CS473-Algorithms I

Lecture 6-a

Randomized Quicksort

Analysis of Quicksort

QUICKSORT (A, p, r)

if $p<r$ then
$q \leftarrow$ H-PARTITION(A, p, r)
QUICKSORT(A, p, q)
QUICKSORT(A, $q+1, r$)

- Assume all elements are distinct
- Let $T(n)=$ worst-case running time

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has one element.

$$
\begin{aligned}
T(n) & =T(1)+T(n-1)+\Theta(n) \\
& =\Theta(1)+T(n-1)+\Theta(n) \\
& =T(n-1)+\Theta(n) \\
& =\Theta\left(n^{2}\right) \quad \text { (arithmetic series) }
\end{aligned}
$$

Worst-case recursion tree

$$
T(n)=T(1)+T(n-1)+c n
$$

Worst-case recursion tree

$$
T(n)=T(1)+T(n-1)+c n
$$

$T(n)$

Worst-case recursion tree

$$
\begin{aligned}
& \quad T(n)=T(1)+T(n-1)+c n \\
& T(1) \quad T(n-1)
\end{aligned}
$$

Worst-case recursion tree

$$
T(n)=T(1)+T(n-1)+c n
$$

Worst-case recursion tree

$$
T(n)=T(1)+T(n-1)+c n
$$

$T(1)$ 。

Worst-case recursion tree

$$
\begin{gathered}
T(n)=T(1)+T(n-1)+c n \\
T(1)^{c n} c(n-1) \\
T(1)<\left(\sum_{k=1}^{n} k\right)=\Theta\left(n^{2}\right) \\
T(1)-2) \\
\ddots \underbrace{}_{\Theta(1)}
\end{gathered}
$$

Worst-case recursion tree

$$
T(n)=T(1)+T(n-1)+c n
$$

Best-case analysis (For intuition only!)

If we're lucky, H-Partition splits the array evenly:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \\
& =\Theta(n \lg n) \quad \text { (same as merge sort) }
\end{aligned}
$$

What if the split is always $\frac{1}{10}: \frac{9}{10}$?

$$
T(n)=T\left(\frac{1}{10} n\right)+T\left(\frac{9}{10} n\right)+\Theta(n)
$$

What is the solution to this recurrence?

Analysis of "almost-best" case

$$
T(n)
$$

Analysis of "almost-best" case

Balanced Partitionings:

Splits of constant proportionality

- α-to- $(1-\alpha)$ proportional split yields $\Theta(n \lg n)$ time
- Let $P_{\alpha>}=$ probability that h-Partition produces a split more balanced than an α-to- $(1-\alpha)$ split on a random array ($0<\alpha \leq 1 / 2$)
- $P_{q}=$ probability that h-PARTITION returns q for any $1 \leq q<n$
- $P_{1}=2 / \mathrm{n}$ and $P_{q}=1 / n$ for $2 \leq q<n$ for Hoare's partitioning algorithm

$$
\begin{aligned}
\triangleright \mathcal{P}_{\alpha>} & =\sum_{q=\alpha n+1}^{(1-\alpha) n-1} P_{q}=\sum_{q=\alpha n+1}^{(1-\alpha) n-1}(1 / n)=\frac{1}{n} \sum_{q=\alpha n+1}^{(1-\alpha) n-1} 1 \\
& =\frac{1}{n}(((1-\alpha) n-1)-(\alpha n+1)+1)=\frac{1}{n}((1-\alpha) n-1-\alpha n-1+1) \\
& =\frac{1}{n}(n-\alpha n-1-\alpha n)=\frac{1}{n}(n(1-2 \alpha)-1) \\
\boldsymbol{P}_{\alpha>} & =(1-2 \alpha)-1 / n \approx 1-2 \alpha \text { for large } n
\end{aligned}
$$

Balanced Partitionings

$$
\mathcal{P}_{\alpha>}=1-2 \alpha
$$

$\mathcal{P}_{0.1>}=1-2 \times 0.1=0.80$; even $\mathcal{P}_{0.01>}=0.98$

- Hence, h-partition produces a split
- More balanced than a
- $0.1-$ to -0.9 split $\% 80$ of the time
- 0.01-to-0.99 split \%98 of the time
- Less balanced than a
- $0.1-$ to -0.9 split $\% 20$ of the time
- 0.01-to-0.99 split $\% 2$ of the time

Intuition for the average case

- Assumption: all permutations are equally likely
- Unlikely: splits always the same way at every level
- Expectation:
- Some splits will be reasonably balanced
- Some splits will be fairly unbalanced
- Average case: a mix of good and bad splits.
\triangleright Good and bad splits distributed randomly thru the tree
\triangleright Assume: good and bad splits occur in the alternate levels of the tree
\triangleright Good-Split: Best-case split, Bad-Split: Worst-case split

Intuition for the average case

n is odd	
avg-case	best-case

- Two successive levels of avg-case produce a split
- Slightly better than single level of best-case
- Extra divide cost of $\Theta(1+(n-1))=\Theta(n)$ at alternate levels
- $\Theta(n)$ cost of bad splits absorbed into $\Theta(n)$ cost of good splits
- Running time is still $\Theta(n \lg n)$
- But, slightly larger hidden constant
- i.e. height of the tree \approx twice of that of best-case

Intuition for the average case

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

$$
\begin{array}{ll}
L(n)=2 U(n / 2)+\Theta(n) & \text { lucky (best) } \\
U(n)=L(n-1)+\Theta(n) & \text { unlucky (worst) }
\end{array}
$$

Solving:

$$
\begin{aligned}
L(n) & =2(L(n / 2-1)+\Theta(n / 2))+\Theta(n) \\
& =2 L(n / 2-1)+\Theta(n) \\
& =\Theta(n \lg n) \text { Lucky! }
\end{aligned}
$$

How can we make sure we are usually lucky?

