
CS 473 Lecture 6 1

CS473-Algorithms I

Lecture 6-a

Randomized Quicksort

CS 473 Lecture 6 2

Analysis of Quicksort

• Assume all elements are distinct
• Let T(n)=worst-case running time

QUICKSORT (A, p, r)
if p < r then
q← H-PARTITION(A, p, r)

QUICKSORT(A, p, q)
QUICKSORT(A, q +1, r)

≥ x≤ x
p q r

Worst-case of quicksort

• Input sorted or reverse sorted.
• Partition around min or max element.
• One side of partition always has one element.

)(
)()1(

)()1()1(
)()1()1()(

2n
nnT

nnT
nnTTnT

Θ=

Θ+−=
Θ+−+Θ=
Θ+−+=

(arithmetic series)

Worst-case recursion tree
T(n) = T(1) + T(n–1) + cn

Worst-case recursion tree
T(n) = T(1) + T(n–1) + cn

T(n)

cn
T(1) T(n–1)

Worst-case recursion tree
T(n) = T(1) + T(n–1) + cn

cn
T(1) c(n–1)

Worst-case recursion tree
T(n) = T(1) + T(n–1) + cn

T(1) T(n–2)

cn
T(1) c(n–1)

Worst-case recursion tree
T(n) = T(1) + T(n–1) + cn

T(1) c(n–2)

T(1)

Θ(1)

O

cn
T(1) c(n–1)

Worst-case recursion tree
T(n) = T(1) + T(n–1) + cn

T(1) c(n–2)

T(1)

Θ(1)

O

()2

1
nk

n

k
Θ=

Θ ∑

=

cn
Θ(1) c(n–1)

Worst-case recursion tree
T(n) = T(1) + T(n–1) + cn

Θ(1) c(n–2)

Θ(1)

Θ(1)

O

()2

1
nk

n

k
Θ=

Θ ∑

=

T(n) = Θ(n) + Θ(n2)
= Θ(n2)

h = n

Best-case analysis
(For intuition only!)

If we’re lucky, H-PARTITION splits the array evenly:
T(n) = 2T(n/2) + Θ(n)

= Θ(n lg n) (same as merge sort)

What if the split is always 10
9

10
1 : ?

() ())()(10
9

10
1 nnTnTnT Θ++=

What is the solution to this recurrence?

Analysis of “almost-best” case
)(nT

Analysis of “almost-best” case
cn

()nT 10
1 ()nT 10

9

Analysis of “almost-best” case
cn

cn10
1 cn10

9

()nT 100
1 ()nT 100

9 ()nT 100
9 ()nT 100

81

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

Θ(1)

… …
log10/9n

cn

cn

cn

…O(n) leavesO(n) leaves

log10n

Analysis of “almost-best” case
cn

cn10
1 cn10

9

cn100
1 cn100

9 cn100
9 cn100

81

Θ(1)

Θ(1)

… …
log10/9n

cn

cn

cn

T(n) ≤ cn log10/9n

…

cn log10n ≤

O(n) leavesO(n) leaves

Θ(n lg n)
Lucky!

Balanced Partitionings:
Splits of constant proportionality

• α–to–(1-α) proportional split yields time
• Let Pα>= probability that H-PARTITION produces a split

more balanced than an α–to–(1-α) split on a random
array (0< α ≤1/2)

• Pq=probability that H-PARTITION returns q for any 1≤q <n
• P1=2/n and Pq=1/n for 2≤ q <n for Hoare’s partitioning

algorithm

()nn lgΘ

αn (1-α)n

1 n
L

Pα> =

= (((1–α)n –1) – (α n+ 1)+1)= ((1–α)n –1 – α n –1+1)

= (n –α n – 1–α n) = (n(1 – 2α) –1)

Pα>=(1–2α) – ≈ 1–2α for large n

> ∑ qP
q=αn+1

(1-α)n-1

= ∑()n1 = ∑n
1 1

n
1

n
1

n
1

n
1

n1

q=αn+1

(1-α)n-1

q=αn+1

(1-α)n-1

Balanced Partitionings
Pα>=1–2α

P0.1> =1–2×0.1=0.80; even P0.01> =0.98
• Hence, H-PARTITION produces a split

– More balanced than a
• 0.1–to–0.9 split %80 of the time
• 0.01–to–0.99 split %98 of the time

– Less balanced than a
• 0.1–to–0.9 split %20 of the time
• 0.01–to–0.99 split %2 of the time

Intuition for the average case
• Assumption: all permutations are equally likely
• Unlikely: splits always the same way at every level
• Expectation:

– Some splits will be reasonably balanced
– Some splits will be fairly unbalanced

• Average case: a mix of good and bad splits.
> Good and bad splits distributed randomly thru the tree
> Assume: good and bad splits occur in the alternate

levels of the tree
> Good-Split: Best-case split, Bad-Split: Worst-case split

Intuition for the average case

• Two successive levels of avg-case produce a split
– Slightly better than single level of best-case
– Extra divide cost of at alternate levels
– cost of bad splits absorbed into cost of good splits

• Running time is still
• But, slightly larger hidden constant
• i.e. height of the tree ≈ twice of that of best-case

() ()nn Θ=−+Θ)1(1
()nΘ ()nΘ

()nnlgΘ

n is even

avg-case best-case

n n

1 1−n

2
n

2
n

2
n

1
2
−

n

n is odd

avg-case best-case

n n

1 1−n 1
2

1
+

−n
2

1−n

2
1−n

2
1−n

Extra
divide
cost

Extra
divide
cost

I ntuition for the average case

Suppose we alternate lucky, unlucky,
lucky, unlucky, lucky, ….

L(n) = 2U(n/2) + Θ(n) lucky (best)
U(n) = L(n – 1) + Θ(n) unlucky (worst)

Solving:
L(n) = 2(L(n/2 – 1) + Θ(n/2)) + Θ(n)

= 2L(n/2 – 1) + Θ(n)
= Θ(n lg n)

How can we make sure we are usually lucky?
Lucky!

	lecture6-a-start.pdf
	CS473-Algorithms I
	Analysis of Quicksort

	l6-in-between.pdf
	Balanced Partitionings: Splits of constant proportionality
	Intuition for the average case
	Intuition for the average case

	l6-in-between.pdf
	Balanced Partitionings: Splits of constant proportionality
	Intuition for the average case
	Intuition for the average case

	l6-in-between.pdf
	Balanced Partitionings: Splits of constant proportionality
	Intuition for the average case
	Intuition for the average case

	lecture6-a-start.pdf
	CS473-Algorithms I
	Analysis of Quicksort

	l6-in-between.pdf
	Balanced Partitionings: Splits of constant proportionality
	Intuition for the average case
	Intuition for the average case

