CS473-Algorithms I

Lecture 3

Solving Recurrences

Solving Recurrences

- The analysis of merge sort Lecture 1 required us to solve a recurrence.
- Recurrences are like solving integrals, differential equations, etc.
> Learn a few tricks.
- Lecture 4 : Applications of recurrences.

Recurrences

- Function expressed recursively

$$
T(n)= \begin{cases}1 & \text { if } \mathrm{n}=1 \\ T(\lceil n / 2\rceil)+1 & \text { if } \mathrm{n}>1\end{cases}
$$

- Solve for $\mathrm{n}=2^{\mathrm{k}}$

Recurrences

- Claimed answer: $\mathrm{T}(n)=\lg n+1=\Theta(\lg n)$
- Substitute claimed answer for T in the recurrence
- Note: resulting equations are true when $n=2^{k}$
i.e. $\quad \lg n+1= \begin{cases}1 & \text { if } \mathrm{n}=2^{0}=1 \\ (\lg (\lceil n / 2\rceil)+1) & \text { if } \mathrm{n}=2^{\mathrm{k}}>1\end{cases}$

Tedious technicality: haven't shown $\mathrm{T}(n)=\Theta(\lg n)$

- But, since $\mathrm{T}(n)$ is monotonically non-decreasing function

$$
\begin{aligned}
\text { of } n \leq 2^{\lg n} & \Rightarrow T(n) \leq T\left(2^{\lceil\lg n\rceil}\right) \\
& =\lg \left(2^{\lceil\lg n\rceil}\right)+1=\lceil\lg n\rceil+1=\Theta(\lg n)
\end{aligned}
$$

Recurrences

- Technically, should be careful about floors and ceilings (as in the book)
- But, usually it is okay
- To ignore floor/ceiling
- Just solve for exact powers of 2 (or b)

Boundary Conditions

- Usually assume $T(n)=\Theta(1)$ for small n
- Does not usually affect soln. (if polynomially bounded)
- Example: Initial condition affects soln.
- Exponential $\mathrm{T}(\mathrm{n})=(\mathrm{T}(n / 2))^{2}$

If $T(1)=c$ for a constant $c>0$, then

$$
\begin{aligned}
& T(2)=(T(1))^{2}=c^{2}, T(4)=(T(2))^{2}=c^{4}, \\
& T(n)=\Theta\left(c^{n}\right)
\end{aligned}
$$

E.g.,

$$
\left.\begin{array}{l}
T(1)=2 \Rightarrow T(n)=\Theta\left(2^{n}\right) \\
T(1)=3 \Rightarrow T(n)=\Theta\left(3^{n}\right)
\end{array}\right\} \text { However } 2^{n} \neq \Theta\left(3^{n}\right)
$$

Difference in soln. is more dramatic with

$$
T(1)=1 \Rightarrow T(n)=\Theta\left(1^{n}\right)=\Theta(1)
$$

Substitution Method

- The most general method:

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

- Example: $T(n)=4 T(n / 2)+n$
- [Assume that $T(1)=\Theta(1)$.]
- Guess $O\left(n^{3}\right)$. (Prove O and Ω separately.)
- Assume that $T(k) \leq c k^{3}$ for $k<n$.
- Prove $T(n) \leq c n^{3}$ by induction.

Example of Substitution

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4 c(n / 2)^{3}+n \\
& =(\mathrm{c} / 2) n^{3}+n \\
& =\mathrm{c} n^{3}-n\left((\mathrm{c} / 2) n^{3}-n\right) \leftarrow \text { desired-residual } \\
& \leq \mathrm{c} n^{3}
\end{aligned}
$$

whenever (c/2) $n^{3}-n \geq 0$, for example, if $\mathrm{c} \geq 2$ and $n \geq 1 \quad$ residual

Example (Continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- Base: $T(n)=\Theta(1)$ for all $n<n_{0}$, where n_{0} is a suitable constant.
- For $1 \leq n<n_{0}$, we have " $\Theta(1)$ " $\leq c n^{3}$, if we pick c big enough.

This bound is not tight!

A Tighter Upper Bound?

We shall prove that $\mathrm{T}(n)=\mathrm{O}\left(n^{2}\right)$
Assume that $\mathrm{T}(\mathrm{k}) \leq \mathrm{ck}^{2}$ for $\mathrm{k}<n$:

$$
\begin{aligned}
\mathrm{T}(n) & =4 \mathrm{~T}(n / 2)+n \\
& \leq \mathrm{c} n^{2}+n \\
& =\mathrm{O}(2 \mathrm{O} \quad \text { Wrong! We must prove the I.H. } \\
& =\mathrm{c} n^{2}-(-n) \\
& \leq \mathrm{c} n^{2}
\end{aligned}
$$

for no choice of $c>0$. Lose!

A Tighter Upper Bound!

- IDEA: Strengthen the inductive hypothesis.
- Subtract a low-order term.

Inductive hypothesis: $\mathrm{T}(k) \leq \mathrm{c}_{1} k^{2}-\mathrm{c}_{2} k$ for $k<n$

$$
\begin{aligned}
\mathrm{T}(n) & =4 \mathrm{~T}(n / 2)+n \\
& \leq 4\left(\mathrm{c}_{1}(n / 2)^{2}-\mathrm{c}_{2}(n / 2)\right)+n \\
& =\mathrm{c}_{1} n^{2}-2 \mathrm{c}_{2} n+n \\
& =\mathrm{c}_{1} n^{2}-\mathrm{c}_{2} n-\left(\mathrm{c}_{2} n-n\right) \\
& \leq \mathrm{c}_{1} n^{2}-\mathrm{c}_{2} n \text { if } \mathrm{c}_{2}>1
\end{aligned}
$$

Pick c_{1} big enough to handle the initial conditions

Recursion-Tree Method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable.
- The recursion-tree method promotes intuition, however.

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

$$
T(n)
$$

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

The Master Method

- The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Three Common Cases

- Compare $f(n)$ with $n^{\log _{b} a}$:

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomialy slower than $n^{\log _{b} a}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

2. $f(n)=\Theta\left(n^{\log _{b} a} \lg ^{k} n\right)$ for some constant $k \geq 0$.

- $f(n)$ and $n^{\log _{b} a}$ grow at similar rates.

Solution: $T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)$.

Three Common Cases

- Compare $f(n)$ with $n^{\log _{b} a} \quad:$

3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon} \quad\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially faster than $\boldsymbol{n}^{\log _{b} a}$
(by an n^{ε} factor).
and $f(n)$ satisfies the regularity condition that
$a f(n / b) \leq \mathrm{c} f(n)$ for some constant $\mathrm{c}<1$

Solution: $T(n)=\Theta(f(n))$.

Examples

- Ex: $\mathrm{T}(n)=4 \mathrm{~T}(n / 2)+n$

$$
\begin{aligned}
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n \\
& \operatorname{CASE~1:f(n)=\mathrm {O}(n^{2-\varepsilon })\text {for}\varepsilon =1} \\
& \circ \mathrm{~T}(n)=\Theta\left(n^{2}\right)
\end{aligned}
$$

- Ex: $\mathrm{T}(n)=4 \mathrm{~T}(n / 2)+n^{2}$

$$
\begin{aligned}
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2} \\
& \text { CASE 2: } f(n)=\Theta\left(n^{2} \lg ^{0} n\right) \text {, that is, } k=0 \\
& \circ \bigcirc \mathrm{~T}(n)=\Theta\left(n^{2} \lg n\right)
\end{aligned}
$$

Examples

- Ex: $\mathrm{T}(n)=4 \mathrm{~T}(n / 2)+n^{3}$

$$
\begin{aligned}
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{3} \\
& \text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=1 \\
& \text { and } 4 \mathrm{c}(n / 2)^{3} \leq \mathrm{cn}^{3} \text { (reg. cond.) for } \mathrm{c}=1 / 2 \\
& \circ \mathrm{~T}(n)=\Theta\left(\mathrm{n}^{3}\right)
\end{aligned}
$$

- Ex: $\mathrm{T}(n)=4 \mathrm{~T}(\mathrm{n} / 2)+n^{2} / \lg n$

$$
a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2} / \lg n
$$

Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $\mathrm{n}^{\varepsilon}=\omega(\lg n)$

General Method (Akra-Bazzi)

$$
T(n)=\sum_{i=1}^{k} a_{i} T\left(n / b_{i}\right)+f(n)
$$

Let p be the unique solution to

$$
\sum_{i=1}^{k}\left(a_{i} / b_{i}^{p}\right)=1
$$

Then, the answers are the same as for the master method, but with n^{p} instead of $n^{\log _{b} a}$ (Akra and Bazzi also prove an even more general result.)

Idea of Master Theorem

Proof of Master Theorem: Case 1 and Case 2

- Recall from the recursion tree (note $h=\lg _{b} n=$ tree height)

$$
T(n)=\underbrace{\Theta\left(n^{\log _{b} a}\right)}_{\text {Leaf cost }}+\underbrace{\sum_{i=0}^{h-1} a^{i} f\left(n / b^{i}\right)}_{\text {Non-leaf cost }=\mathrm{g}(n)}
$$

Proof of Case 1

$$
\begin{aligned}
& >\frac{n^{\log _{b} a}}{f(n)}=\Omega\left(n^{\varepsilon}\right) \quad \text { for some } \varepsilon>0 \\
& >\frac{n^{\log _{b} a}}{f(n)}=\Omega\left(n^{\varepsilon}\right) \Rightarrow \frac{f(n)}{n^{\log _{b} a}}=O\left(n^{-\varepsilon}\right) \Rightarrow f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \\
& >g(n)=\sum_{i=0}^{h-1} a^{i} O\left(\left(n / b^{i}\right)^{\log _{b} a-\varepsilon}\right)=O\left(\sum_{i=0}^{h-1} a^{i}\left(n / b^{i}\right)^{\log _{b} a-\varepsilon}\right) \\
& >=O\left(n^{\log _{b} a-\varepsilon} \sum_{i=0}^{h-1} a^{i} b^{i \varepsilon} / b^{i \log _{b} a}\right)
\end{aligned}
$$

Case 1 (cont')

$$
\sum_{i=0}^{h-1} \frac{a^{i} b^{i e}}{b^{i \log _{g} a}}=\sum_{i=0}^{n-1} a^{i} \frac{\left(b^{\varepsilon}\right)^{i}}{\left(b^{\log _{g} a}\right)^{i}}=\sum^{i} \frac{b^{\varepsilon i}}{a^{i}}=\sum_{i=0}^{n-1}\left(b^{\varepsilon}\right)^{i}
$$

$=$ An increasing geometric series since $\mathrm{b}>1$

$$
=\frac{b^{\varepsilon h}-1}{b^{\varepsilon}-1}=\frac{\left(b^{h}\right)^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{\left(b^{\log _{b} n}\right)^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{n^{\varepsilon}-1}{b^{\varepsilon}-1}=O\left(n^{\varepsilon}\right)
$$

Case 1 (cont')

$$
\begin{aligned}
=g(n) & =O\left(n^{\log _{b} a-\varepsilon} O\left(n^{\varepsilon}\right)\right)=O\left(\frac{n^{\log _{b} a}}{n^{\varepsilon}} O\left(n^{\varepsilon}\right)\right) \\
& =O\left(n^{\log _{b} a}\right)
\end{aligned}
$$

$$
\varphi T(n)=\Theta\left(n^{\log _{b} a}\right)+g(n)=\Theta\left(n^{\log _{b} a}\right)+O\left(n^{\log _{b} a}\right)
$$

$$
=\Theta\left(n^{\log _{b} a}\right)
$$

Q.E.D.

Proof of Case 2 (limited to $k=0$)

$$
=\therefore g(n)=\sum_{i=0}^{n-1} a^{\prime} \Theta\left(\left(n / b^{\prime}\right)^{\log _{s} a}\right)
$$

$$
=\Theta\left(\sum_{i=0}^{h-1} a^{i} \frac{n^{\log _{b} a}}{b^{i \log _{b} a}}\right)=\Theta\left(n^{\log _{b} a} \sum_{i=0}^{h-1} a^{i} \frac{1}{\left(b^{\log _{b} a}\right)^{i}}\right)=\Theta\left(n^{\log _{b} a} \sum_{i=0}^{h-1} a^{i} \frac{1}{a^{i}}\right)
$$

$$
=\Theta\left(n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1\right)=\Theta\left(n^{\log _{b} a} \log _{b} n\right)=\Theta\left(n^{\log _{b} a} \lg n\right)
$$

$$
T(n)=n^{\log _{b} a}+\Theta\left(n^{\log _{b} a} \lg n\right)
$$

$$
=\Theta\left(n^{\log _{b} a} \lg n\right)
$$

Conclusion

- Next time: applying the master method.

