Randomized QuickSort
Randomized Quicksort

• Average-case assumption:
 – all permutations are equally likely
 – cannot always expect to hold

• Alternative to assuming a distribution: Impose a distribution
 – Partition around a random pivot
Randomized Quicksort

Typically useful when

- there are many ways that an algorithm can proceed
- but, it is difficult to determine a way that is guaranteed to be good.
 - Many good alternatives; simply choose one randomly

• Running time is independent of input ordering
• No specific input causes worst-case behavior
• Worst case determined only by output of random number generator
Randomized Quicksort

R-QUICKSORT(A, p, r)
 if p < r then
 q ← R-PARTITION(A, p, r)
 R-QUICKSORT(A, p, q)
 R-QUICKSORT(A, q+1, r)

R-PARTITION(A, p, r)
 s ← RANDOM(p, r)
 return H-PARTITION(A, p, r)

return L-PARTITION(A, p, r)
for Lomuto’s partitioning

- Permuting whole array also works well on the average
 - more difficult to analyze
Formal Average - Case Analysis

• Assume all elements in $A[p \ldots r]$ are distinct

• $n = r - p + 1$

• $\text{rank}(x) = |\{A[i]: p \leq i \leq r \text{ and } A[i] \leq x\}|$

• “exchange $A[p] \leftrightarrow x = A[s]$” ($x \in A[p \ldots r]$ random pivot)

$\Rightarrow P(\text{rank}(x) = i) = 1/n$, for $i=1,2,\ldots, n$
Likelihood of Various Outcomes of Hoare’s Partitioning Algorithm

\(\text{• rank}(x) = 1 : \)
\[
k = 1 \text{ with } i_1 = j_1 = p \Rightarrow L_1 = \{ A[p] = x \}
\Rightarrow |L| = 1
\]

\(\text{• rank}(x) > 1 : \Rightarrow k > 1 \)

\(\text{– iteration 1: } i_1 = p, p < j_1 \leq r \Rightarrow A[p] \leftrightarrow x = A[j_1] \)
\Rightarrow \text{pivot } x \text{ stays in the right region}
\(\text{– termination: } L_k = \{ A[i]: p \leq i \leq r \text{ and } A[i] < x \} \)
\Rightarrow |L| = \text{rank}(x) - 1
Various Outcomes

- \(\text{rank}(x) = 1 \): \(\Rightarrow |L| = 1 \)

- \(\text{rank}(x) > 1 \): \(\Rightarrow |L| = \text{rank}(x) - 1 \)

- \(P(|L| = 1) = P(\text{rank}(x) = 1) + P(\text{rank}(x) = 2) \)

\[
= \frac{1}{n} + \frac{1}{n} = \frac{2}{n}
\]

- \(P(|L| = i) = P(\text{rank}(x) = i+1) \)

\[
= \frac{1}{n} \quad \text{for} \ i = 2, \ldots, n - 1
\]
Average - Case Analysis: Recurrence

\[T(n) = \frac{1}{n} (T(1) + T(n-1)) + \frac{1}{n} (T(1) + T(n-1)) + \frac{1}{n} (T(2) + T(n-2)) + \frac{1}{n} (T(i) + T(n-i)) + \frac{1}{n} (T(n-1) + T(1)) + \Theta(n) \]

\[\text{rank}(x) \]

1
2
3
\vdots
i+1
\vdots
n
\[x = \text{pivot} \]
Recurrence

\[T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \frac{1}{n} (T(1) + T(n-1)) + \Theta(n) \]

- but, \[\frac{1}{n} (T(1) + T(n-1)) = \frac{1}{n} (\Theta(1) + O(n^2)) = O(n) \]

\[\Rightarrow T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \Theta(n) \]

- for \(k = 1,2,\ldots,n-1 \) each term \(T(k) \) appears twice
 - once for \(q = k \) and once for \(q = n-k \)

\[T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n) \]
Solving Recurrence: Substitution

Guess: \(T(n) = O(n \log n) \)

I.H. : \(T(k) \leq ak \log k + b \Rightarrow k < n \), for some constants \(a > 0 \) and \(b \geq 0 \)

\[
T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n)
\]

\[
\leq \frac{2}{n} \sum_{k=1}^{n-1} (ak \log k + b) + \Theta(n)
\]

\[
= \frac{2a}{n} \sum_{k=1}^{n-1} (k \log k + b) + \frac{2b}{n} (n-1) + \Theta(n)
\]

\[
\leq \frac{2a}{n} \sum_{k=1}^{n-1} k \log k + (2b) + \Theta(n)
\]

Need a tight bound for \(\sum k \log k \)
Tight bound for $\sum k \lg k$

• Bounding the terms

$$\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n-1} n \lg n = n (n-1) \lg n \leq n^2 \lg n$$

This bound is not strong enough because

• $T(n) \leq \frac{2a}{n} n^2 \lg n + 2b + \Theta(n)$

 $= \ 2an \lg n + 2b + \Theta(n)$
Tight bound for $\sum k \lg k$

- **Splitting summations:** ignore ceilings for simplicity

\[
\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n/2-1} k \lg k + \sum_{k=n/2}^{n-1} k \lg k
\]

First summation: \(\lg k < \lg(n/2) = \lg n - 1 \)

Second summation: \(\lg k < \lg n \)
Splitting: \[\sum_{k=1}^{n-1} k \log k \leq \sum_{k=1}^{n/2-1} k \log k + \sum_{k=n/2}^{n-1} k \log k \]

\[\sum_{k=1}^{n-1} k \log k \leq (\log n - 1) \sum_{k=1}^{n/2-1} k + \log n \sum_{k=n/2}^{n-1} k \]

\[= \log n \sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k = \frac{1}{2} n(n-1) \log n - \frac{1}{2} n^2 \frac{n}{2} \left(\frac{n}{2} - 1 \right) \]

\[= \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 - \frac{1}{2} n \left(\log n - 1 / 2 \right) \]

\[\sum_{k=1}^{n-1} k \log k \leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \quad \text{for } \log n \geq 1 / 2 \Rightarrow n \geq \sqrt{2} \]
Substituting:
\[
\sum_{k=1}^{n-1} k \log k \leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2
\]

\[
T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \log k + 2b + \Theta(n)
\]

\[
\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + 2b + \Theta(n)
\]

\[
= an \log n + b - \left(\frac{a}{4} n - (\Theta(n) + b) \right)
\]

We can choose \(a\) large enough so that \(\frac{a}{4} n \geq \Theta(n) + b\)

\[
\Rightarrow T(n) \leq an \log n + b \Rightarrow T(n) = O(n \log n)
\]

Q.E.D.