

$$
\begin{aligned}
& \frac{1}{2} n^{2}-2 n=\Theta\left(n^{2}\right) \\
& 0 \leq c_{1} n^{2} \leq \frac{1}{2} n^{2}-2 n \leq c_{2} n^{2} \\
& c_{1} \leq \frac{1}{2}-\frac{2}{n} \leq c_{2}
\end{aligned}
$$

Θ-notation: example $\left(0<\mathrm{c}_{1} \leq \mathrm{h}(\mathrm{n}) \leq \mathrm{c}_{2}\right)$

Θ-notation: example $\left(0<\mathrm{c}_{1} \leq \mathrm{h}(\mathrm{n}) \leq \mathrm{c}_{2}\right)$

$$
\begin{aligned}
& h(n)=\frac{1}{2}-\frac{2}{n} \leq \frac{1}{2}=c_{2}, \forall n \geq 0 \\
& h(n)=\frac{1}{2}-\frac{2}{n} \geq \frac{1}{10}=c_{1}, \forall n \geq 5
\end{aligned}
$$

therefore

$$
c_{1}=\frac{1}{10}, c_{2}=\frac{1}{2}, n_{0}=5
$$

Θ-notation (tight bounds)

$\Theta(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}): \exists\right.$ positive constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}$ such that

$$
\left.0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}
$$

Θ-notation (tight bounds)

- Prove that $10^{-8} \mathrm{n}^{2} \neq \Theta$ (n)
- suppose $\mathrm{c}_{2}, \mathrm{n}_{0}$ exist such that $10^{-8} \mathrm{n}^{2} \leq \mathrm{c}_{2} \mathrm{n}, \forall \mathrm{n} \geq \mathrm{n}_{0}$
- but then $\mathrm{c}_{2} \geq 10^{-8} \mathrm{n}$
- contradiction since c_{2} is a constant
- Theorem: leading constants \& low-order terms don't matter
- Justification: can choose the leading constant large enough to make high-order term dominate other terms

Θ-notation (tight bounds)

- Theorem: $(\mathrm{O}$ and $\Omega) \Leftrightarrow \Theta$
- Θ is stronger than both O and Ω
- i.e., $\Theta(\mathrm{g}(\mathrm{n})) \subseteq \mathrm{O}(\mathrm{g}(\mathrm{n}))$ and

$$
\Theta(\mathrm{g}(\mathrm{n})) \subseteq \Omega(\mathrm{g}(\mathrm{n}))
$$

Using asymptotic notation for describing running times

O-notation

- used to bound worst-case running times
- also bounds running time on arbitrary inputs as well
- e.g., $\mathrm{O}\left(\mathrm{n}^{2}\right)$ bound on worst-case running time of insertion sort also applies to its running time on every input

Using O-notation for describing running times

- Abuse to say "running time of insertion sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "
- for a given n, actual running time depends on particular input of size n
- i.e., running time is not only a function of n
- however, worst-case running time is only a function of n

Using O-notation for describing running times

- What we really mean by "running time of insertion sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "
- worst-case running time of insertion sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

or equivalently

- no matter what particular input of size n is chosen (for each value of) running time on that set of inputs is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Using Ω-notation for describing running times

- used to bound the best-case running times
\Rightarrow also bounds the running time on arbitrary inputs as well
- e.g., $\Omega(\mathrm{n})$ bound on best-case running time of insertion sort
\Rightarrow running time of insertion sort is $\Omega(\mathrm{n})$

Using Ω-notation for describing running times

- "running time of an algorithm is $\Omega(\mathrm{g}(\mathrm{n})$)" means
- no matter what particular input of size n is chosen (for any n), running time on that set of inputs is at least a constant times $g(n)$, for sufficiently large n
- however, it is not contradictory to say
"worst-case running time of insertion sort is $\Omega\left(n^{2}\right)$ " since there exists an input that causes algorithm to take $\Omega\left(\mathrm{n}^{2}\right)$ time

Using Θ-notation for describing running times

1) used to bound worst-case \& best-case running times of an algorithm if they are not asymptotically equal
2) used to bound running time of an algorithm if its worst \& best case running times are asymptotically equal

Using Θ-notation for describing running times

Case (1):

- a Θ-bound on worst-/best-case running time does not apply to its running time on arbitrary inputs
- e.g., $\Theta\left(n^{2}\right)$ bound on worst-case running time of insertion sort does not imply a $\Theta\left(n^{2}\right)$ bound on running time of insertion sort on every input since $T(n)=O\left(n^{2}\right) \& T(n)=\Omega(n)$ for insertion sort

Using Θ-notation for describing running times

Case (2):

- implies a Θ-bound on every input
- e.g., merge sort

$$
\left.\begin{array}{l}
T(n)=O(n \lg n) \\
T(n)=\Omega(n \lg n)
\end{array}\right\} T(n)=\Theta(n \lg n)
$$

Asymptotic notation in equations

- Asymptotic notation appears alone on RHS of an equation
- means set membership
- e.g., $n=O\left(n^{2}\right)$ means $n \in O\left(n^{2}\right)$
- Asymptotic notation appears on RHS of an equation
- stands for some anonymous function in the set
- e.g., $2 n^{2}+3 n+1=2 n^{2}+\Theta(n)$ means that $2 n^{2}+3 n+1=2 n^{2}+h(n)$, for some $h(n) \in \Theta(n)$
i.e., $h(n)=3 n+1$

Asymptotic notation appears on LHS of an equation

- stands for any anonymous function in the set
- e.g., $2 n^{2}+\Theta(n)=\Theta\left(n^{2}\right)$ means that for any function $g(n) \in \Theta(n)$
\exists some function $h(n) \in \Theta\left(n^{2}\right)$ such that $2 \mathrm{n}^{2}+\mathrm{g}(\mathrm{n})=\mathrm{h}(\mathrm{n}), \forall \mathrm{n}$
- RHS provides coarser level of detail than LHS

Other asymptotic notations

o-notation

- upper bound provided by O-notation may or may not be tight
- e.g., bound $2 n^{2}=O\left(n^{2}\right)$ is asymptotically tight bound $2 \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ is not asymptotically tight
- o-notation denotes an upper bound that is not asymptotically tight

o-notation

- $\mathrm{o}(\mathrm{g}(\mathrm{n}))=\{\mathrm{f}(\mathrm{n})$: for any constant $\mathrm{c}>0$,

$$
\begin{aligned}
& \exists \text { a constant } \mathrm{n}_{0}>0 \\
& \text { such that } \left.0 \leq \mathrm{f}(\mathrm{n})<\mathrm{cg}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}
\end{aligned}
$$

- Intuitively, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
- e.g., $2 \mathrm{n}=\mathrm{o}\left(\mathrm{n}^{2}\right)$, any positive c satisfies
- but $2 \mathrm{n}^{2} \neq \mathrm{o}\left(\mathrm{n}^{2}\right), c=2$ does not satisfy

ω-notation

- denotes a lower bound that is not asymptotically tight
- $\omega(\mathrm{g}(\mathrm{n}))=\{\mathrm{f}(\mathrm{n})$: for any constant $\mathrm{c}>0$,
\exists a constant $\mathrm{n}_{0}>0$
such that $\left.0 \leq \operatorname{cg}(\mathrm{n})<\mathrm{f}(\mathrm{n}), \forall \mathrm{n} \geq \mathrm{n}_{0}\right\}$
- Intuitively $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$
- e.g., $\mathrm{n}^{2} / 2=\omega(\mathrm{n})$, any c satisfies
- but $\mathrm{n}^{2} / 2 \neq \omega\left(\mathrm{n}^{2}\right), c=1 / 2$ does not satisfy

Asymptotic comparison of functions

- similar to the relational properties of real numbers
- Transitivity: (holds for all)

$$
\text { e.g., } \mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})) \& \mathrm{~g}(\mathrm{n})=\Theta(\mathrm{h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\Theta(\mathrm{h}(\mathrm{n}))
$$

- Reflexivity: (holds for Θ, O, Ω)

$$
\text { e.g., } f(n)=O(f(n))
$$

- Symmetry: (holds only for Θ)

$$
\text { e.g., } f(n)=\Theta(g(n)) \Leftrightarrow g(n)=\Theta(f(n))
$$

- Transpose symmetry: $((\mathrm{O} \leftrightarrow \Omega)$ and $(0 \leftrightarrow \omega))$

$$
\text { e.g., } f(n)=O(g(n)) \Leftrightarrow g(n)=\Omega(f(n))
$$

Analogy to the comparison of two real numbers

- $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n})) \leftrightarrow \mathrm{a} \leq \mathrm{b}$
- $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})) \leftrightarrow \mathrm{a} \geq \mathrm{b}$
- $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})) \leftrightarrow \mathrm{a}=\mathrm{b}$
- $\mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n})) \leftrightarrow \mathrm{a}<\mathrm{b}$
- $\mathrm{f}(\mathrm{n})=\omega(\mathrm{g}(\mathrm{n})) \leftrightarrow \mathrm{a}>\mathrm{b}$

Analogy to the comparison of two real numbers

- Trichotomy property of real numbers does not hold for asymptotic notation
- i.e., for any two real numbers a and b, we have either $\mathrm{a}<\mathrm{b}$, or $\mathrm{a}=\mathrm{b}$, or $\mathrm{a}>\mathrm{b}$
- i.e., for two functions $f(n) \& g(n)$, it may be the case that neither $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ nor $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$ holds
- e.g., n and $n^{1+\sin (n)}$ cannot be compared asymptotically

