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CS473-Algorithms I

Lecture 6-a

Randomized Quicksort
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Analysis of Quicksort

• Assume all elements are distinct
• Let T(n)=worst-case running time

QUICKSORT (A, p, r)
if p < r then
q← H-PARTITION(A, p, r)

QUICKSORT(A, p, q)
QUICKSORT(A, q +1, r)

≥ x≤ x
p q r



Worst-case of quicksort

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has one element.
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Worst-case recursion tree
T(n) = T(1) + T(n–1) + cn
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Worst-case recursion tree
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T(n) = Θ(n) + Θ(n2)
= Θ(n2)

h = n



Best-case analysis
(For intuition only!)

If we’re lucky, H-PARTITION splits the array evenly:
T(n) = 2T(n/2) + Θ(n)

= Θ(n lg n) (same as merge sort)

What if the split is always 10
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What is the solution to this recurrence?



Analysis of “almost-best” case
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Θ(n lg n)
Lucky!



Balanced Partitionings: 
Splits of constant proportionality

• α–to–(1-α) proportional split yields time
• Let Pα>= probability that H-PARTITION produces a split 

more balanced than an α–to–(1-α) split on a random 
array (0< α ≤1/2)

• Pq=probability that H-PARTITION returns q for any 1≤q <n
• P1=2/n and Pq=1/n for 2≤ q <n for Hoare’s partitioning 

algorithm
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Balanced Partitionings
Pα>=1–2α

P0.1> =1–2×0.1=0.80;              even P0.01> =0.98
• Hence, H-PARTITION produces a split

– More balanced than a 
• 0.1–to–0.9 split %80 of the time
• 0.01–to–0.99 split %98 of the time

– Less balanced than a
• 0.1–to–0.9 split %20 of the time
• 0.01–to–0.99 split %2 of the time



Intuition for the average case
• Assumption: all permutations are equally likely
• Unlikely: splits always the same way at every level 
• Expectation: 

– Some splits will be reasonably balanced
– Some splits will be fairly unbalanced

• Average case: a mix of good and bad splits.
> Good and bad splits distributed randomly thru the tree
> Assume: good and bad splits occur in the alternate 

levels of the tree
> Good-Split: Best-case split, Bad-Split: Worst-case split 



Intuition for the average case

• Two successive levels of avg-case produce a split
– Slightly better than single level of best-case
– Extra divide cost of at alternate levels
– cost of bad splits absorbed into            cost of good splits

• Running time is still
• But, slightly larger hidden constant
• i.e. height of the tree ≈ twice of that of best-case
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I ntuition for the average case

Suppose we alternate lucky, unlucky, 
lucky, unlucky, lucky, ….

L(n) = 2U(n/2) + Θ(n) lucky (best)
U(n) =  L(n – 1) +  Θ(n) unlucky (worst)

Solving:
L(n) = 2(L(n/2 – 1) + Θ(n/2)) + Θ(n)

= 2L(n/2 – 1) + Θ(n)
= Θ(n lg n)

How can we make sure we are usually lucky?
Lucky!
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