CS473-Algorithms I

Lecture 6-a

Randomized Quicksort

1

Analysis of Quicksort

QUICKSORT (A, p, r) if p < r then $q \leftarrow$ H-PARTITION(A, p, r) QUICKSORT(A, p, q) QUICKSORT(A, q + 1, r)

- Assume all elements are distinct
- Let *T*(*n*)=worst-case running time

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has one element.

$$T(n) = T(1) + T(n-1) + \Theta(n)$$

= $\Theta(1) + T(n-1) + \Theta(n)$
= $T(n-1) + \Theta(n)$
= $\Theta(n^2)$ (arithmetic series)

T(n)

Best-case analysis (For intuition only!)

If we're lucky, H-PARTITION splits the array evenly: $T(n) = 2T(n/2) + \Theta(n)$ $= \Theta(n \lg n) \quad (\text{same as merge sort})$

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

 $T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$

What is the solution to this recurrence?

T(n)

Balanced Partitionings: Splits of constant proportionality

- α -to-(1- α) proportional split yields $\Theta(n \lg n)$ time
- Let $\mathcal{P}_{\alpha>}$ = probability that H-PARTITION produces a split more balanced than an α -to-(1- α) split on a random array (0< $\alpha \leq 1/2$)
- P_q =probability that H-PARTITION returns q for any $1 \le q < n$
- $P_1=2/n$ and $P_q=1/n$ for $2 \le q < n$ for Hoare's partitioning algorithm

Balanced Partitionings

$$\mathcal{P}_{\alpha >} = 1 - 2\alpha$$

 $\mathcal{P}_{0.1>} = 1 - 2 \times 0.1 = 0.80;$ even $\mathcal{P}_{0.01>} = 0.98$

- Hence, H-PARTITION produces a split
 - More balanced than a
 - 0.1-to-0.9 split %80 of the time
 - 0.01–to–0.99 split %98 of the time
 - Less balanced than a
 - 0.1–to–0.9 split %20 of the time
 - 0.01–to–0.99 split %2 of the time

Intuition for the average case

- Assumption: all permutations are equally likely
- Unlikely: splits always the same way at every level
- Expectation:
 - Some splits will be reasonably balanced
 - Some splits will be fairly unbalanced
- Average case: a mix of good and bad splits.
- ▷ *Good* and *bad* splits distributed randomly thru the tree
- Assume: good and bad splits occur in the alternate levels of the tree
 - ▷ Good-Split: Best-case split, Bad-Split: Worst-case split

Intuition for the average case

- Two successive levels of avg-case produce a split
 - Slightly better than single level of best-case
 - Extra divide cost of $\Theta(1+(n-1))=\Theta(n)$ at alternate levels
 - $-\Theta(n)$ cost of bad splits absorbed into $\Theta(n)$ cost of good splits
- Running time is still $\Theta(n \lg n)$
 - But, slightly larger hidden constant
 - i.e. height of the tree \approx twice of that of best-case

Intuition for the average case

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

 $L(n) = 2U(n/2) + \Theta(n) \quad lucky (best)$ $U(n) = L(n-1) + \Theta(n) \quad unlucky (worst)$

Solving:

 $L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$ = $2L(n/2 - 1) + \Theta(n)$ = $\Theta(n \lg n)$ Lucky!

How can we make sure we are usually lucky?